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Abstract
Study design  A detailed finite element analysis of screw fixation in the sacrum and pelvis.
Objective  To biomechanically assess and compare the fixation performance of sacral and transarticular sacroiliac screws.
Summary of background data  Instrumentation constructs are used to achieve fixation and stabilization for the treatment of 
spinopelvic pathologies. The optimal screw trajectory and type of bone engagement to caudally anchor long fusion constructs 
are not yet known.
Methods  A detailed finite element model of the sacroiliac articulation with two different bone densities was developed. 
Two sacral and one transarticular sacroiliac screw trajectories were modeled with different diameters (5.5 and 6.5 mm) and 
lengths (uni-cortical, bi-cortical and quad-cortical purchase). Axial pullout and flexion/extension toggle forces were applied 
on the screws representing intra and post-operative loads. The force–displacement results and von Mises stresses were used 
to characterize the failure pattern.
Results  Overall, sacroiliac screws provided forces to failure 2.75 times higher than sacral fixation screws. On the contrary, the 
initial stiffness was approximately half as much for sacroiliac screws. High stresses were located at screw tips for the sacral 
trajectories and near the cortical bone screw entry points for the sacroiliac trajectory. Overall, the diameter and length of the 
screws had significant effects on the screw fixation (33% increase in force to failure; 5% increase in initial stiffness). A 20% 
drop in bone mineral density (lower bone quality) decreased the initial stiffness by 25% and the force to failure by 5–10%. 
High stresses and failure occurred at the screw tip for uni- and tri-cortical screws and were close to trabecular–cortical bone 
interface for bi-cortical and quad-cortical screws.
Conclusions  Sacroiliac fixation provided better anchorage than sacral fixation. The transarticular purchase of the sacroiliac 
trajectory resulted in differences in failure pattern and fixation performance.
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Introduction

Bone screws are used for the treatment of spinopelvic 
pathologies to achieve fixation and stabilization. Spinal 
surgeons have numerous options to caudally anchor long 

fusion constructs via screw fixation in the sacrum and pel-
vis. Sacroiliac screw anchoring strength is a key factor for 
the success of the instrumentation fixation [1]. Due to the 
unfavorable biomechanics of a long lever arm at the sacro-
iliac level, bone screws are subject to a combination of high 
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bending, shear, and pullout loads. Consequently, spinopelvic 
arthrodesis with screw fixation is associated with risks of 
mechanical complication and pseudarthrosis [2]. In particu-
lar, iliac screw insertion is a highly invasive procedure and 
can cause instrumentation-related pain and prominence of 
the instrumentation [3]. The S1-alar iliac (S1AI) screw has 
been described in the literature as an alternative to sacral or 
iliac screw [4].

The quality of screw purchase in the sacrum remains a 
clinical challenge because of the variability of its bone qual-
ity [2, 5, 6] and the complexity of its anatomy. The bone 
quality of the patient as well as the orientation of the applied 
load on the screw introduced two important biomechanical 
variables. Biomechanical [7] and clinical [8–10] studies have 
widely shown that S2AI screws offer less prominence and 
risk of revision surgery compared to iliac screws. However, 
biomechanical assessment of sacroiliac screws anchorage 
and comparison with sacral screws remain to be achieved.

For a given screw design, surgical choices include the 
possibility of utilizing different screw trajectories. The cor-
responding screws vary in diameter and length, allowing for 
various bone engagements ranging from uni-cortical sacral 
trajectories to quad-cortical sacroiliac trajectories. Thus, it 
may still be difficult to determine the optimal caudal anchor-
age strategy for a long fusion surgery.

This study investigated the screw fixation biomechanics 
for several sacroiliac instrumentation configurations. Such 

computational simulations allow the study of different types 
of bone purchase and screw trajectories in an environment 
devoid of experimental variability.

