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Abstract
Purpose  Idiopathic scoliosis (IS) is defined as a structural lateral spinal curvature ≥ 10° in otherwise healthy children and 
is the most common pediatric spinal deformity. IS is known to have a strong genetic component; however, the underlying 
etiology is still largely unknown. Animal models have been used historically to both understand and develop treatments 
for human disease, including within the context of IS. This intended audience for this review is clinicians in the fields of 
musculoskeletal surgery and research.
Methods  In this review article, we synthesize current literature of genetic animal models of IS and introduce considerations 
for researchers.
Results  Due to complex genetic and unique biomechanical factors (i.e., bipedalism) hypothesized to contribute to IS in 
humans, scoliosis is a difficult condition to replicate in model organisms.
Conclusion  We advocate careful selection of animal models based on the scientific question and introduce gaps and limi-
tations in the current literature. We advocate future research efforts to include animal models with multiple characterized 
genetic or environmental perturbations to reflect current understanding of the human condition.

Keywords  Idiopathic scoliosis · Animal models · Spine · Genetics · Review · CRISPR/Cas9
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IS	� Idiopathic scoliosis
GWAS	� Genome-wide association study
QTL	� Quantitative trait locus

Introduction

Idiopathic scoliosis (IS) is a structural lateral curvature of 
the spine ≥ 10° with a rotatory component [1] that affects 
2–3% of otherwise healthy children across most populations 
[2, 3]. Current therapeutic options are limited to bracing, 
surgery, and physical therapy, with spinal fusion surgery 
being the only treatment option for severe progressive cur-
vatures. IS runs in families and is believed to have a signifi-
cant genetic component [4–13], with multiple genetic risk 
loci identified including those in or near ADGRG6/GPR126 
[14–19] and LBX1 [17, 20–32]. However, IS etiology is still 
poorly understood, despite decades of research. The genetic 
and phenotypic complexity of IS [33], difficulty in obtaining 
musculoskeletal tissue samples, and unique biomechanical 
[34] and hormonal factors hypothesized to contribute to IS 
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in humans have all made IS a challenging disease to under-
stand. Nevertheless, dozens of animal models of scoliosis 
have been created, helping to bridge gaps in understanding 
of the disease.

Animal models of scoliosis have been developed through 
environmental, surgical, and genetic methodologies, which 
are used most often today. Genetic regions of interest may 
be disrupted within an animal model to determine its func-
tion in axial development; these mutations may be induced 
constitutively (permanent gene disruption across cell types) 
or conditionally (tissue-specific).

In this review, we provide a brief overview of the his-
tory of animal modeling and considerations for choosing 
a species as a model for scoliosis research, followed by an 
overview of genetic animal modeling used in IS research 
to date. The intended audience for this review is clinician 
scientists in the fields of musculoskeletal research and ortho-
pedic surgeons seeking updated information regarding the 
development of scoliotic animal models for genetic research. 
We build upon previous IS animal model reviews [35–39] 
and conclude by noting gaps in the current literature and 
providing recommendations for future research efforts.

A brief history of comparative medicine

Comparative medicine is based on the principle that animals 
share phenotypic and genetic traits with humans, and that 
discoveries made within animals can gain understanding 
of human disease. Although observational animal research 
was recorded as early as the sixth century B.C. [40], the 
birth of comparative anatomy largely occurred during the 
Renaissance, notably through Andreas Vesalius’ 1543 De 
Humani Corporis Fabrica (The Structure of the Human 
Body) [41]. Centuries later, Charles Darwin’s On the Origin 
of Species (1859) and Gregor Mendel’s work on the basic 
laws of heritability (1865) established genetic relationships 
between individuals and species, providing a foundation for 
comparative medicine. By 1902, William Castle had bred 
mouse (Mus musculus) lines for research purposes, followed 
by Clarence Little’s creation of the genetically homogenous 
strain of dilute brown non-agouti (dba) mice [42]. Through 
the last century, animal and cell culture models have greatly 
improved our understanding of cellular structures and bio-
chemical interactions underlying human physiological 
processes.

