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Abstract
Purpose The aim of the current review is to summarize the current evidence on graft materials used in fusion procedures 
for spinal deformity corrections.
Methods PubMed, Embase, and Cochrane Library were searched for relevant published observational studies and clinical 
trials using osteobiologics and biomaterials in spinal deformity surgery.
Results The use of autograft in deformity correction surgeries has been reported in a limited number of studies, with the 
harvest sites including iliac crest, ribs, and local bone. Various allografts and biologics have been used in the treatment of 
spinal deformities including idiopathic and degenerative scoliosis, either as stand alone or in combination with autograft. 
Limited number of studies reported no differences in fusion rates or outcomes. Use of rh-BMP2 in anterior, posterior or 
front/back approaches showed higher fusion rates than other graft materials in patients with spinal deformities. Due to the 
limited number of quality studies included in the review, as well as alternative factors, such as costs, availability, and sur-
geon expertise/preference, no definitive conclusion or recommendations can be made as to the ideal graft choice in spinal 
deformity surgery.
Conclusions Most commonly used grafts included autograft, allograft and rh-BMP2, with new biologics and biomaterials 
constantly emerging in the market. Limited number of high-quality comparative studies and heterogeneity in study design 
prevented direct comparisons that can lead to meaningful recommendations. Further studies are needed to prove superiority 
of any single graft material and/or biologic that is also cost-effective and safe.
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Introduction

There have been significant advancements in the field of 
spinal instrumentation and biologics to promote bony fusion 
in spinal deformity surgery [1, 2]. However, pseudarthro-
sis continues to be a problem and contributes to significant 
postoperative pain, implant failure, and increased risk of 
reoperation [3, 4]. Historical rate of pseudarthrosis quoted 
in the literature is 17% following adult deformity correction 

and 5–34% following fusion for degenerative conditions [4, 
5]. Reasons for failure ranges from biomechanics and con-
struct design, local biology, and patient-related comorbidi-
ties leading to poor bone quality and to compromised new 
bone formation [6].

Solid bony fusion requires an intricate interplay between 
three principles of bone graft material properties: osteogene-
sis, osteoinductivity, and osteoconductivity [7]. In principle, 
osteogenic stem cells must be stimulated to migrate to the 
site of fusion, while osteoinductive signals must support the 
cell population lineage, and a low-strain mechanical conduc-
tive environment must be maintained until fusion occurs [8]. 
Autograft and allograft may possess each of these properties 
to a varying degree and are placed within the surgical fusion 
bed to promote arthrodesis. Iliac crest bone graft (ICBG) 
has historically been used as the gold standard graft mate-
rial, although risk of harvest-site morbidity and subsequent 
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long-term functional impairment is significant [9]. In addi-
tion, the native levels of matrix factors in autografts may 
also vary greatly between individuals based on age, smok-
ing status, and medical comorbidities. Consequently, there 
has been significant research interest and financial invest-
ment in designing novel graft materials and biologics that 
can reproduce high fusion rates without the risk of autolo-
gous bone harvest [10].

Ceramic-based substitutes including hydroxyapatite (HA) 
and tricalcium phosphate (TCP) have chemical similarities 
to bone and possess biocompatibility, osteoconductivity, 
and strong mechanical properties despite lacking osteogenic 
potential [7, 11]. Demineralized bone matrix (DBM) is a 
composite of collagen, noncollagenous proteins, and growth 
factures with increased osteoconductive and osteoinductive 
properties. It is also provided in many formulations, includ-
ing a putty, which allows the DBM to be molded to the target 
lesion with greater ease of application [12–14]. Its ease of 
use has made it a popular option for surgeons and is com-
monly combined with local autograft for added osteogenic 
effect.

Bone-morphogenetic proteins (BMPs) represent a fam-
ily of differentiation factors that promote bone formation 
and remodeling. In 2002, the Food and Drug Administration 
(FDA) approved rhBMP-2 with a collagen carrier as an iliac 
crest bone graft (ICBG) substitute for single level anterior 
lumbar interbody fusion (ALIF). Patients with rhBMP-2 had 
significantly better fusion rates (98% BMP vs. 76% ICBG), 
shorter length of surgery, decreased blood loss and shorter 
hospital stay [15]. Given its success in ALIFs, off-label use 
of rhBMP-2 has increased and is now used in approximately 
25% of all fusion cases nationally including posterolateral 
fusions for deformity [15]. Complication rates following use 
of rhBMP-2 vary; however, for thoracic fusion cases, these 
are negligible if rhBMP-2 is used in appropriate amounts. 
Given the recent increase in the array of products and tech-
niques used to enhance fusion rates, it is of paramount 
importance for surgeons and scientists to critically assess 
the efficacy, risks, and costs of these products compared to 
traditional autografts. As such, the aim of this review was to 
analyze the current literature regarding the use of biologics 
in thoracic/ thoracolumbar deformity surgeries.

Methods

To conduct this review, PubMed, Embase, and Cochrane 
Library were searched for relevant published observational 
studies and clinical trials using biologics and biomaterials 
in spine deformity surgery. To qualify for inclusion, stud-
ies had to focus on thoracic or thoracolumbar deformity 
patients who had deformity correction and spine fusion 
with a graft material. The included studies had to report on 

clinical or radiological outcomes, complications, or costs 
of the used graft material.