Materials and methods

The finite element model used in this study was adapted 
from the Spine Model for Safety and Surgery (SM2S), 
which was previously used in trauma and medical device 
biomechanical studies similar to the present context of use 
and validated through comparison with published experi-
mental data [11, 12]. The pelvis was reconstructed in 3D 
using a series of cross-section images of the pelvis of a 50th 
percentile human volunteer (32-year-old Caucasian male, 
75 kg, 1.75 m, with no known spinopelvic pathology) [13]. 
The pelvic bony structures were modeled as trabecular cores 
enveloped by the cortical external layer with region-specific 
thickness taken and adapted from the literature [13, 14]. The 
cortical layer of the iliac bones had regional thicknesses 
ranging from 0.3 to 5 mm and the sacral cortex was 1 mm 
thick (Fig. 1). Trabecular and cortical bones were meshed 
using four node tetrahedral elements of 0.4 mm charac-
teristic length near the contact zone with the screw shaft 
and where there were significant topologic and geometric 
changes (sharp change of local surface orientation, small 
radius of curvature, etc.). Greater characteristic lengths 

Fig. 1   Posterior (a) and anterior 
(b) view of the ilia with areas 
of different cortical thicknesses 
and posterior (c) and left (d) 
view of the instrumented sacro-
iliac joint including the interos-
seous ligament (1), anterior 
sacroiliac ligament (2), cartilage 
(3), sacrospinous ligament (4), 
sacrotuberous ligament (5) and 
pubic symphysis (6)
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(around 1 mm) were used elsewhere to reduce the compu-
tational load. The screw external surface was modeled as a 
two-dimensional (2D) shell meshed with characteristic trian-
gular elements of 0.4 mm. The triangle-based elements were 
chosen for their ability to comply with complex geometry 
and their non-warpage properties. The final mesh density 
and distribution was confirmed by a convergence study. The 
trabecular core and the cortical external layer were bonded 
through sharing common nodes along their contact surface. 
The screw was considered as rigid body, as its Young’s mod-
ulus is far higher than those of the cortical and cancellous 
bones. The sacroiliac junction was modeled as a bicondy-
lar joint in close-packed position with realistic physiologic 
motion [15, 16]. The pubic symphysis was represented as a 
single cartilaginous solid. The major pelvic ligaments (inter-
osseous, sacroiliac anterior, sacroiliac posterior, sacrotuber-
ous and sacrospinous) and pubic symphysis geometries were 
directly implemented from anatomic descriptions [17, 18]. 
The same method was used to create a control model of the 
L5 vertebra.

A Johnson–Cook elastoplastic material law was employed 
to simulate the bone behavior and failure [13]. The material 
law parameters have been calibrated for low-speed dynam-
ics combined with kinematic relaxation (quasi-static). Once 

the failure plastic strain was reached on any element, it was 
removed to simulate its failure. The bone was considered 
as homogeneous isotropic material and its properties were 
estimated using an inverse finite element modeling (FEM) 
and simulation technique [19–21]. Numerical values of the 
mechanical material properties of the cortical and cancellous 
bones are provided in Table 1.

Bone mineral density (BMD) inter-individual variability 
was studied by defining two sets of mechanical properties 
(Table 1). The first set represented a normal (asymptomatic) 
BMD and corresponded to the nominal mechanical proper-
ties of the previously validated model. The second set rep-
resented a low (osteoporotic) BMD, which was 20% lower 
compared to normal bone [22]. Results reported by Keller 
[23] were used to define mechanical properties for the tra-
becular bone (20% drop in ρ corresponding to 35% drop 
in E). Results reported in the literature [24–26] were used 
for the cortical bone (20% drop in ρ corresponding to 40% 
drop in E).