Today, animal models are crucial for basic and transla-
tional research efforts. Significant pre-clinical data, usu-
ally including validation of safety and efficacy in animal 
models, are required by the Food and Drug Administration 
prior to initiating clinical trials for pharmaceuticals, medi-
cal devices, and biologics. The first step in such efforts is 
creating an appropriate animal model to mirror the human 

condition; this ensures that (1) the pathology of the condi-
tion is understood and (2) there is a model in which potential 
clinical treatments can be evaluated. To date, IS research 
efforts using animal models have largely aimed to under-
stand IS etiology. The following section introduces consid-
erations for scoliosis researchers selecting an animal model.

Considerations for selecting an animal 
model

Researchers must carefully examine how closely the ani-
mal models the human condition, which may include the 
underlying pathophysiology and genetics of the organism, 
similarity of phenotypic endpoints to the human, and the 
similarity of the animal and human disease [43, 44]. Key 
factors include: (1) relevance of the model to the scientific 
question, (2) cost and feasibility, (3) resources and reagents 
compatible with the species, and (4) ethical considerations 
for the use of the species for research, as detailed below:

(1) Relevance of the model to the scientific question: Ani-
mals selected for research must be similar enough to the 
human condition or system to provide relevant data. When 
designing genetic studies, it is important to examine genetic 
homology between the animal and human, as genes under 
study may be duplicated, deleted, or significantly divergent 
between the two species. Animal models should be evalu-
ated for three types of validity, which indicates the strength 
in which research findings translate to the human condition 
[44]:

•	 Face validity indicates shared phenotypic or symptomatic 
manifestations of the clinical condition under study, 
where ideally the disease condition occurs naturally in 
the model.

•	 Construct validity is the degree of underlying biology 
shared with the human condition, which can include 
similarity of the target organ or structure. Advances of 
molecular genetics now allow study of genetic variation 
and molecular pathways at the individual nucleotide 
level within animal models, adding a significant level of 
specificity to the study of the human condition when the 
mutational variants are known.

•	 Predictive validity indicates a model’s similar response 
to therapeutic agents as in humans. Treatment responses 
even between mammalian systems can differ remarkably 
in certain disease contexts [45–49].

Proper evaluation of validity is necessary for researchers 
to interpret data and address its limitations, thus ensuring 
more effective clinical translation of the research findings.

(2) Cost and feasibility: Popular animal systems used in 
musculoskeletal research vary widely in cost of procurement 
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and upkeep. A complete evaluation of costs associated with 
an animal model ensures that care for the animals is budg-
eted for.

(3) Available resources and reagents: Common animal 
models (i.e., mouse) have a greater array of resources and 
commercially available reagents, including well-annotated 
genomes. Reagents designed for use in one animal species 
(e.g., antibodies) may not react to others. Custom-made rea-
gents can be created, albeit through an increased cost [50].

(4) Ethical considerations: Federal, national and insti-
tutional scientific boards require animal research to be 
evaluated on the basis of ethics, including justification and 
documentation of minimization efforts for animal suffering. 
A review of ethical considerations specifically for muscu-
loskeletal research has previously been published by Allen 
et al. [51].

Popular animal models for IS research

Table 1 provides an overview of pros and cons associated 
with different research models for musculoskeletal research, 
as well as common research applications. Differences in 
spinal anatomy between popular animal models have been 
reviewed previously [52–57].

Rodents: Mouse (Mus musculus) is the most popular 
mammalian animal model for the study of multiple human 
disorders, including disorders of the musculoskeletal system 
[40, 58]. The mouse genome is approximately 85% identical 
to the genome of Homo sapiens [59]. Mice have cheaper 
husbandry costs compared to other mammals (i.e., rats, 
rabbits), and have a wide selection of available reagents, 
including antibodies and assays, and the genomes of com-
monly used strains are well annotated. Rats (Rattus) are also 
popular models for human disease [60–62] and in some situ-
ations have some unique advantages as a model for research. 
The larger body size allows for more sophisticated surgical 
approaches and physiological measurements. Additionally, 
the rat has proven to be an excellent model for human spinal 
cord injury, with a response process closely mimicking that 
of the human [63–65].