Search terms included “autograft”, “allograft”, “bone 
morphogenetic protein 2”, “stem cells”, “bone marrow 
aspirate”, “demineralized bone matrix”, “ceramics”, “pep-
tide”, “synthetic bone graft”, “bone substitute”, OR “bio-
synthetic bone graft” AND “scoliosis” OR “spine deform-
ity”, AND “spine fusion”, “scoliosis correction”, “spinal 
deformity surgery”. Studies were restricted to those pub-
lished from 2000 to 2021 to reflect the current trends in 
practice. Only English articles with available full text were 
chosen. Identified articles were first screened by title and 
abstract, then full-text screening was conducted. Finally, 
the included studies were categorized based on the type 
of graft used, and each category was used for the relevant 
section of this review.

After title and abstract screening, the full texts of 110 
articles were assessed. We found 57 articles that focused 
of biologics in spine deformity surgery and their out-
comes, complications, or costs and were used for the main 
part of this review. The other 53 articles were used for 
the introduction and the introductory statement of each 
osteobiologics (Fig. 1).

Fig. 1  PRISM chart
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Results

Iliac crest bone graft (ICBG) and local autografts

Autografts used in the correction of spinal deformities are 
harvested from the iliac crest, spinous process, transverse 
process, lamina, or facets (Tables 1, 2) [16–20]. Iliac crest 
bone graft (ICBG) is known as the gold standard for spinal 
fusion surgeries due to its osteogenic, osteoconductive, and 
osteoinductive properties [16, 21]. There are multiple meth-
ods suitable for the preparation of autogenous bone grafts 
for implantation, including forming struts or morselizing the 
bone. In comparing the use of rib strut grafts to morselized 
rib bone, Ouellet et al. concluded that there was no differ-
ence between the two in the maintenance of coronal or sagit-
tal plane correction in scoliosis patients when using single 
solid rod instrumentation; however, there was a significant 
difference in pseudarthrosis rates between the two (Tables 1, 
2) [22].

Fusion rates

Franzin et al. reported fusion rates of 95.4% and 100% for 
ICBG and local autograft, respectively, in posterior spinal 
fusion with pedicle screw instrumentation [17]. There were 
no statistically significant differences in fusion or pseudar-
throsis rate, loss of correction over time, or quality of life in 
adolescent idiopathic scoliosis (AIS) patients who received 
ICBG vs. local autograft.

Iwai et al. showed radiographic evidence of complete 
fusion in all 10 AIS patients in their study using a fibular 
strut autograft (FSAG) with a rib strut graft in the space 
between the cut fragment and the remaining vertebral bod-
ies, resembling a “hot dog” [25]. There was no evidence 
of postoperative erosion after a mean follow-up time of 
9 years and 9 months. Likewise, Farshad et al. showed a 
100% fusion rate across 20 patients with local autograft 
from the rib in anterior short fusion with pedicle screws 
[21]. Milinkovic et al. showed a 98% fusion rate across 188 
patients with local autograft in posterior spinal fusion with 
dual-rod fixation [19]. Similarly, Presenti et al. showed a 
success rate of 97.7% with local autograft from the spinous 
processes in posterior spinal fusion with sublaminar bands 
in 44 patients [20].

Outcomes

Kager et al. have concluded that ICGB should remain the 
gold standard for anterior or posterior instrumented fusion 
as there is minimal risk for postoperative harvest site pain, 
especially in adolescents [24]. They reported that 10% of 

patients experienced postoperative pain (NRS pain score of 
3/10) at the harvest site. For those with a 1-year follow-
up the pain dropped to 9% of patients with NRS scores of 
1–2/10. None of these patients took pain medication, nor 
reported any reduction in activity. Postoperative pain caused 
by ICBG harvest can be effectively treated as well. Samartzis 
et al. conducted a pilot study on the effect of levobupiv-
acaine infusion at the ICBG site compared to a control group 
receiving saline [23]. They found a twofold decrease in pain 
at the ICBG site in the experimental group, as well as a four-
fold overall physical pain decrease in a group of Southern 
Chinese participants.

Complications

The use of autografts eliminates the risk of viral, bacte-
rial, or prion disease transmission or the risk of immune 
response, which can occur when using allograft or bone 
substitutes [17, 19, 20]. However, ICBG is associated with 
postoperative donor site pain, numbness, and fracture, as 
well as infection, hematoma formation, arterial injury, nerve 
injury, increased blood loss, and increased operative time 
[16, 19, 20, 23]. It also requires a separate incision in the 
skin, unlike alternative graft options [20].

