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Abstract
Out of eight Gyps species in the world, three residents (G. bengalensis, G. indicus, G. tenuirostris) and two migratory (G. 
fulvus, G. himalayensis) inhabit Indian forests and other landscapes. While Himalayan and Eurasian Gyps are near threat-
ened and least concerned species, respectively, the resident Gyps are critically endangered. They are facing modification in 
habitats caused by anthropogenic factors and are enduring climate change. The impact of climate change has been insuf-
ficiently studied. The aim of this study is to predict current and future habitat suitability for these vultures shaped by bioen-
vironmental factors using maximum-entropy species distribution modelling. Seventy-one robust predictions and models, 
species and scenario wise (AUC 0.780 to 0.981, TSS 0.478 to 0.852 and CBI 0.978 to 0.997) were generated. Whole Indian 
landscape (3,287,263 km2) was categorised into unsuitable, moderately suitable and highly suitable habitats and analysed 
floristic region-wise. There was a reasonable change in habitat suitability which showed a trend of decrease in the suitable 
area in the future (3287 to 65,745 km2). The key environmental variables shaping current and future habitat included land 
use/land cover, annual mean temperature (bio1), precipitation of coldest quarter (bio19), precipitation seasonality (bio15) 
and precipitation of warmest quarter (bio18). Our results on the potential habitat in different floristic regions and projected 
change in future habitat will aid national and regional managers to design proactive approaches towards conservation of 
endangered Gyps vultures. Management interventions like in situ conservation, habitat maintenance, advance planning of 
habitat improvement, expansion of favourable area and protection of suitable area have been proposed.
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Introduction

Vultures are among the most threatened birds throughout 
the world with a majority of the species at risk (Botha et al. 
2017). India is endowed with six resident (bearded vulture, 
Egyptian vulture, Indian vulture, red-headed vulture, slen-
der-billed vulture and white-rumped vulture) and three win-
tering (cinereous vulture, Eurasian griffon and Himalayan 
griffon) old-world vultures (MoEFCC 2020). Five of these 

Gyps vultures (Indian vulture Gyps indicus = INV, slender-
billed vulture Gyps tenuirostris = SBV, white-rumped vul-
ture Gyps bengalensis = WRV, Eurasian griffon Gyps ful-
vus = EGV, Himalayan griffon Gyps himalayensis = HGV) 
are phylogenetically closer in comparison to four distant, 
non-Gyps vultures having different competitive behaviour. 
The former is comparatively more social and has the advan-
tage of getting information early about carcass presence and 
stronger group defence but are disadvantaged when it comes 
to poisoned carcasses, where they are at higher risk. There-
fore, the management requirements of these two groups dif-
fer significantly (Campbell 2016).

The populations of vultures, in general, have diminished 
or they have been eliminated in some of their distribution 
ranges due to habitat loss and other reasons like lack of food 
resources, exposure to livestock contaminated with drugs 
and direct persecution like poison or shooting (Green et al. 
2004; Ogada et al. 2011; Ilanloo et al. 2020). Decimation 
of the population of vultures in India was also reported due 
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to shelter destruction along with food shortage and poor 
breeding success (Chhangani and Mohnot 2004). Hurtt et al. 
(2011) reviewed that habitat loss is the primary cause of 
species extinctions. However, Ilanloo et al. (2020) identified 
climate change as a major factor for species extinction along 
with changes in habitat distribution within the short span of 
a few decades. As reviewed by Thapa et al. (2021), climate 
change may cause redistributions of species directly through 
changes in temperature and water availability, and indirectly 
through further habitat modification.

