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Abstract
Purpose  There is great controversy about the etiologic origin of adolescent idiopathic scoliosis. Multiple theories have been 
suggested, including metabolic aspects, endocrine dysfunction, neurological central abnormalities, genetic predisposition and 
epigenetic factors involved in the development of scoliosis. However, there has always been speculations based on human 
biomechanical behavior.
Methods  In this article, we performed a literature review on the biomechanical traits of human posture, and the proposed 
theories that explain the special characteristics present in idiopathic scoliosis.
Results  The current theory on the etiopathogeneis of AIS suggests that dorsally directed shear loads acting on a preexisting 
axial plane rotation, in a posteriorly inclined sagittal plane of a growing patient, together with disc maturation, collagen 
quality at this phase of development and immaturity of proprioception, is the perfect scenario to spark rotational instability 
and create the three-dimensional deformity that defines idiopathic scoliosis.
Conclusion  The unique spinal alignment of human bipedalism, gravity and muscle forces acting straight above the pelvis to 
preserve an upright balance, and the instability of the soft tissue in a period of growth development, is an appealing cocktail 
to try to explain the genesis of this condition in humans.

Keywords  Idiopathic scoliosis · Etiopathogenesis · Spine biomechanics · Spinal shear loads · Vertebrae rotation · Disc 
maturity

Introduction

Although a lot of research has been done in the field [1], 
there is still no current agreed theory demonstrating the 
exact etiopathogenesis of adolescent idiopathic scoliosis 
(AIS). The term idiopathic cannot be erased, as this condi-
tion has yet to be proven to be linked to a pathological state. 
One of the main difficulties we encounter in this endeavor 
is that we are searching for answers analyzing an already 

established deformity. We have not been able yet to create 
an experimental model that truly resembles human scolio-
sis. One of the lines of thought imputes gravity acting in 
bipedalism as a potential driver for scoliosis. Thus, some 
authors have tried to convert quadrupeds into bipeds, mostly 
in chicken, rabbits and rats [2]. However, all required dras-
tic surgical or systemic interventions, and they are far from 
representing the status of human bipedalism. Neverthe-
less, other non-bipedal species (fish for example) are also 
known to develop scoliosis (water stream resistance could 
the driving force in these cases) [3]. Thus, we do not have 
an insight on scoliosis origin at its early stages, it is impos-
sible to understand its cause if we only have access to the 
end product, which is the resulting deformity.

Review of the proposed etiologies of AIS

Melatonin deficiency after pineal gland resections in chick-
ens led to scoliosis development, and some authors have 
detected decreased serum levels of melatonin in patients 
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with progressive deformities [4]. It seems that the absence 
of this hormone could interfere with skeletal growth and 
symmetrical development of their proprioceptive system 
[5]. On the other hand, some authors have failed to confirm 
this theory in primates (rhesus monkeys) [6] or unbalance 
on serum levels in AIS patients. So experiments in lower 
animal models are different from primates, and findings in 
lower animals cannot necessarily be extrapolated to human 
beings [7].

Other metabolic dysregulations could interfere with 
growth. Higher levels of Growth Hormone (GH) and 
somatomedin have been found in AIS patients, but this 
is based on small trials that are neither conclusive nor 
updated [8]. Calmodulin regulates contractile properties 
of muscles interacting with myosin and actin. Asym-
metric distributions of calmodulin have been detected in 
the paraspinal muscles of AIS patients, and an increased 
concentration of calmodulin in the platelets of AIS was 
associated with curve progression [9, 10]. Low leptin lev-
els have been spotted in these patients, and this protein 
contributes to body weight, body mass index and bone 
mineral density, eventually interacting with body growth. 
In fact, selective hypothalamic dysfunction with upregula-
tion sensitivity to circulating leptin creates skeletal asym-
metries [11, 12].

Abnormal bone mineralization in combination with 
increased bone growth during the growth spurt can disturb 
bone microarchitecture, affect mechanical bone strength, and 
contribute to the vicious circle of the deformity [13, 14]. 
Therefore, osteoporosis and lower levels of serum vitamin 
D have been associated with the development and progres-
sion of AIS [15].

All these metabolic hypotheses have been extensively 
reviewed, and the predictive values of all these parameters 
for curve progression are still limited and based in low levels 
of evidence [16].