Pseudarthrosis occurs when solid intervertebral fusion 
fails to take place and can cause persistent back pain, which 
may indicate revision surgery [20]. Franzin et al. reported 
4.6% pseudarthrosis (1/41) in a study comparing thoracic 
spine arthrodesis of AIS patients with pedicle screws with 
or without ICBG [17]. There was no significant difference 
in pseudarthrosis between the local autograft and ICBG 
groups. Milinkovic et al. saw 2% (4/188) pseudarthrosis 
with mild back pain in a retrospective case study of AIS 
patients who underwent posterior fusion [19]. The pseudar-
throsis rate was 30% (15/50) for a retrospective study by 
Ouellet et al. comparing strut autografts and morselized 
autografts and was significantly different between graft 
types (p = 0.029) [22]. Pseudarthrosis occurred in 2 of 18 
(11.1%) patients who were given strut grafts and 13 of 32 
(40.6%) who were given morselized grafts. Three of these 
patients required revision surgery, two for pain and one for 
implant failure and loss of correction. Pesenti et al. saw a 
rate of 2.3% (1/44) for the local autograft group and 4.5% 
(2/44) for the control group with no graft with no significant 
difference between the groups [20]. One of the two patients 
in the control group had a rod breakage that caused loss of 
correction and significant back pain, resulting in reoperation. 
Iwai et al. reported 10% (1/10) pseudarthrosis using a “hot 
dog” application of rib strut grafts during anterior fusion of 
AIS patients. This patient required reoperation [25].

Additional complications reported include delayed 
deep infection in 2% (4/188) that was resolved after 
implant removal in all cases (Milinkovic et al.) [19], 8% 
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(1/12) wound dehiscence (Samartzis et al.) [23], 20% 
(2/10) cerebral spinal f luid leakage, and 20% (2/10) 
extensive blood loss of more than 4000 mL during the 
operation (Iwai et al.) [25].

Cost

Autografts, including ICBG, are less costly than allo-
grafts or bone substitutes, because the graft comes from 
the patient themselves. Presenti et al. stated that bone 
substitutes account for 6% of the total cost of fusion 
surgery when employed [20]. However, one must con-
sider that increased operative time for harvest also adds 
expense [24]. Kobayashi et al. analyzed the costs of auto-
grafting in Japan, which increased from $734 to $1,862 
per person during the span of 2008 to 2017 [18]. The 
overall cost of scoliosis correction surgery has gone up 
in the same time period by about 1.6 times (from $9515 
to $15,130), despite the slight national decrease in costs 
over time. Decreased costs include hospital fees per day 
and the substantial decrease in reimbursement prices for 
surgical instruments, which are a result of cost control 
policies by the Japanese government.

Allograft

Allograft is another commonly used biological material 
that has shown success in thoracic deformity procedures 
(Tables 3, 4). While autologous ICBG is typically consid-
ered the gold standard graft material in spine surgery, allo-
graft has the benefit of avoiding donor site morbidity. In 
addition, particularly in the frail and/or pediatric population, 
harvesting a sufficient amount of ICBG for grafting can be 
challenging, and thus use of allograft can mitigate this issue 
[26]. Studies have shown that allograft can achieve high 
rates of fusion and minimal loss of curve, both alone and 
in combination with autograft [27–29], with minimal or no 
complications [26]. In addition, comparative studies have 
demonstrated that allograft produces clinical outcomes equal 
to [29–31] or better [27, 28] than autograft, providing evi-
dence for its efficacy as a suitable alternative graft material.

Fusion/correction rates

A study by Johari et al. used irradiated femoral head and 
tibial slice allograft in pediatric patients with various forms 
of scoliosis, and 100% of patients showed union at the graft-
ing site. No patients demonstrated evidence of infection, 

Table 2  Summary of fusion rates, complications, and cost

References Fusion rates/clinical outcomes Complications Cost

Farshad [21] With autograft (74% curve improvement, 88% Cobb 
angle improvement) vs. without autograft (60% 
curve improvement, 53% Cobb angle improvement)

Not reported Not reported

Franzin [17] No significant differences Pseudoarthrosis rates: local autograft (0%) vs. ICBG 
(4.6%); p = 0.537

Not reported

Iwai [25] 100% fusion, Mean curve correction rate 34.6% Pseudoarthrosis requiring revision surgery (10%),
Cerebral spinal fluid leak (20%),
Megableeding of more than 4000 mL during the 

operation (20%)

Not reported

Kager [24] Not reported Spine pain 10% Not reported
Kobayashi [18] Mean curve correction rate 75.3% Not reported Cost of scoli-

osis surgery 
$15,130

Milinkovic [19] Mean thoracic curve was 47.6 ± 12.53 pre-operatively 
and 18.6 ± 10.2 at last follow-up;

Mean lumbar curve was 43.2 ± 15.3 pre-operatively 
and 14.6 ± 7.2 at last follow-up (students T test 
p > 0.005)

Pseudarthrosis (2%),
Caudad hook dislodged during the follow-up period 

(2%),
delayed deep infection (2%)

Not reported

Ouellet [22] Scoliosis averaged 53.5° (range 37–82°) pre-opera-
tively, mean curve correction to 15° (range – 3 to 
35°) immediately after surgery, and 21°(range – 3 to 
46°) at last follow-up

Pseudarthrosis rates: rib strut (4%) vs. morselized 
(26%); p = 0.029

Implant failure (10%)
Revision surgery (6%)

Not reported

Pesenti [20] No significant differences Pseudarthrosis rates: autograft (2.3%) vs. no graft 
(4.5%); p = 0.56

Not reported

Samartzis [23] Not reported Wound dehiscence (8%) Not reported
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pseudarthrosis, fracture, or any other complication (Table 4) 
[26]. Another study in children under 18 with idiopathic 
scoliosis demonstrated a radiographic fusion rate of 92.7%, 
with the mean number of fused levels being 12.4 [27].