Six screw trajectories were tested using the compre-
hensive FEM, namely the traditional S1 (TS1), the S1 alar 
(S1A), the S1 alar iliac (S1AI), the S2 alar iliac (S2AI), the 
L5 cortical (L5C) and the L5 traditional (L5T) trajectory 
(Table 2, Fig. 2). In addition to two sacral and two sacroiliac 

Table 1   Mechanical properties 
of the cortical and cancellous 
bone materials

Bone quality Cortical bone Cancellous bone

Asymptomatic Osteoporotic Asymptomatic Osteoporotic

Density (g/mm3) 2.00E−03 2.00E−04 1.60E−03 1.60E−04
Young modulus (MPa) 2144 1575 42.8 31.7
Poisson ratio 0.3 0.25 0.3 0.25
Yield stress (MPa) 129 105 2.6 1.95
Hardening modulus (MPa) 875 875 16.3 16,3
Hardening exponent 1 1 1 1
Failure plastic strain 0.04 0.04 0.04 0.04

Table 2   Screw diameters and lengths (mm) used for each tested trajectory

Screw trajectory Uni-cortical fixation Bi-cortical fixation Tri-cortical fixation Quad-cortical fixation

Traditional S1 trajectory (TS1) 5.5 × 35 5.5 × 45
6.5 × 35 6.5 × 45

S1-alar trajectory (S1A) 5.5 × 35 5.5 × 50
6.5 × 35 6.5 × 50

S1-alar iliac trajectory (S1AI) 5.5 × 80 5.5 × 125
6.5 × 80 6.5 × 125

S2-alar iliac trajectory (S2AI) 5.5 × 80 5.5 × 125
6.5 × 80 6.5 × 125

Cortical screw trajectory in L5 (L5C) 5.5 × 35 5.5 × 40
6.5 × 35 6.5 × 40

Traditional screw trajectory in L5 (L5T) 5.5 × 45 5.5 × 55
6.5 × 45 6.5 × 55
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trajectories, a standard and a traditional L5 pedicle screw 
trajectory were tested and compared to references [27–32] 
for model validation. For each trajectory, two screw diam-
eters were tested, as well as two screw lengths to compare 
uni- and bi-cortical for sacral trajectories, and tri- and quad-
cortical fixations for sacroiliac trajectories, resulting in a 
total of 16 configurations. Two values for a given parameter 
were necessary to evaluate its relative influence with respect 
to the other tested parameters (relative vs. absolute quantifi-
cation). Using 5.5 and 6.5 mm diameter screws also allowed 
comparison to the L5 vertebra control model for which we 
had experimental data, for validation purposes.

The screw insertion technique was based on previously 
published work [11, 12] and is summarized thereafter. The 
screw was placed following its assigned trajectory (Fig. 2). 
Bony material overlapping the screw was removed (Boolean 
operation) to create surfaces needed for bone–screw inter-
face. The bone–screw interface was modeled using a point/
surface penalty method with Coulomb type friction of 0.2 
and minimal gap of 0.05 mm [11, 33]. Additional cortical 
and trabecular bone have been removed to allow for the 
screw head and rod to move freely when loaded.

To simulate the experimental potting conditions [34, 35], 
the distal third of the bone structures (sacrum for trajecto-
ries TS1 and S1A, ilium for trajectories S1AI and S2AI) 
was considered as a rigid body and fixed with respect to the 
global coordinates. For the control trajectories, the anterior 
third of the vertebral body was considered as a rigid body 
and fixed.

Pullout conditions were applied to simulate the experi-
mental setup of the ASTM standard pullout test [36]. 

Accordingly, a ramped axial pullout force was applied to 
the screw head until complete screw pullout. The screw axial 
displacement and bone-implant reaction force were recorded 
for later analysis. Two different toggle conditions were also 
tested. A posterior or anterior force was applied to a rod 
attached to the screw, 40 mm proximal to the screw heads 
and parallel with the screw long axis to simulate an exten-
sion or a flexion, respectively. A ramped force was applied 
on the rod until complete screw pullout. Displacement and 
bone-implant reaction forces and moments were recorded at 
the proximal end of the rod for analysis.

For all loading conditions, the computed force–displace-
ment (F–D) curves were used to determine the initial stiff-
ness (IS, linear slope of the F–D curve) and force to failure 
(FtF) (Fig. 3). The IS expresses the rigidity or the ability 
to resist deformation in response to an applied force on the 
screw, whereas the FtF is the maximal force the screw can 
bear before bone failure.