Despite the genetic, hormonal and developmental simi-
larities of mouse to human, mice are quadruped, presenting 
significant biomechanical differences to human and, it has 
been proposed, a resistance to developing scoliosis sponta-
neously [36].

Zebrafish: The zebrafish (Danio rerio) is a popular ani-
mal model with several advantages including a well-defined 
genome, easily manipulated and transparent embryos, fast 
generation times, and low husbandry costs compared to 
mammals [66–68]. Zebrafish embryos contain a ciliated 
organ (Kupffer’s vesicle), thought to be responsible for the 
determination of left/right body axis, and an appropriate 

model for investigating ciliopathies [69]. Numerous 
resources and reagents are available including transgenic 
lines in which developing structures during early embryonic 
stages can be visualized. Zebrafish International Resource 
Consortium (ZIRC) is a federally supported zebrafish data-
base providing resources for researchers.

Zebrafish have been a popular animal model in scoliosis 
research, thoroughly reviewed by Grimes et al. [70]. Bony 
fish present unique advantages for scoliosis research, as they 
naturally develop a degenerative scoliosis with advanced 
age, as well as other spontaneous spinal curvatures upon 
environmental or genetic disturbances [38, 71, 72]. The 
cranial-to-caudal biomechanical load placed on the spine 
of the zebrafish swimming through viscous water has been 
hypothesized to mimic the biomechanical load on the human 
spine [71]. Although yet proven, bony fish appear to be more 
susceptible to mechanical strain of the spine, spinal curve 
initiation, and severe curve progression compared to quad-
rupeds [38].

Despite these advantages, key differences in the physiol-
ogy of the zebrafish must be considered when translating 
research findings to humans. The Reissner fiber, a proteina-
ceous strand that runs along the spinal column of most ver-
tebrates, has been implicated in onset of scoliosis-like cur-
vatures in several zebrafish models [73, 74], but has not yet 
been demonstrated as present in humans (see Bony Fishes). 
Hormonal differences between fish and humans are substan-
tial, some of which have been implicated in IS development 
[75] (i.e., leptin [76, 77], melatonin [78–82], estrogen [80, 
83]).

Avian models: Some of the earliest models of scolio-
sis were created in avians, including the pinealectomized 
chicken [84–88]. Avians are bipedal when on land and thus 
present some biomechanical similarities to humans. The 
removal of the pineal gland created a three-dimensional 
spinal deformity that was then compared morphologically 
to that of human IS. Multiple concerns including postural 
mechanical forces, surgical specificity, lack of consist-
ent reproducibility, and endocrine metabolic differences 
between the human and avian species have led to question 
the relevance of the avian models.

Non-human primates: Non-human primates have only 
been used as scoliosis models within a few studies, likely 
due to their expense and unclear utility as a scoliosis model. 
In the 1970s, researchers used a rib excision technique, 
which had previously been used to induce scoliosis in rab-
bits [89], to induce scoliosis in thirteen baboons (Papio 
papio, Papio hamadryas). However, no animals developed 
scoliosis [90]. This technique again failed to produce sco-
liosis in monkeys (species not specified) a decade later [91]. 
Surgical attempts to produce scoliosis in Rhesus macaques 
(Macaca mulatta) via sacrospinalus muscle resection [92] or 
excision of the intercostal nerves and erector spinae muscle 
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were also largely unsuccessful [90]. Pinealectomy, which 
was used to induce scoliosis across multiple studies in avians 
and smaller mammals [37], also failed to induce scoliosis in 
any macaques [93].

The reasons for the failures to produce an idiopathic-like 
scoliosis in non-human primates are unclear, although dif-
ferences in biomechanical loading and posture are certain 
to play a role [90]. One study compared spinal muscle com-
position in humans to Rhesus macaques (Macaca mulatta), 
the most common non-human primate model, to determine 
the animal’s suitability as an experimental scoliosis model 
[94]. After significant differences in superficial muscle 
tissue composition were found, the authors were not able 
to recommend Rhesus macaques as a model for scoliosis, 
although the deep tissue muscles appeared similar. Interest-
ingly, degenerative scoliosis appears to be common among 
older captive macaques [95]. In one study, 46.6% of captive 
macaques displayed some degree of degenerative scoliosis 
(n = 58, age 0–27 years), which was their most frequently 
observed osteopathology [96]. The failures of surgical 
techniques to produce a scoliosis curvature highlight the 
importance of differences between species when it comes 
to the spinal column and scoliosis. Further research with 
non-human primates may be needed to help elucidate the 
pathogenesis of human scoliosis.