An important step in the recovery of the diminished vul-
ture population (Prakash et al. 2012, 2019; Galligan et al. 
2020, 2021; UPFD and BNHS 2021) will be a gain in the 
knowledge of current and possible future habitats of vul-
tures and their management. For this, ecological modelling 
having the potential to fill the knowledge gaps regarding 
species distribution, may provide insight into the impact 
of climate change and aid in conservation planning (Rod-
ríguez et al. 2007; Mateo et al. 2013). Therefore, species 
distribution modelling (SDM) could be applied as a tool 
in determining environmental covariates of habitats, map-
ping of suitable habitats and predicting the impact of climate 
change on it (Angelieri et al. 2016). Many SDM algorithms 
exist, but machine learning approaches have gained popular-
ity due to their ability to fit responses with high predictive 
performance (Elith and Graham 2009). MaxEnt is one such 
machine learning algorithm used the most by the ecologi-
cal modelling community (Merow et al. 2013; Sesink-Clee 
et al. 2015; Morales et al. 2017; Mohammadi et al. 2019; 
Urbina-Cardona et al. 2019; Vu et al. 2019) due to its high 
reliability and statistical robustness among well-established 
SDMs (Phillips et al. 2004; Elith et al. 2006; Summers et al. 
2012; Banag et al. 2015).

Under the above premise, the present study is aimed at 
the following using MaxEnt SDM: (a) identifying dominant 
environmental factors shaping the habitat of Gyps vultures; 
(b) predicting and mapping the current habitat suitability; (c) 
assessing predicted change in future habitat expanse due to 
climate change; and (d) proposing broad management inter-
ventions based on habitat quality.

Methods

Study area

This study covers whole India, a country once known for 
widespread and abundant populations of Gyps species 

(Gadhvi and Dodia 2006; Baral et al. 2013), now threat-
ened (IUCN 2022). Topographical heterogeneity, climatic 
variation, land use/land cover (LULC) pattern, historical 
occurrence of Gyps vultures and delineation of the floris-
tic regions (FRs) of the study area are presented in Fig. 1 
and Fig. 2 along with some detailed features in Supplemen-
tary Table 1. Range of elevation, mean annual temperature 
and mean annual precipitation of the study area is − 1 to 
8583 m, − 33.8 to 30.0 °C and 33 to 9312 mm, respectively. 
The forests in different regions provide nesting and foraging 
habitats to the vultures due to presence of large trees, moun-
tain cliffs and wildlife population. Outside forests also there 
is a sizable population of livestock which is another source 
of carcasses (NDDB 2019).

Data collection and processing

Presence-only species distribution model like MaxEnt 
requires species occurrence locations and their environ-
mental covariates. Therefore, nesting, roosting and forag-
ing presence sites of the studied species were collected from 
published literature (Supplementary Table 2), citizen sci-
ence repositories ebird (http://​www.​ebird.​org, Sullivan et al. 
2009) and iNaturalist (http://​www.​inatu​ralist.​org, iNatural-
ist users and Ueda 2020), and author’s field works. Since 
spatial filtering, also known as spatial rarefying (Brown 
et al. 2017), improves the performance of ecological niche 
models by reducing sampling bias (Boria et al. 2014), the 
occurrence data were cleaned, duplicates were removed and 
then rarefied. Out of several rarefying distances tried, 4 km 
gave optimum results in the present case. Original occur-
rence points of different Gyps species, 2767 (EGV), 10,653 
(HGV), 5533 (INV), 617 (SBV) and 4939 (WRV), were 
reduced after duplicate removal and spatial rarefication to 
529 (EGV), 1131 (HGV), 876 (INV), 114 (SBV) and 1163 
(WRV), respectively.

The environmental variables like temperature, precipi-
tation, LULC and elevation determine vultures’ habitat 
in general and shelter in particular (Jha and Jha 2021b). 
Therefore, predictor environmental covariates like bio-
climatic variables required by SDM were downloaded at 
30 arc second resolution from https://​www.​world​clim.​
org/ (1970–2000; Fick and Hijmans 2017), LULC from 
Copernicus Global Land Service at 100  m resolution 
(Buchhorn et al. 2020) and elevation from SRTM 1 Arc 
second global data from https://​earth​expol​er.​usgs.​gov/ 
(USGS EROS 2018). These layers were resampled at 30 
arc second spatial resolution before plugging in Max-
Ent. The categorical variable, LULC, available in 23 fine 
classes was reduced to six (forest, water, scrubland, agri-
culture, built-up, wasteland) for the present study as sug-
gested by Jha and Jha (2021b). All these environmental 
variables may possibly have collinearity among them and 