The vestibulo-ocular-spinal axis is related to balance and 
proprioception, so central disorders may be incriminated 
in the development of AIS. Visuo-oculomotor dysfunction 
[17], hidden neurologic impairment [18], brain interhemi-
spheric asymmetry function [19]; all of them can contribute 
to asymmetric muscle activation of the paraspinal muscles 
and are proposed as neuromuscular subclinical etiology of 
AIS. There are findings supporting the hypothesis that a sen-
sorimotor integration disorder underlies the pathogenesis of 
idiopathic scoliosis [20]. Surface electromyographic analysis 
detected visible disturbances and asymmetries in the erec-
tor spinae frequency (activity and tension) correlating with 
curve side [21] and the convexity of the curve [22].

A review was conducted to assess how strong the current 
evidence is in favor of all the different anomalies associated 

with idiopathic scoliosis [23] and an overall weak evidence 
was found for any consistent pattern of co-occurrence of AIS 
and any abnormality.

Familial clustering and studies in twins have shown a 
genetic predisposition for scoliosis [24], multiple genes 
have been associated with idiopathic scoliosis [25, 26], the 
most important have been recently summarized in a review 
article [27]. However, the exact mode of inheritance is not 
yet established, partially due to the genetic heterogeneity 
of scoliosis [28]. The ScoliScore project was launched in 
2010 as the first genetic DNA-based test for predicting AIS 
progression using an algorithm incorporating results from 
53 single nucleotide variants (SNVs) and the Cobb angle 
of Caucasian US teens [29]. Unfortunately, several separate 
independent research teams were unable to reproduce these 
findings in subsequent Japanese [30], French Canadian [31] 
or Han Chinese populations [32], and the use of the test was 
progressively abandoned.

The development of efficient gene editing methods and 
high throughput sequencing technology is promising for 
future research. Zebrafish are increasingly being used as a 
model thanks to their high genetic homology with humans 
[3].

Recently epigenetics and specific biomarkers are been 
studied to clarify the etiology and potential progression of 
idiopathic scoliosis [33]. There is a hypothesis that supports 
epigenetic internal and external environmental factors that 
affect vertebral growth during childhood in a pre-existing 
heritable genetic variation [34].

Apart from the above-mentioned theories, biomechanical 
hypotheses have always been debated. In this paper, we will 
focus on the current biomechanical approach to scoliosis.

The biomechanical approach to scoliosis

Scoliosis is a 3D deformity of the human trunk. Classical 
anatomists like Adams 1864, Meyer 1866, or Nicoladoni 
1904 were already aware of the 3D nature of scoliosis, and 
were able to describe the anatomical changes of discs and 
vertebrae in scoliotic specimens. These anatomic abnormali-
ties have been further studied with modern technology (EOS 
low-dose radiograph system, magnetic resonance imaging, 
and computed tomography scan) [35–38] (Fig. 1). However, 
idiopathic scoliosis does not occur naturally in other mam-
mals apart from humans [2], and strong forces need to be 
applied in experimental studies in order to biomechanically 
force spines to curve. The unique spinal alignment of human 
bipedalism, gravity and muscle forces acting to preserve an 
upright balance, and the instability of the soft tissue in a 
period of growth development, is an appealing cocktail to try 
to explain the genesis of this condition in humans.
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Biomechanics of the upright human spine

Humans are unique in their spinal alignment. Apes became 
bipedal in great amount thanks to changes occurring in 
the pelvis. The pelvis became wider (pelvic incidence 
increased), more horizontal, and lordotic within the ischio-
iliac angle relationship [39]. These facts led to the devel-
opment of lumbar lordosis (to accommodate to the upright 
position) and to a change in the orientation of the hips 
allowing hip and knee extension (that enabled humans to 
walk efficiently with the minimal use of energy) [40, 41]. 
With this structure, the center of gravity lies straight above 
the pelvis instead of in front of the pelvis compared to 
other vertebrates, changing completely spinal biomechan-
ics (Fig. 2).