A study on thoracoscopic anterior scoliosis correction 
in pediatric patients (mean age 14.9 years) did not report 

a significant difference (p = 0.96) in Sucato fusion scores 
involving T5–L1 between allograft (fusion score = 2.22) 
vs. autograft groups (fusion score = 2.15) [29]. Similarly, 
Theologis et al. reported nearly equivocal fusion rates 
among allograft vs. autograft vs. bone substitute patients 

Table 3  Summary of studies using allograft for the correction of thoracic spine deformities

DBM demineralized bone matrix
**Bone substitutes included DBM (DePuy Synthes), tricalcium phosphate (Depuy Synthes), coralline hydroxyapatite (Medtronic), and Cellect 
(DePuy Synthes—Selective Cell Retention technology with a combination of bone-marrow aspirate with matrix)
***A commercially sold flexible DBM

References Study design Patient age # Patients Procedure type # Levels Graft material

Betz [35] Randomized control trial Adolescent 76 Posterior spinal fusion N/A Allograft (n = 37)
Bozzio [41] Retrospective cohort Adolescent 42 Spinal fusion 4–12 Allograft (n not reported)
Buttermann [39] Retrospective cohort Adult 105 Spinal fusion 4–6 Allograft (n = 68) vs. auto-

graft (n = 37)
Izatt [29] Retrospective cohort Adolescent 43 Thoracoscopic anterior 

spinal fusion
N/A Allograft (n = 29) vs. auto-

graft (n = 14)
Johari [26] Case series Adolescent 30 Various spinal deformity 

procedures
N/A Allograft (n = 30) vs. allo-

graft + rib autograft (used 
among subset of allograft 
pts, n not reported)

Jones [27] Retrospective cohort Adolescent 55 Spinal fusion N/A Freeze-dried cancellous 
allograft (n = 55)

Knapp [36] Retrospective cohort Adolescent 111 Spinal fusion N/A Allograft (n = 111)
Lowe [31] Non-randomized control 

trial
Adolescent 41 Anterior spinal fusion 3–8 Cortical allograft dowel (n 

not reported) vs. autograft 
(n = 20)

Price [37] Retrospective cohort Adolescent 88 Posterior spinal fusion 7–14 Autologous ICBG (n = 17) 
vs freeze-dried corticocan-
cellous allograft (n = 28) 
vs composite graft of 
autologous bone-marrow 
and DBM (n = 43)

Sinagra [34] Retrospective cohort Adolescent 78 Posterior spinal fusion with 
instrumentation

N/A Allograft (n = 30) vs. 
allograft + local autograft 
(n = 48)

Smith [40] Prospective case series Adult 287 Various spinal deformity 
procedures

8–17 Allograft, iliac crest auto-
graft, locally harvested 
autograft, DBM, and/or 
BMP-2 (n not reported)

Theologis[30] Retrospective cohort Adolescent 461 Posterior spinal fusion 4–16 Iliac crest autograft (n = 152) 
vs. allograft (n = 110) vs. 
bone substitute** (n = 110)

Wang [38] Retrospective cohort Adolescent 123 Posterior spinal fusion N/A Local autograft, iliac crest 
allograft, allograft, and/or 
biological bone material (n 
not reported)

Watkins [28] Retrospective cohort Adolescent 34 Anterior instrumented 
spinal fusion

N/A Structural graft (such as 
femoral ring allograft or 
Syncage Moss Miami cage) 
(n = 16) vs. morselized rib 
autograft (n = 18)

Weinzapfel [33] Retrospective cohort Adolescent 40 Anterior thorascopic spinal 
fusion

10.5–18.0 Allograft (n = 12) vs. 
Grafton™ DBM Flex*** 
(n = 28)
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in treatment of adolescent idiopathic scoliosis (mean age 
14.7) [30]. All three groups had a mean of 11.3–11.4 levels 
of fusion. A study by Weinzapfel et al. on thoracoscopic 
release for idiopathic scoliosis in teens compared anterior 
vertebral levels fused and curve correction between an 
allograft cohort vs. patients treated with a flexible dem-
ineralized bone matrix sheet (Grafton Flex DBM) [33]. 
At most recent follow-up, 60/73 (82%) levels in the allo-
graft group and 100/109 (92%) levels in the DBM group 
were fused; this difference was not statistically significant 
(p = 0.088). Sinagra et al. investigated whether the vol-
ume of allograft per level fused or the addition of auto-
graft to the volume of allograft impacted fusion rates in 
T1–T11 in idiopathic adolescent scoliosis (average age 
of patients was 16 years) [34]. Groups were given either 
10 g or 15 g of allograft per level fused. They reported 
that neither the increased amount of allograft used nor 
the addition of autograft significantly improved rates of 
fusion (p = 0.3258). The average number of levels fused 
was 11 in all groups.