Fig. 1   Location, physiographic and climatic details of the study area, 
India. Top row: Geographic position of India in the world. Middle 
row: Land use/Land cover and elevation gradients, Bottom row: Mean 
annual precipitation and Temperature ranges

◂

http://www.ebird.org
http://www.inaturalist.org
https://www.worldclim.org/
https://www.worldclim.org/
https://earthexpoler.usgs.gov/
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ignoring the multicollinearity may lead to false ecologi-
cal conclusions in modelling the spatial distribution of a 
species (Heikkinen and Luoto 2006; de Frutos et al. 2007). 
Therefore, Pearson correlation analysis was carried out 
at ± 0.8 threshold to identify and remove colinear covari-
ates using “Remove highly correlated variables” tool of 
SDM tool box (Brown et al. 2017). The variables were 

input alphabetically. Highly correlated variables namely, 
bio4, bio5, bio6, bio8, bio9, bio10, bio11, bio13, bio16, 
bio17 and Elevation were eliminated. For further improve-
ment of the models, bias file was prepared using Correct-
ing latitudinal background selection biases tool of SDM 
tool box (Brown et al. 2017). This was done for mini-
mising overfitting and avoid sampling habitat outside of 

Fig. 2   Vegetation based divisions of India and occurrences of Gyps 
vultures. Top row: different floristic regions and occurrence locations 
of Gyps bengalensis (white-rumped vulture), Bottom row: occurrence 

locations of Gyps indicus (indian vulture) and Gyps tenuirostris (slen-
der-billed vulture), and Gyps himalayensis (Himalayan griffon) and 
Gyps fulvus (Eurasian griffon)
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a species’ known occurrence and account for collection 
sampling biases with coordinate data (Brown et al. 2017).

Climate model selection

There are several GCMs available with Representative Con-
centration Pathways (RCP2.6, RCP4.5, RCP6.0, RCP8.5) 
for different climate scenarios (Stocker 2014) but there is 
no consensus on which makes the most accurate one. How-
ever, Sutton et al. (2015) recommended ensemble of multi-
ple GCMs to reinforce the accuracy of the projections. This 
is a very common approach for habitat projection (Stiels 
and Schidelko 2018). Therefore, we chose commonly used 
GCMs and downloaded precalculated 30 arc second data 
from WorldClim (Fick and Hijmans 2017): CCSM4 (de 
Luis et al. 2019), HadGEM2AO (Ahmad et al. 2019) and 
MIROC5 (Sony et al. 2018). Two RCPs namely, RCP4.5 
(moderate) and RCP8.5 (extreme) (de Luis et al. 2019; Vu 
et al. 2019), for short-term (2041–2060 represented by year 
2050) and long-term (2061–2080 represented by year 2070) 
prediction were chosen based on the hypothesis that a sharp 
cut in CO2 emission will not happen (Lane 2018) and lower 
emission scenarios will be unlikely (Manning et al. 2010). 
Prediction averaging of the three GCMs was done in order 
to increase model accuracy of habitat suitability area (Dor-
mann et al. 2018).

Distribution modelling

After processing presence locations and environmental vari-
ables in ArcGIS, they were used as the input of the MaxEnt 
model and predictions were made for the different scenarios. 
The model was run at default MaxEnt settings with a change 
in the run type, which was set as bootstrap with 10 replicates 
per prediction and a random test percentage of 25. Feature 
type used for model training was auto features and the num-
ber of background points was 10,000. Six model entities 
were studied (5 Gyps species and 1 aggregated all species 
of Gyps or “superspecies”). For each of the 5 species, 2 
models (with 10 replicates) were trained: with-LULC and 
without-LULC models, while for the superspecies entity, 
only one model was trained (without LULC for comparison). 
Predictions for the present period were made by all of the 
models while predictions for the future periods were made 
by only the without-LULC model due to unknown long-
term dynamics of landcover. Climatic predictors used for 
the future predictions were updated for the corresponding 
time period.