Other models: Larger mammals, including rabbits and 
pigs, have been used for decades in musculoskeletal research 

conditions including osteoarthritis [97] and osteoporosis 
[98]. Two recent publications focus on the mini pig as a 
model of scoliosis, the first created a scoliotic deformity 
through a surgical posterior medial costotransversectomy 
[99], and the second through the use of a torsional tension 
device [100]. Both of these models rely on the biomechanical 
aspects of the growing spine to induce a scoliotic deformity, 
and potentially aid us in understanding growth modulation 
techniques of the spine. Larger mammalian models more 
closely resemble humans in terms of the genome, endocrine 
systems, and bone characteristics.

Genetic animal models of IS

Idiopathic scoliosis (IS) research progress has been hindered 
by the lack of developmentally appropriate animal models 
to aid in understanding the complex biomechanics of the 
growing human spine. Some have proposed that the unique 
structural–mechanical challenges of bipedalism on the spinal 
column are key factors driving IS, due to the relatively few 
observations of scoliosis in non-bipedal animals [101–103]. 
Despite these challenges, researchers have developed numer-
ous animal models to inform our understanding of scoliosis 
pathology including birds, mammals, and bony fishes. Fig-
ure 1 provides examples of several genetic animal models 

Fig. 1   Examples of genetic animal models of scoliosis. Left: radiograph of adult female with scoliosis. Middle: adult ptk7 mutant zebrafish. 
Right: adult female homozygous conditional Adgrg6 mutant mouse
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that exhibit abnormal axial spinal curvatures and are com-
monly used for research.

Early animal models of scoliosis involved a surgical pine-
alectomy, performed in chickens, rats, and mice, resulting 
in some animals developing spinal curvatures [37]. As the 
pineal gland secretes melatonin, this led to an interest in the 
melatonin pathway as related to the etiology of IS (reviewed 
by Girardo et al. [81]). Recently, a bipedal mouse model of 
scoliosis deficient in melatonin was found to have reduced 
incidences of scoliosis, as well as improved bone mineral 
density, after treatment with exogenous melatonin [104].

The concept of bipedalism as a factor contributing to 
spinal imbalance and curvature led to another surgical tech-
nique involving the amputation of the forelimbs in rats and 
mice, creating an artificial model of bipedalism [101, 105]. 
In rabbit and mouse resection of the lower ribs within the 
thoracic cavity was also found to result in spinal curvatures 
[89].

Spontaneous or environmentally induced models of 
scoliosis have been observed. A thoracic scoliosis devel-
oped spontaneously in a line of Japanese white rabbits; this 
line was later found to have high serum melatonin [106]; 
however, a genetic cause to date has not been pinpointed. 
Recently, a stranded minke whale was observed with a 
severe scoliotic spine, which was believed to be initiated by 
blunt traumatic injury to two vertebrae followed by com-
pensatory biomechanical, compensatory spinal curvatures 
[107].

Recent animal models of scoliosis have largely been cre-
ated using genetics techniques, including CRISPR–Cas9, 
the Cre–Lox system, and transient models modifying RNA 
expression. Conditional genetics allow the researcher to 
specifically ablate or alter gene expression in defined tis-
sues or a specific tissue lineage both spatially and tempo-
rally. By targeting a specific tissue lineage, one can study 
the mutational effects on the pathophysiology of a specific 
tissue/organ as related to the disease of interest [108]. These 
techniques are extremely useful to circumvent embryonic 
lethality of a particular mutation or variant [108]. The avail-
ability of tools for the Cre–Lox system and CRISPR–Cas9 is 
particularly robust in mouse, while CRISPR–Cas9 or anti-
sense morpholino oligonucleotides are the current standard 
for genetic approaches in the zebrafish model system. Com-
prehensive summaries of genetic scoliosis models to date 
are provided in Table 2 (mammalian models) and Table 3 
(non-mammalian models). 