Results

For axial pullout and toggle loading, the computed 
force–displacement (F–D) curves typically exhibited a non-
linear behavior characterized by a neutral zone followed by 
a linear portion. Generalized bone failure occurred after this 
linear portion, characterized by a sudden drop of rigidity 
following which the force decreased until complete bone 
rupture and screw pull-out.

For both sacral trajectories (TS1, S1A), the bi-cortical 
6.5 screw provided the best purchase. IS and FtF were both 

Fig. 2   Transverse and sagittal views of the four tested configurations
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higher with bi-cortical insertion compared to uni-cortical 
and with the larger screw diameter (Figs. 4, 5). Sacroiliac 
trajectories provided the strongest purchase (highest FtF) 
in axial pullout and toggle (Fig. 4). However, the IS was 
the lowest for the sacroiliac trajectories. S1AI trajectory 

generally resulted in higher IS and FtF in pull-out com-
pared to S2AI trajectory. Results for both sacroiliac trajec-
tories were similar under toggle loading. For the toggle in 
flexion, no difference appeared between trajectories TS1, 
S1A, L5C and L5T, whereas for toggle in extension, the 
control trajectory provided the worst purchase. Under all 
loading conditions, a larger screw diameter and increased 
cortical purchase resulted in increased IS and FtF. The tra-
jectory that benefited the most from the use of a bi-cortical 
insertion was the S1A trajectory, with an increase of FtF 
by a factor of 2 to 3. Simulations with lower mechani-
cal properties (osteoporotic bone), resulted in a drop of 
20–35% of the IS and of 5–20% of the FtF under pull-out 
loading, and in a drop of 5–30% in IS and of 0–25% in the 
FtF under toggle loading. 

Fracture patterns in simulated trajectories TS1 and S1A 
were similar for all loading directions. Fracture initiation 
occurred at the screw tip in axial loading and in the tra-
becular bone, above (in extension) or below (in flexion) 
the screw (Fig. 6). Bi- and quad-cortical screws resulted 
in lower maximum bone stress compared to uni- and tri-
cortical screws. For the sacroiliac trajectories, the fracture 
always occurred in two steps. Fracture initiation occurred 
in the ilium, subjecting the sacrum to higher force until 
final failure (Fig. 7).

Fig. 3   Generic pullout force–displacement curve showing initial stiff-
ness and force to failure measurement method

Fig. 4   Mean simulated force to failure for the 2 reference and 4 simulated sacral and sacroiliac screw insertion trajectories, with uni- or bi-corti-
cal purchase, and 2 screw diameters, under pull-out and toggle (Flexion/extension) loading conditions
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Discussion

In this study, the biomechanics of several sacral and sac-
roiliac screw insertion trajectories were compared under 

pull-out and toggle loading conditions, by analyzing the 
corresponding IS, FtF and the failure pattern. The use 
of a numerical comparative approach allowed eliminat-
ing unwanted variability of physical testing to better elu-
cidate the isolated biomechanical effects of the studied 

Fig. 5   Mean simulated initial stress for the 2 reference and 4 simulated sacral and sacroiliac screw insertion trajectories, with uni- or bi-cortical 
purchase, and 2 screw diameters, under pull-out and toggle (Flexion/extension) loading conditions

Fig. 6   Stress field in the trabecular bone resulting from cantilever 
effect in extension toggle. Top row shows the pullout conditions and 
bottom row shows the extension toggle conditions for S1AI, TS1, 