Tabulation and mapping

Area under receiver operator curve (AUC) values and vari-
able contribution were tabulated, maps were reclassified and 

jackknife bar charts and response curves were analysed to 
present the results. Other two model evaluators true skill 
statistics (TSS) and continuous Boyce index (CBI) were also 
computed in R using SSDM (Schmitt et al. 2017) and mod-
EvA (Barbosa et al. 2013) packages, respectively. Most of 
the studies considered reclassification of continuous Max-
Ent output range (0–1) into four classes (Vu et al. 2019; 
Zhang et al. 2019) in a smaller study area. Proposed clas-
sification for raptors including vulture by Zhang et al. (2019) 
was fine tuned in the present study into three categories of 
suitability (0–0.3 as unsuitable; 0.3–0.6 as moderate and 
0.6–1.0 as high). This was done keeping into view coarse 
scaling in large study area (25 times larger than Zhang 
et al. 2019) based on previous field experiences (Jha and 
Jha 2020, 2021a, b). All MaxEnt outputs were also sepa-
rately reclassified into two categories, unsuitable (0–0.30) 
and suitable (0.3–1.0), for calculation of future loss or gain 
in habitat area. The present prediction was then compared 
with each of the future scenarios to estimate the suitable area 
lost or gained as a result of climate change. ArcGIS 10.5 
and Microsoft Excel were used to process the results. The 
huge study area (3.28 million km2) was divided into floristic 
regions of India (Sharma 2005). A map of different floristic 
regions was digitised using the data from Sharma (2005) and 
the output maps were analysed accordingly.

Results

Model predictors

The selected non-colinear covariates (Pearson coeffi-
cient ± 0.8) namely, bio1, bio2, bio3, bio7, bio12, bio14, 
bio15, bio18, bio19 and LULC contributed in varying pro-
portions to prediction in different species, as detailed in the 
covariate contribution table of MaxEnt output. However, in 
the case of present models with LULC, the average cumula-
tive contribution for all the species (top three covariates) 
was found to be 71.2% (range 65 to 86%). For the top five 
covariates, this was found to be 88.5% (range 86 to 97%). 
Without LULC, it differed marginally, 74.2% (range 62.9 to 
91.6%) for the top three covariates and 89.2% (range 84.6 
to 96.5%) for the top five covariates. Considering all the 
species together, the top five rankers or dominant variables 
(based on modified Likert ranking method; Bhattacher-
jee 2012), in decreasing order of importance, for without 
LULC models were bio1, bio19, bio15, bio18 and bio14. 
Species wise top three covariates were bio19, bio7 and 
bio18 (EGV); bio1, bio19 and bio14 (HGV); bio15, bio14 
and bio1 (INV); bio18, bio1 and bio14 (SBV); and bio15, 
bio1 and bio12 (WRV). In the case of with LULC models, 
this order changed which is described in Supplementary 
Box 1. However, the jackknife chart of training gain (Figs. 3 
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and 4) showed some variation in the ranking of variables 
when compared to the variable contribution table. Response 
charts of LULC components are presented in Supplementary 
Fig. 1.

The response curves between dominant environmen-
tal variables and distribution probability of resident Gyps 
vultures (G. bengalensis, G. indicus, G. tenuirostris) and 
migratory (G. fulvus, G. himalayensis) drawn by Max-
Ent reflected varied responses (Figs. 5 and 6). However, 
the most dominant climatic covariate bio1 (Annual mean 
temperature) showed a narrow range (around 24 °C) as the 
most suitable temperature for INV, SBV, WRV and EGV 
but HGV favoured a wider range towards lower temperature 
(1–24 °C). Bio18 (precipitation of warmest quarter), the 
next dominant variable, presented positive relationship in 
precipitation increase (500 mm onwards) with occurrence 
probability in all the Gyps species except G. indicus with 
inverse relation. Bio19 (precipitation of coldest quarter), 

yet another dominant covariate, recorded that in the case 
of resident Gyps this (precipitation, 200 mm onwards) had 
decreasing but migratory vultures had increasing correla-
tion. Response of precipitation seasonality (bio15) towards 
species occurrence reflected positive relation in all the Gyps 
except minor variation of first decrease and then increase in 
the case of G. himalayensis.