Despite being quadruped, the murine nervous, endocrine, 
and musculoskeletal systems share significant similarities 
with humans compared to non-mammalian models. One of 
the first genetic murine models of scoliosis reported was 
in a Gdf5;Gdf6 (Growth Differentiating Factor-5, -6) dou-
ble mutant, which developed spinal curvature as well as 
defects in skeletal patterning and joint tissues [109]. After 

discovering a translocation affecting CHD2 (Chromodo-
main DNA Helicase Protein 2) in a patient with scoliosis 
and developmental delay, a heterozygous Chd2 ± mouse was 
created showing marked spinal kyphosis, growth retardation, 
and reduced body fat [110]. Mice homozygous for a deletion 
in Fgfr3 (Fibroblast Growth Factor Receptor 3) developed 
kyphoscoliosis at 2 months of age, which was then partially 
corrected with the bone anabolic agent PTHrP-1–34 [111], 
suggesting that bone metabolism has a role in scoliosis, a 
concept that has been implicated in select populations of 
human AIS patients [112–116].

Use of conditional genetics has pinpointed the role of 
cartilaginous tissues during the development of scoliosis in 
mice. A gain-of-function Npr2 (Natriuretic Peptide Receptor 
2) mutation expressed specifically in chondrocyte lineages 
expressing Col11a2 (Collagen Type XI Alpha 2 Chain) was 
discovered in a family with scoliosis, tall stature, and mac-
rodactyly, which then caused bony overgrowth and severe 
kyphosis in mouse [117]. Chondrocyte-specific deletion of 
Ptpn11 (Tyrosine-protein phosphatase non-receptor type 11, 
encoding Shp2) at 4 weeks of age in mice led to juvenile 
scoliosis whereas constitutive deletion led to severe skel-
etal defects, including scoliosis [118]. Chondrocyte-specific 
knockdown of Sox9, an essential transcription factor for 
chondrocyte differentiation, was found to cause multiple 
musculoskeletal and developmental abnormalities in mice, 
including severe kyphosis [119]. Osteochondroprogenitor-
specific depletion of Gpr126/Adgrg6 (Adhesion G Protein-
Coupled Receptor G6), variants in which were implicated 
in IS by multiple GWAS [14–19], was found to cause a late-
onset scoliosis in mouse, as well as an abnormal sternum 
phenotype similar to pectus excavatum [120]. Deletion of 
Prmt5 (Protein Arginine Methyltransferase 5) in the same 
osteochondroprogenitor cell lineages in mouse was found to 
produce early-onset scoliosis [121].

Clinical investigations have shown a potential propriocep-
tive mechanosensory deficit in IS individuals, thus leading 
to study of this regulatory system in murine models. Murine 
mutants null for Runx3 (Runt-related Transcription Factor 
3) and Egr3 (Early Growth Response 3) both exhibited a 
scoliosis phenotype. A third mouse model with selective 
loss of Piezo2 (Piezo Type Mechanosensitive Ion Channel 
Component 2) in proprioceptive neurons also led to spinal 
kyphosis and scoliosis, again indicating the potential role of 
the proprioceptive system in maintaining spinal alignment 
[122].

Bony fishes: Fish models, first championed by the curve-
back guppy, which spontaneously developed isolated spinal 
curvatures, was one of the first established genetic models 
of scoliosis and was used to suggest that scoliosis was not 
exclusive to bipedalism [38, 71, 123].

The authors later identified a major quantitative trait 
locus (QTL) in the curveback guppy containing over 100 
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genes, including the candidate IS gene mtnr1b [123], but 
due to the lack of genetic resources in the guppy the causal 
mutation(s) were never fully defined.

Recently, zebrafish (Danio rerio) have become promi-
nent in scoliosis research, with key advantages and avail-
able resources as listed in Overview of Popular Animal 
Models. Initial overexpression experiments in zebrafish 
of mutations in POC5 [124] (POC5 Centriolar Protein) 
and near LBX1 [125] (Ladybird Homeobox-1) were used 
to validate human genetic findings.