Complications

Efforts have been made to elucidate which biologic is 
responsible for the least postoperative morbidity or com-
plications. A study by Betz et al. demonstrated that use of 
solely allograft for augmentation in the treatment of idi-
opathic scoliosis (mean age 14.5) resulted in pseudarthrosis 
in 1 of 37 (2.7%, Table 4) [35]. Another study again reported 
a pseudarthrosis rate of 3/111 in patients aged 12–14 for 
correction of idiopathic adolescent scoliosis (2.7%, Table 4) 
[36]. Pseudarthrosis rates have been also found to be lower 
in allograft patients (1/25; 4%) in comparison with autograft 
(1/16; 6.25%) [37].

In regards to risk of postoperative proximal junctional 
kyphosis in association with pseudarthrosis, one study 
found that the use of allogenic bone in adolescents (average 
age 15) has been reported to put patients at significantly 
lower odds (OR = 0.04) of developing proximal junctional 
kyphosis in comparison with patients receiving autograft 
bone (p = 0.001) [38]. However, another study in adolescents 
demonstrated no difference in risk of developing proximal 

Table 4  Summary of fusion rates, complications, and cost

PJK proximal junctional kyphosis

References Fusion rates/clinical outcomes Complications Cost

Betz [35] Not reported Pseudoarthrosis rate: 2.7% (1/37) Not reported
Bozzio [41] Not reported Not reported $1495 of bone graft/patient
Buttermann [39] Not reported Posterior mixture of allograft and autograft 

(27%)
Anterior strut allograft with posterior mixture 

of morselized allograft and autograft (25%)
Anterior autograft (0%)
Posterior allograft (0%)

Not reported

Izatt [29] Allograft vs. autograft: p = 0.96 Not reported Not reported
Johari [26] Allograft: 100% Not reported Not reported
Jones [27] Allograft: 92.7% Not reported Not reported
Knapp [36] Not reported Pseudoarthrosis rate: 2.7% (3/111) $415–$830/patient
Lowe [31] Autograft vs. autograft + allograft: p > 0.05 None Not reported
Price [37] Not reported Pseudoarthrosis rates: allograft (4%) vs. auto-

graft (6.25%)
Allograft failure rate: 28%
Autograft failure rate: 12.5%

Not reported

Sinagra [34] 10 g vs. 15 g allograft: p = 0.3258 PJK: allograft vs. autograft + allograft; 
p = 0.6910

$4650 AUD (~ $3505 
USD)/30–50 g of irradi-
ated allograft

Smith [40] Not reported No significant differences (p > 0.05) Not reported
Theologis [30] ICBG vs. allograft vs. bone substitute: p = 0.87 No significant differences (p = 0.30) Not reported
Wang [38] Not reported PJK: allogenic bone v. autograft: 0.04 OR Not reported
Watkins [28] Cobb angle correction %: autograft (75%) vs. 

autograft w/allograft (67%); p = 0.023
Sagittal alignment kyphosis: autograft (14 

degrees) vs. Autograft w/allograft (3 
degrees); p = 0.035

Not reported Not reported

Weinzapfel [33] No significant differences (p = 0.088) None Not reported
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junctional kyphosis in an allograft group compared with an 
allograft plus autograft supplement group (p = 0.6910) [34].

Lowe et al. that used a cortical allograft dowel to supple-
ment autograft in T9–L4 resulted in no neurologic injuries, 
infections or reoperations [31]. A study comparing various 
autograft/allograft combinations in levels T10–L4 showed 
that use of posterior allograft had significantly fewer major 
medical complications (0%) in comparison with the poste-
rior mixture of allograft and autograft (27%) (p = 0.01) and 
anterior strut allograft with posterior mixture of morselized 
allograft and autograft (25%) (p = 0.04) groups. However, 
the anterior autograft group had significantly lower com-
plications (0%) in comparison with the mixed autograft/
allograft groups (posterior mixture of morselized allograft 
and autograft: 25%, the posterior mixture of allograft and 
autograft: 27%) (p < 0.05) [39]. Nonetheless, this study ulti-
mately determined that complication rates overall were not 
statistically significant based on type of bone graft used, but 
rather on surgical approach, with combined anteroposterior 
approaches carrying a greater likelihood of complication 
than isolated posterior or anterior approaches. Another study 
that reported that in posterior spinal fusions for idiopathic 
adolescent scoliosis, the allograft group had more than dou-
ble the failure rate (28% vs. 12.5%) than the autograft group, 
which was defined by a loss of correction. The authors noted 
their use of strict criteria for failure, however, and postulated 
that if failure had instead been defined by need for repeat spi-
nal instrumentation as a result of pseudarthrosis, the failure 
rate would have been higher in the autograft group (6.25%) 
than in the allograft group (4.0%) [37].

Cost

Cost can be a potentially limiting factor to the use of allo-
graft. One study performed in a nonprofit community hospi-
tal reported an average cost of $1495 worth of bone graft per 
patient who underwent correction for AIS, which reportedly 
comprised 3.3% of the total hospital cost [41]. Another study 
conducted in a single tertiary center in Western Australia 
reported a cost of $4,650 AUD (~ $3505 USD) per 30–50 g 
of irradiated allograft. This study used 10–15 g of allograft 
per patient [34]. However, a multicenter retrospective study 
reported a much lower per-patient allograft cost range of 
$415–$830 (Table 4) [36].