S1A and L5C trajectories. Arrows indicate applied and resulting 
forces on the screw-rod construct. S2AI and L5T trajectories were not 
pictured here as they were similar to S1AI and L5C, respectively
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parameters. Overall, the largest diameter (6.5 mm) screws 
and the more cortical bone layers traversed by the screw 
provided the best purchase, as reported in [11]. The bio-
mechanics of sacroiliac trajectories were more complex, 
due to several factors. First, the screw crosses the inter-
osseous ligament and sacroiliac (SI) joint. Consequently, 
the synergistic contribution of the two bones to sustain 
the load explains the smallest initial stiffness due to the 
SI joint mobility, compared to sacrum only insertion. 
Second, the sacroiliac screws are longer and penetrate 
three or four layers of cortical bone, as opposed to one or 
two for the trajectories TS1 and S1A. Thus, the highest 
FtF could be explained by the additional stiffer bone lay-
ers traversed by the screw along its trajectory. Although 
the quad-cortical purchase resulted in higher anchorage 
strength compared to tri-cortical insertion, this differ-
ence was shown to be non-significant in the literature [7]. 
Further analyses of the sacroiliac trajectories showed that 
most of the load was initially transferred to the ilium tra-
becular bone, which initially shows the highest von Mises 
stress. After failure of the ilium bone–screw interface, the 
sacrum and ligaments withstand the load, resulting in an 
overall nonlinear force–displacement curve. Overall, the 
better anchorage performance of sacroiliac trajectories and 
the clinical advantages of potential fewer wound compli-
cations of these trajectories [4, 7–10] suggest that it can 
provide a strong anchorage for long spine fusion surgical 
procedures. Even though the insertion point and trajec-
tory determination might be more challenging compared 
to traditional sacral or lumbar insertion, this could be eas-
ily overcome by using fluoroscopic guidance [37]. S1AI 
and S2AI trajectories resulted in comparable anchorage 
performance. However, the S1A1 trajectory is a new way 

to provide fixation across the sacroiliac joint and offers 
some benefits over the more widely used S2A1 technique, 
as it requires less tissue disruption, smaller incision size, 
and less risk of injury to the sacral nerve roots. When 
considering strictly sacral trajectories, the TS1 trajectory, 
which is the standard of care in most spine surgery, was 
comparable or inferior to S1A trajectory, which is a newer 
technique.

For all simulations, the fracture initiated at the tip of the 
screw. Bi-cortical and quad-cortical screws allowed a better 
stress distribution along the screw’s length in the trabecu-
lar bone. The stress analysis of control trajectory simula-
tions showed areas of highest stress concentration around 
the screw close to cortical bone, which are caused by the 
local mechanical property gradient. In toggle, the surface of 
the screw head in contact with the cortical bone acted as a 
cantilever buttress (Fig. 6), which resulted in more displace-
ment of the screw tip. The cantilever effect explains stress 
concentrations at screw tip, proximally for extension toggle 
loading, and distally for flexion toggle loading.

As in any numerical study, the results may have been 
affected by the different modeling simplifications. One of 
the simplifications was the use of the elastoplastic material 
law to represent the cancellous and cortical bones, assum-
ing continuum and homogeneous material distribution, and 
isotropic mechanical properties. In reality, the sacrum and 
pelvis have a complex microstructure and irregular distri-
bution with prominent anisotropic properties [14, 38, 39]; 
although it has been shown that discreet and continuum bone 
material models predict different mechanical performances 
(IS and FtF), so they tend to produce generally similar stress 
distributions [40]. Therefore, such a simplification in this 
project can be considered as having limited impact on the 

Fig. 7   Stress and fracture initia-
tion of the trabecular bone for 
the S1AI with increasing flexion 
toggle force (F). Orange and 
red circles indicate high stresses 
and bone rupture, respectively. 
The fracture starts in the 
ilium, after which the sacrum 
withstands the load through the 
ligaments until fracture
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conclusions. Another limitation was the simplification of the 
implant insertion process (i.e., modeling the implant recess 
as a Boolean subtraction of the device geometry from the 
bone). With this approach, the effects of drilling, tapping and 
the bone compaction were not considered. The bone–screw 
interface was idealized as contact surfaces and did not rep-
resent the damages (cracks, micro-fractures), which might 
be provoked during surgical screw insertion. Including such 
effects in a further refined model of the bone–screw interface 
might yield more realistic transient results and provide a bet-
ter description of the local phenomena that could influence 
the quality of sacroiliac screw fixation. It has been dem-
onstrated that the holding strength of a bone screw is cor-
related to the pilot hole geometry and preparation process, 
e.g. tapped or untapped [41, 42]. Screws inserted in pilot 
holes prepared with a 3.4-mm blunt probe (ganglion knife) 
resulted in higher pullout forces in eight of ten trials as com-
pared with those with pilot holes prepared using a 3.2-mm 
drill. In the current study, the simulated hole preparation 
procedure was consistently applied across all scenarios, thus 
eliminating that factor while allowing comparative assess-
ment of the specific effects of the tested trajectories and 
screw configurations.