Zebrafish models have shown that tissue-specific muta-
tions in motile cilia genes, including ptk7 (Protein Tyros-
ine Kinase 7), lead to phenotypes that resemble aspects of 
IS including late-onset spine curvatures without vertebral 
malformations, and a higher penetrance and severity in 
female mutant fish [72, 126]. Curvatures were associated 
with defects in cerebrospinal fluid flow, hypothesized as 
linked to malfunctioning motile cilia of the brain’s ependy-
mal cells [70]. The ptk7 model sparked additional interest 
in ependymal cilia defects as related to IS pathology [124, 
127], which were also seen in kif6−/− (Kinesin Family 
Member 6) scoliotic zebrafish [128, 129]. Further research 
pinpointed neuroinflammation as a potential cause of the 
scoliosis or progression of the scoliosis in ptk7 mutant 
fish; interestingly, as treatment of the ptk7 mutant zebrafish 
with non-steroidal anti-inflammatory drugs (e.g., aspirin 
and N-acetyl cysteine) drastically reduced the incidence 
of spinal curvatures [130].

Recent studies have implicated the Reissner fiber, a 
threadlike glycoprotein strand running the length of the 
spinal cord central canal, as essential for proper spine 
morphogenesis in larval zebrafish [131, 132]. Moreover, 
these studies show that the loss of motile cilia function 
and disrupted cerebrospinal fluid flow are tightly corre-
lated with the disassembly of the Reissner fiber. Whether 
these mechanisms are shared with IS in humans remains 
controversial, as it is unclear whether humans possess a 
Reissner fiber past infancy [133, 134]. Regardless, the 
mechanism of how the Reissner fiber is controlling spine 
morphogenesis warrants further research. Recent studies 
implicating the stimulation of the cerebrospinal fluid-con-
tacting neurons (CSF-cNs) by physically interacting with 
the Reissner fiber are intriguing [135]. This is even more 
relevant in light of recent work showing that alterations 
in the expression of urotensin neuropeptides in CSF-cNs 
can lead to improper control of the body axis and result in 
scoliotic curvatures in zebrafish. Additional recent work 
has found that defects in sco-spondin (encoded by SSPO), 
the main protein component of the Reissner fiber, cause 
scoliosis in zebrafish and is a conserved mechanism, along 
with neuroinflammation, across different genetic zebrafish 
models of scoliosis [131].

Current limitations and future directions 
of IS animal modeling

With the exception of mutant Adgrg6 mice [120], which 
also show a pectus excavatum phenotype [120], and poten-
tially kif7co63 zebrafish [136], which have not yet been fully 
characterized, there is currently a lack of animal models that 
show isolated, IS-like spinal curvatures without secondary 
phenotypes, including hydrocephalus, skeletal malforma-
tions, degeneration, or bone quality defects. Additionally, 
with a few exceptions [71, 72], most animal models of sco-
liosis have not shown sexual dimorphism. Severe IS presents 
in females by a 9:1 ratio, which has been hypothesized as 
being caused by differences in the prepubertal growth spurt 
[137, 138], muscle mass [137], inflammatory responses 
[139], and hormones [138, 140, 141].

IS is now largely understood as a complex genetic dis-
ease caused by combinations of mutations that alone are 
mildly deleterious, perhaps in combination with environ-
mental risk factors [142]. Most animal models to date have 
manipulated single genes or variants to determine the effect 
of the genomic region in isolation. Future animal modeling 
research may move towards combinatorial approaches, 
where 2 + characterized mutations are induced within one 
model, or genetic models are combined with environmental 
or epigenetic perturbations also suspected to contribute to 
IS [143].

Conclusion

IS is a multifactorial condition that has been challenging to 
model in animals due to complex genetic and unique bio-
mechanical factors believed to cause disease onset. Despite 
these challenges, genetic animal models have served as cru-
cial tools to understand spinal development and pathology, 
test scientific hypotheses, and validate potential mutations 
found in human data. We advocate careful selection of ani-
mal models depending on the scientific question, and careful 
consideration of IS-like curvatures within the context of the 
animal model being studied. Future research directions may 
include induction of multiple mutations or environmental 
effects within one animal model to reflect current under-
standing of the human condition.
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