Model performance

The distribution density of 10,036 occurrence points in dif-
ferent landcover classes was found to be 0.0112 km−2 (built-
up area), 0.0064 km−2 (forest), 0.0054 km−2 (waterbody), 
0.0050  km−2 (scrubland), 0.0013  km−2 (wasteland) and 
0.0010 km−2 (agriculture). Using unique points for each spe-
cies, 70 species-based predictions (EGV; HGV; INV; SBV 
and WRV) and one all vultures (superspecies) prediction for 
habitat assessment were developed. Species wise details of 

Fig. 3   Jackknife chart of varia-
ble importance in resident Gyps 
species. Note dark blue, light 
blue and red bars in jackknife 
chart (top indian vulture, mid-
dle slender-billed vulture and 
bottom white-rumped vulture) 
showing importance with only 
variable, without variable and 
with all variables, respectively
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model evaluators (AUC, TSS, CBI) are presented in Supple-
mentary Table 3. The AUC, TSS and CBI values for models 
without LULC ranged between 0.781 and 0.976, 0.478 and 
0.852, and 0.978 and 0.997, respectively. The CBI charts 
of different species are presented in Supplementary Fig. 2.

Habitat and floristic regions’ suitability

Habitat suitability (pan-India) and floristic region’s (vegeta-
tion based regional units) suitability in terms of area for dif-
ferent Gyps species are presented in Fig. 7 and Supplemen-
tary Table 4 and 5, respectively. All Gyps area suitability 
map is presented as Supplementary Fig. 3. Habitat suitabil-
ity area of different species and floristic regions, modelled 
with LULC, are presented in Supplementary Tables 6 and 
7, respectively. The projected pan-India suitable area for dif-
ferent species, in the present without LULC, in decreasing 
order was 50.2% (WRV), 28.4% (INV), 23.2% (EGV), 10.5% 
(HGV) and 3.9% (SBV) in the total available area of 3.287 
million km2. However, some areas were found to be overlap-
ping among different species. When LULC was included as 
a modelling parameter, the area availability decreased from 
climatic projection by 12.1% (WRV), 6.5% (EGV), 4.5% 
(INV), 0.6% (SBV) and 0.1% (HGV), respectively, indicat-
ing a greater role of LULC in the former three species.

As regards the vegetation based regional suitability, suit-
able habitat for Gyps was found in all the FRs though in 
varying sizes. The habitat of resident vultures was spread 

broadly all over the country from the northern-most region, 
Western Himalaya (33.636°N), to southern-most region, 
Malabar (09.179°N) while the habitat of wintering vultures 
was confined from Western Himalaya (35.837°N) to West 
Indian Plain and Central India (22.631°N). Among residents, 
Gyps tenuirostris (30.497°N–25.198°N) and, among winter-
ing, Gyps himalayensis (35.348°N–25.565°N) had the nar-
rowest habitat belts.

Since none of the species of vultures were reported from 
the Andaman and Nicobar and other Islands during the con-
sidered study period, we ignored this FR for the purpose 
of this study. Though all other FRs of India had suitable 
habitats for Gyps vultures, resident and wintering vultures 
showed some preferences when seen at the species level. 
Himalayan griffon remained confined to the northern FRs 
(Assam, Eastern Himalaya and Western Himalaya) but 
EGV expanded its presence further up to the central FRs 
(Assam, Central India, Eastern Himalaya, Gangetic Plain, 
West Indian Plain and Western Himalaya). The southern 
peninsular region of India lacked the presence of wintering 
griffons. Resident Gyps species showed better adaptation as 
indicated by the presence of suitable habitats in the southern 
region. Like HGV, SBV was also confined to the northern 
regions but in a much narrower belt of the Himalayan tarai 
plain. Unlike SBV, other two resident Gyps had a wider dis-
tribution. For example, INV had suitable habitats in all the 
floristic regions except Assam and Deccan; and WRV was 
present through all the floristic regions.