All deformities of the skeleton are originated by a dis-
turbance of the relation between the forces applied and the 
counteracting structures. In quadrupeds, the main forces of 
the spine (muscle and gravity wise) are in an axial com-
pression as well as in a ventral direction, parallel to gravity, 
sustaining an equilibrium [42]. These anterior load vectors 
create stability in the vertebrae of the spine. The mentioned 
changes of the upright position made anterior shear loads 
diminish, directing the loads (gravity and muscle wise again) 
in vectors that act in opposite directions. Certain vertebrae 
of the spine are located in a place in space where anterior 
vectors are no longer existent. These forces are then replaced 
by dorsally directed shear loads that drive the vertebra away 
from the anterior gravity line (Fig. 3), leading to rotational 
instability of the exposed human vertebrae [43].

The unique human sagittal profile

The sagittal profile of the spine plays an important role in 
determining the rotational stability of certain areas of the 
spine. During growth, the spine moves from a complete 
kyphosis, at intra-uterine and early neonatal stage, to an 
S-shaped sagittal profile in adulthood creating kyphotic 
and lordotic segments [44]. The axis of rotation of normal 
dorsal vertebrae lies in front in the vertebral body, so in an 
anteriorly inclined environment, shear loads fall anteriorly, 
increasing vertebral stability against rotation [45] (Fig. 4A). 
However, if the vertebrae display a posterior inclination, 
the axis of rotation shifts posteriorly, and posterior shear 
loads further move the center of rotation closer to the fac-
ets, then the vertebrae become unstable against rotation [43] 
(Fig. 4B). For this reason, if a sector of the spine shows 
backward inclined segments, it becomes more vulnerable to 
fail with posterior forces, and posterior directed shear forces 
may lead to vertebral rotation and scoliosis (Fig. 4F).

Spine development during growth

Spine evolution differs between age and sexes [46]. Females 
in general mature earlier than males, and the acceleration 
phase of rapid growth coincides with a period in which the 
spine is more backwardly inclined [46, 47] (Fig. 4E). This 
posterior inclination (usually located in the lower thoracic 
and upper lumbar segments, Fig. 3) further shift spinal loads 
posteriorly, leaving that segment with less rotational stability 
(Fig. 5). This may explain why initiation and progression of 
AIS are more prevalent in girls around puberty than in boys, 
who are already in a more kyphotic and anteriorly inclined 
phase at that stage (in whom Scheuermann kyphosis is more 
predominant).

Spine evolution during growth also affects the devel-
opment of the discs and their mechanical properties. The 
spine grows predominantly through the vertebral bodies. 

Fig. 1   3D deformity of scoliosis shown in a CT scan, affecting the 
coronal, sagittal and axial plane of the spine
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Fig. 2   Apes evolution into 
homo-sapiens showing changes 
occurring in the pelvis, spinal 
intersegmental loads and in the 
loads of gravity. Blue arrows 
show the changes in pelvic 
height and width, red arrows the 
change in ischio-iliac angles, 
and in green the center of mass 
force vectors

Fig. 3   The T9-L2 segment of the spine is backwardly inclined at the moment of peak height velocity, dorsally directed shear loads drive the ver-
tebra away from the anterior gravity line creating rotational instability
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The disc matures by ossifying its insertion in the vertebra 
through the Sharpey fibers into the initially cartilaginous 
ring apophyses, eventually fusing itself to the vertebral 
body. Thoracic disc height increases initially and then the 
transverse surface area increases decreasing disc slender-
ness [48]. By these segmental attachments to the vertebral 
body, the disc represents the most important stabilizer of 
the spine, and in the apical segment of a deformity, the 
intervertebral disc seems to be an important contributory 
factor in curve progression [49]. Changes in the structure 
and properties of the disc during growth or during degen-
eration in adulthood may impair its resistance to the dif-
ferent loading vectors especially rotation [50] (Fig. 4D), 
disturbing the natural equilibrium and predisposing to 
alignment failures. Apparently, deformity could start in the 
disc area and metabolic development characteristics can 
impact soft tissue (disc and ligaments) and bone quality. 
Actually, idiopathic scoliosis initially increases through 
disc wedging during the rapid growth spurt with progres-
sive vertebral wedging occurring later [51].