A previously developed model was used as the basis 
for the development of the current model because it dem-
onstrated credibility in predicting the behavior of the 
bone–screw interface for the context of use of investigat-
ing relative screw fixation performance, compared to ear-
lier studies [11]. In the current work, the simulated IS 
(988–1720 N/mm) and FtF (241–492 N) results for the 
screws inserted in the control L5 vertebra were within the 
published range obtained experimentally on human cadav-
eric lumbar vertebrae (1100–2700  N/mm [27, 30] and 
218–840 N [31, 32], respectively). Likewise, the lower 
bone density (vs. normal bone density) led to a decrease 
of the IS (− 20% to − 35%) and FtF (− 5% to − 20%) val-
ues, which is consistent with published experimental results 
showing decrease of IS by 40% and FtF by 30% for a 30% 
density reduction [28, 29]. By extending the control model 
to include the pelvis using a similar computational approach, 
the biomechanical simulation results are thus assumed to 
be generally relevant. As the study was performed using 
only a single patient anatomy, anatomical variability was 
not investigated. Additionally, the number of configura-
tions tested was limited and biomechanical performance 
assessments are focused on relative comparisons of instru-
mentation configurations. The tested screw diameters were 
relatively small as compared with most popular screw diam-
eters used in practice. Future studies should focus on the 
quantification of ideal screw size, which would implicate 
testing larger diameters combined with other trajectory, size 
and design parameters. Although the present study solely 
focused on instrumentation geometrical parameters, future 

studies should also evaluate patient-related parameters such 
as sagittal vertical alignment or the position of the upper 
instrumented vertebra to provide insight on clinical applica-
bility of the results. In this study, the impact of the modeling 
simplifications and assumptions can be considered as minor 
and do not influence the conclusions, because the focus was 
on the relative values between different fixation constructs.

Conclusion

Fixation achieved via transarticular sacroiliac (S1AI and 
S2AI) screws demonstrated higher FtF and better trabecu-
lar bone stress distribution as compared to sacral (TS1 and 
S1A) screw fixation, thus indicating that it can provide 
stronger purchase for long spine fusion surgical procedures. 
Biomechanical differences in failure pattern and anchorage 
can be explained by the improved transarticular purchase of 
the sacroiliac trajectory, which permits screw engagement 
with more cortical layers. These results suggest that, in addi-
tion to providing fewer complications and less prominent 
instrumentation than iliac screws, sacroiliac screws may also 
provide biomechanically advantageous fixation performance 
relative to sacral screws. Reduced fixation performance in 
simulated lower bone density suggests that a preoperative 
bone quality assessment could be a good safety indicator 
for intraoperative risks of failure. Higher screw diameter 
and cortical purchase resulted in better anchorage strength, 
which could increase success rates for osteoporotic patients 
who may have inferior bone quality. The developed model 
is a relevant tool to assess biomechanical fixation and could 
be further used and complemented by clinical and cadav-
eric studies to test other configurations and improve surgical 
planning of caudal fixation for long spine fusion.

Key points

•	 This finite element study allowed evaluation of fixation 
performance for several long instrumentation caudal 
anchorage strategies under pullout and toggle loading 
scenarios.

•	 A model of L5 vertebra was tested under similar loading 
conditions for validation purposes.

•	 Screws traversing more cortical layers and with higher 
diameters resulted in a higher force to failure under all 
tested loadings.

•	 The failure pattern depended on the screw trajectory and 
the load, and was generally located at the screw tip, or 
close to cortical–trabecular interface.
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