Bone morphogenetic protein‑2 (BMP‑2)

The Food and Drug Administration (FDA) approved the 
use of recombinant human BMP-2 (rhBMP-2) for single-
level anterior lumbar interbody fusion (ALIF) in 2002 as 
an alternative to iliac crest bone graft (ICBG) [42]. Since 
then, rhBMP-2 use has expanded as an off-label application 

to include several spinal procedures, including deformity 
(Tables 5, 6) [43].

In spine deformity correction surgery, it is challenging 
to provide a sufficient amount of autologous bone to satisfy 
the required long fusion, making the need to use a bone 
graft substitute, such as rhBMP-2, of paramount importance. 
The use of rhBMP-2 eliminates the morbidity related to har-
vesting bone autografts from the iliac crest, or ribs [44]. 
Ruofeng et al. reported steadily increasing use of rhBMP-2 
for posterior long segment fusion from 2005 to 2011, with 
the exception of a dramatic drop in 2010 [45].

Fusion rates

Luhman et al. used rhBMP-2 to achieve anterior or posterior 
fusion in 70 patients with adult spine deformity (ASD). With 
a minimum follow-up of 1 year, the reported fusion rates 
were 93% in the posterior and 96% in the anterior group, and 
100% in posterior compassionate-use patients [44].

Mulconrey et al. reported fusion rates of 91%, 97%, and 
100% for anterior (10 mg/level), posterior (20 mg/level), 
and high-dose (40 mg/level) posterior compassionate-use 
fusions, respectively [46].

Maeda et al. reported a higher rate of solid fusion in the 
BMP group (22/23 patients; 95.7%) than the ICBG group 
(23/32 patients; 71.9%) [47]. Similarly, Kim et al. reported 
a higher fusion rate with BMP compared to ICBG, 93.5% 
vs. 71.9%, respectively [48].

Outcomes

Maeda et al. reported that the BMP group had a slightly 
better but statistically non-significant correction rate than 
the ICBG group (50.6% vs. 42.5%) [47]. Kim et al. reported 
that the BMP group had higher Scoliosis Research Society 
scores within pain, function, self-image, and domains [48]. 
Puvanesarajah et al. reported that elderly patients with ≥ 8 
fused levels were significantly less likely to require revision 
surgery when BMP was used [49]. Safaee et al. reported an 
11% absolute risk reduction of revision for pseudarthrosis 
when BMP was used [50].

Complications

Bess et al. evaluated the acute perioperative complications 
with or without rhBMP-2 use, with a mean follow-up of 
34 months [43]. The rhBMP-2 group had a longer operative 
time, greater number of osteotomies per patient. Overall, 
rhBMP-2 patients had a significantly greater number of com-
plications per patient (1.4 vs. 0.6). However, multivariate 
analysis found no significant correlation between rhBMP-2 
use and neurological, wound, or superficial and deep infec-
tion complications.
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Table 5  Summary of studies using recombinant human Bone Morphogenetic Protein 2 (rhBMP-2) or synthetics for the correction of thoracic 
spine deformities

References Study design Patient age # Patients Procedure type # Levels Graft material

rh-BMP2
 Luhmann [44] Prospective study Adult 70 Anterior and poste-

rior fusions
Group 1 = 2.3
Group 2 = 2.9
Group 3 = 6.5

rhBMP-2
Group 1: anterior 

[10.8 mg/level] 
(n = 46)

Group 2: posterior 
[13.7 mg/level] 
(n = 41)

Group 3: posterior 
compassionate use 
[28.6 mg/level] 
(n = 8)

 Mulconrey [46] Prospective study Adult 98 Anterior and poste-
rior fusions

3.15 rhBMP-2
Group 1 [10 mg/level] 

(n = 47)
Group 2 [20 mg/level] 

(n = 43)
Group 3 [40 mg/level] 

(n = 8)
 Maeda [47] Prospective com-

parative study
Adult 55 Anterior and poste-

rior fusions
BMP group: 

anterior = 3.6, 
posterior = 11.3

ICBG group: 
anterior = 6.5, 
posterior = 11.3

rhBMP-2 [10.0 mg/
level (posteriorly), 
11.7 mg/level (ante-
riorly)] (n = 23) vs. 
ICBG (n = 32)

 Kim [48] Prospective com-
parative study

Adult 63 Anterior and poste-
rior fusion

BMP: 2.6
ICBG: 6.5

rhBMP-2 (n = 31) 
[11.1 mg/level (pos-
teriorly), 30.9 mg/
level (anteriorly)] vs. 
ICBG (n = 32)

 Bess [43] Prospective multi-
center study

Adult 279 Anterior or posterior 
fusion

12 rhBMP-2 [2.5 mg/
level (posterior 
fusion), 5 mg/level 
(interbody fusion)] 
(n = 172) vs. ICBG, 
local bone, and allo-
graft (n = 107)

 Puvanesarajah [49] Retrospective com-
parative study

Elderly 9837 Posterolateral fusion –  ≥ 8 Levels: rhBMP-2 
(n = 1143) vs. No-
rhBMP-2 (n = 1111)