Rotational instability

Scoliosis demonstrate changes in all three planes in space: 
axial, coronal and sagittal [52, 53]. Up to now, it has been 
very difficult to elucidate which plane is the initiator of sco-
liosis. However, the axial plane seems to be special [54, 
55]. No quadrupeds have shown spontaneous rotation of the 
axial skeleton, but humans do. Non-scoliotic spines show a 
spontaneous thoracic rotatory pattern to the right of small 
magnitude related to the asymmetrical distribution of the 
internal organs [56]. As we have seen, the human spine’s 
sagittal shape carrying the center of gravity straight above 
the pelvis makes it a rotationally unstable construct [42]. 
Thus, it appears that once the spine decompensates, it tends 
to follow that built-in rotational pattern that the spine exhib-
its at the time of onset [57] (Fig. 4).

One of the mechanical theories of scoliosis origin is the 
excess of the anterior length of the spine [58], producing 
a Relative Anterior Spinal Overgrowth (RASO). Anterior 
lengthening of the spine (where the spine is longer anteri-
orly than posteriorly) has been found in AIS patients [59]. 
This has been attributed to an asymmetrical growth between 
the anterior body endochondral ossification and the mem-
branous ossification occurring in posterior structures [60]. 
However, there is some controversy in this topic, as some 
authors describe that scoliosis vertebrae have a wedged 
kyphotic morphology, and anterior lengthening seems to 
occur mostly around the apex and especially in the interver-
tebral disc (Fig. 4C), suggesting an adaptation to altered 
loading and not a primary growth disturbance [61]. Further-
more, anterior growth is not unique for idiopathic scoliosis, 
it also occurs in scoliosis with a known origin (neuromuscu-
lar, and congenital and traumatic compensatory curves), sug-
gesting that it is part of the mechanism, rather than its cause.

Current biomechanical theory

Dickson [62] in the 80’s, with his theory of biplanar asym-
metry [63], speculated that thoracic lordosis developed in 
children with a coronal plane asymmetry and a previously 
rotated spine in the transverse plane [57] triggered a spin-
ning moment that further increased spinal rotation [58]. In 
his theory, a flattening of the kyphosis was essential.

Nowadays, Castelein proposes a theory [43] (Fig. 4) sup-
porting that a preexisting axial plane rotation [64], together 
with a rotational instability probably linked to failure con-
strains in the immaturity period [57], most probably com-
ing from immature intervertebral discs [50], couples with a 
posteriorly inclined sagittal plane [46] that shifts the axis of 
vertebral rotation posteriorly, displacing the loads from an 
anterior to a posterior position, and this dorsal directed shear 
loads initiate scoliosis deformity.

Fig. 4   The center of the image shows a preexisting axial plane rota-
tion. A Segments of the spine with anterior load vectors, anterior (sta-
ble) axis of rotation. B Posterior load vectors shift the axis of rotation 
posteriorly (unstable). C Anterior spinal overgrowth seems to occur 
mostly around the apex and especially in the intervertebral discs. D 
Changes in the structure and properties of the disc during growth may 
impair its resistance to the different loading vectors especially rota-
tion. E The acceleration phase of rapid growth coincides in females 
with a period in which the spine is more backwardly inclined. F Dor-
sally directed shear loads drive the vertebrae away from the anterior 
gravity line
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Once the three dimensional deformity starts, it progres-
sively enters in the vicious cycle described by Stokes [65], 
both for the discs but also the bone. The progression of the 
deformity increases coronal vertebral body wedging as a 
result of asymmetric muscle activation and loading, eventu-
ally affecting vertebral body growth by disturbing the end-
plate physes.

We need, however, to remember that these biomechani-
cal theories coexist with other mentioned hypothesis of AIS 
etiologies that include: genetics, epigenetics, and neurologi-
cal, endocrine and metabolic dysregulations, which are also 
areas that merit further investigation.

Conclusion

In this article, we review the biomechanical traits of 
human posture, and the proposed theories that explain 
the special characteristics present in idiopathic scolio-
sis. The current biomechanical theory supports that dor-
sally directed shear loads acting on a preexisting axial 
plane rotation, in a posteriorly inclined sagittal plane of 
a growing patient, together with disc maturation, collagen 
quality at this phase of development and immaturity of 

proprioception, is the perfect scenario to spark rotational 
instability and create the three-dimensional deformity that 
defines idiopathic scoliosis.
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