3–7 Levels: rhBMP-2 
(n = 2813) vs. No- 
rhBMP-2 (n = 4770)

 Safaee [50] Retrospective study Adult 151 Anterior and poste-
rior fusion

10 rhBMP-2 (n = 98) 
vs. No-rhBMP-2 
(n = 53)

 Jain [51] Economic modeling 
of data from a mul-
ticenter prospec-
tive registry

Adult 367 Posterior/posterolat-
eral fusion and/or 
interbody fusion

 ≥ 5 levels rhBMP-2 [2.5 mg/
level] (n = 267) 
vs. No-rhBMP-2 
(n = 100)

Synthetics
 Ameri [53] Retrospective com-

parative study
Adolescent 40 Posterior spinal 

fusion
Bioactive 

glass = 10.2
ICBG = 9.5

Bioactive glass 
(n = 20) vs. ICBG 
(n = 20)

 Harshavardhana 
[55]

Prospective study Adolescent 35 Posterior spinal 
fusion

9.4 SiCaP mixed with 
locally harvested 
bone
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Luhman et al. reported a low complication rate (3/70 
patients), including superficial wound dehiscence (n = 1), 
deep wound infection (n = 1) and wound hematoma (n = 1) 
[44]. Mulconrey et al. reported a low pseudarthrosis of 5% 
and only one case of subfascial hematoma [46].

Costs

In a recent cost analysis multicenter study, Jain et  al. 
reported that the mean total cost of index surgery was 
significantly higher in ASD surgery with rhBMP-2 
use ($60,000 ± $17,000) than without rhBMP-2 
($41,000 ± $8900) and that the mean direct cost of using 
rhBMP-2 in ASD surgery was $14,000 ± $6400 [51]. Simi-
larly, Puvanesarajah et al. and Safaee et al. reported that 
rhBMP-2 use led to a significant increase in primary surgery 
costs and hospital charges [49, 50].

Synthetics

Bioceramics are biodegradable synthetic calcium-based 
bone graft substitutes usually used in combination with 
autogenous bone or bone-marrow aspirate (BMA) [52]. 
The available ceramics usually contain substances with 
varying porosity, including β-tricalcium phosphate (β-TCP), 
hydroxyapatite (HA), calcium phosphate, or calcium sulfate 

[52]. Glass ceramics are bioactive due to their composition 
of  SiO2, CaO,  Na2O, and  P2O5, which attract osteoblasts 
and osteoprogenitor cells and stimulate bone formation and 
integration [53]. Silicated calcium phosphate (Si–CaP) mim-
ics the trabecular architecture of natural cancellous bone. By 
enhancing vascularity in the host bone, the silicate substitute 
significantly improves bone formation [54, 55].

Fusion rates

With a mean follow-up period of 34.7 months, Ameri et al. 
reported a 90% solid fusion rate using metal-derived bioac-
tive glass in adolescent idiopathic scoliosis (AIS) surgery 
and 85% solid fusion rate using ICBG (Tables 5, 6) [53]. 
With a mean follow-up period of 2.94 years, Harshavardhana 
et al. reported a 100% fusion rate by 3 months postopera-
tively using Si–CaP ceramic mixed with locally harvested 
bone graft in AIS surgery [55]. Mashoof et al. reported 100% 
fusion rate using coralline hydroxyapatite ceramic mixed 
with ICBG [56]. Muschik et al. reported a 100% fusion rate 
using β-TCP mixed with autograft [57].

Outcomes

Delécrin et  al. compared synthetic calcium phosphate 
ceramic graft and ICBG and reported lower blood loss in the 

Table 5  (continued)

References Study design Patient age # Patients Procedure type # Levels Graft material

 Mashoof [56] Prospective study Adolescent 27 Posterior spinal 
fusion

– Coralline hydroxyapa-
tite ceramic mixed 
with ICBG (70/30 
ratio)

 Muschik [57] Prospective com-
parative study

Adolescent 28 Posterolateral fusion 12 β-TCP + autograft 
(n = 9) vs. Allo-
graft + autograft 
(n = 19)

 Ploumis Prospective study Adult 28 Posterolateral instru-
mented fusion

Hydroxyapatite 
collagen sponge/
bone-marrow aspi-
rate = 2.3 ± 0.7

Allograft = 2.1 ± 0.7

Hydroxyapatite col-
lagen sponge/bone-
marrow aspirate 
(n = 12) vs. Allograft 
(n = 16)

 Delécrin [58] Prospective rand-
omized study

Age range 13–25 58 Posterior spinal 
fusion

- Calcium phosphate 
ceramic and local 
graft (n = 28) vs. 
ICBG and local graft 
(n = 30)

 Ilharreborde [59] Prospective com-
parative study

Adolescent 88 Posterior spinal 
fusion

Bioglass 
group = 11.8 ± 2

Autograft 
group = 12.1 ± 1.8

Bioactive glass 
(n = 48) vs. ICBG 
(n = 40)

 Lerner [60] Prospective rand-
omized pilot study

Adolescent 40 Posterior fusion β-TCP = 9.9
ICBG = 9.2

β-TCP (n = 20) vs. 
ICBG (n = 20)

 Lerner [61] Prospective study Adolescent 21 Posterior fusion 10 Si–CaP enriched with 
BMA
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ceramic group [58]. Successful integration of the ceramic 
blocks into the fusion mass was achieved within 12 months 
and both groups achieved a satisfactory maintained degree 
of deformity correction. Ilharreborde et al. reported that the 
use of bioactive glass compared to ICBG was associated 
with a significantly higher mean gain of frontal balance, 8.1 
vs. 0.8 mm, as well as a significantly lower rate of loss of 
correction of the main thoracic curve, 11% vs. 15.5% [59]. 
Lerner et al. reported a lower degree of loss of curve cor-
rection in the β-TCP group compared to the ICBG group, 
2.6 and 4.2, respectively [60]. Using Si–CaP enriched with 
BMA, Lerner et al. reported a significantly improved health-
related quality of life and a 93% rate of patients' management 
satisfaction [61].

Complications

Harshavardhana et al. reported that two out of 35 patients 
had revision surgery for deep infection (n = 1) and implant 
failure (n = 1) [55]. In the ceramic group, Delécrin et al. 
reported one patient with superior grips dislodgement and 
had revision surgery [58]. Two other patients developed 
delayed-onset localized inflammatory reactions with promi-
nent implants and had revisions. Ilharreborde et al. reported 
infection (2%), and mechanical failure requiring revision 
(2%) in the bioglass group [59]. The complications reported 
in Mashoof et al. study included superficial infection (n = 1), 
deep infection requiring debridement and implant removal 
(n = 1), and proximal hook dislodge (n = 1) [56]. Muschik 
et al. reported one case of deep infection [57].

Some studies report minimal differences in complication 
rates between various types of biologics and alternative 
graft materials. In a study by Smith (2014) on treatment of 
adjacent segment disease in older patients (mean age 54.8), 
they demonstrated no significant difference (p > 0.05) in the 
risk of rod fracture among adult spinal deformity patients 
with allograft vs. autograft vs. demineralized bone matrix 
vs. rhBMP-2 [40]. Another study reported no significant 
differences between curve type, number of levels fused, 
postoperative infections, pseudarthrosis, reoperations, or 
Scoliosis Research Scoiety-30 scores across each of the 
types of grafts used (allograft, autogenous iliac bone crest 
graft, or bone substitute) in the treatment of adolescent idi-
opathic scoliosis. Bone substitutes included DBM (DePuy 
Synthes), tricalcium phosphate (Depuy Synthes), coralline 
hydroxyapatite (Medtronic), and Cellect (DePuy Synthes—
Selective Cell Retention technology with a combination of 
bone-marrow aspirate with matrix [30]. Moreover, a study 
with similar demographics comparing allograft and a strip 
of flexible demineralized bone matrix (Grafton DBM Flex) 
reported no pseudarthrosis, anterior overgrowth, or implant 
failure in either of the two groups [33].Ta
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To our knowledge, there are no randomized controlled 
studies comparing the efficacy of biologics to autograft 
alone in preventing pseudarthrosis following deformity cor-
rection surgery. Lower quality comparative studies have its 
flaws as difference in fusion technique and deformity cor-
rection principles add on to time-dependent biases when 
cohorts of different eras are compared.

Nanotechnology and osteobiologics

Nanotechnology has been used in various biomedical 
applications, and the newer addition of nanotechnology to 
synthetics can have promising results in enhancing spine 
fusion. Nanoparticles are particles with a size between 10 
and 1000 nm [62].

Scaffold materials for rBMP2 have reduced affinity for 
it, leading to widespread release causing complications of 
hematomas and seromas, as well as exaggerated inflamma-
tory responses [63]. The use of bioactive peptide amphiphile 
nanofiber scaffolds was reported by Lee et al. as an effec-
tive method for localized controlled delivery of rBMP2 to 
the site of fusion [64]. Moreover, the mineral structure of 
nanophase hydroxyapatite is nearly identical to bone with 
enhanced osteoblastic adhesion [65].

Bioactive glass nanofibres have a higher mesenchymal 
stem cell activity compared to conventional bioactive glass 
[66]. Further high-quality comparative studies are needed 
to better elucidate the clinical efficacy of these newer graft 
material.

Conclusions

Although there are several published studies looking at the 
use of individual graft material and biologics for spinal 
deformity surgery, there is a significant paucity of rand-
omized comparative studies due to several limitations. The 
gold standard efficacy of ICBG and local autografts are so 
well established that subsequent materials such as allografts, 
bone matrixes, ceramics, biologics, and bio-materials have 
been compared to historical data rather than direct rand-
omized comparisons. In addition, variability among sur-
geon technique/expertise and the lack of standardization of 
graft materials used for each case invites substantial out-
come variable and makes direct comparison difficult. With 
increasing FDA approval for newer graft materials and more 
industry sponsored data emerging constantly, it is important 
for surgeons to understand these limitations and the quality 
of the data when deciphering the literature on graft materi-
als. Based on all these issues, and the lack of consistent and 
comparable data, we are unable to consistently recommend 
any one specific biological material over another for the pur-
pose of achieving reliable fusion for spinal deformity cases. 

Future high-quality comparative studies and/or continued 
collaborative registry data are needed to objectively compare 
outcomes.
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