Fig. 4   Jackknife chart of vari-
able importance in migratory 
Gyps species. Note dark blue, 
light blue and red bars in jack-
knife chart (top: Himalayan 
griffon and bottom: Eurasian 
griffon) showing importance 
with only variable, without 
variable and with all variables, 
respectively
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On account of species richness, the most suited region 
is Western Himalaya (all the five species) and least suited 
is Deccan (two species only, INV and WRV). The flo-
ristic regions Assam, Eastern Himalaya and West Indian 
Plain supported four species while Central India, Gangetic 
Plain and Malabar harboured three species. However, these 
species had a suitable area expanse at 47% of 3.287 mil-
lion km2. Though overlapping among the species, their 
suitable area was distributed in different floristic regions 
in decreasing order: Central India (24%), Western Hima-
laya (15.9%), West Indian Plain (14.4%), Gangetic Plain 
(10.5%), Deccan (10.1%), Eastern Himalaya (9.6%), Mala-
bar (8.2%) and Assam (7.3%). This indicated that Cen-
tral India is the most important floristic region for Gyps 
species.

Impact of climate change on habitat

Predicted future emission scenarios RCP4.5 and RCP8.5 
belonging to (i) the short term, i.e. year 2050, and (ii) the 
long term, i.e. 2070 (Figs. 8, 9 and 10, 11 and Supplemen-
tary Table 4), when compared with the present climatic 
model, showed changes in both unsuitable and suitable 
areas. Out of four, a minimum of three scenarios showed 
a decreasing trend in area suitability in EGV, HGV, INV 
and WRV. In the case of SBV, all four scenarios showed a 
decrease from the present prediction.

The “stable” area (suitable as well as unsuitable) along 
with “loss” of suitable area and “gain” from unsuitable area 
in future scenarios is presented in Supplementary Table 8. 
Both suitable and unsuitable area of the present prediction 

Fig. 5   Response curves of 
environmental parameters 
(rows 1 to 4; bio1 (annual mean 
temperature), bio18 (pre-
cipitation of warmest quarter), 
bio19 (precipitation of coldest 
quarter), bio15 (precipitation 
seasonality), respectively) in 
resident Gyps vultures (indian 
vulture, slender-billed vulture, 
white-rumped vulture)

Indian vulture slender-billed vulture white-rumped vulture

bio1

bio18

bio19

bio15
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Fig. 6   Response curves of 
environmental parameters (rows 
1 to 4; bio1 (annual mean tem-
perature), bio18 (precipitation 
of warmest quarter), bio19 (pre-
cipitation of coldest quarter), 
bio15 (precipitation seasonal-
ity), respectively) in migratory 
Gyps vultures (Eurasian griffon, 
Himalayan griffon)

Eurasian griffon Himalayan griffon

bio1

bio18

bio19

bio15
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recorded a change in their status since their parts con-
verted to unsuitable and suitable category, respectively, in 
both short and long terms. Eurasian griffon, SBV and INV 
showed a reduction in suitable area for both the RCPs and 
terms, while WRV showed a decreasing trend (except 2050 
RCP4.5), and HGV showed an increasing trend (except 2050 
RCP4.5). The amount of change was meagre between 0.1 
and 2% but still sizable in expanse (3287 to 65,745 km2). 

The conversion dynamics are depicted species-wise and resi-
dency class-wise in Supplementary Figs. 4 and 5 migratory/
wintering, and Supplementary Figs. 6 to 8 resident Gyps 
vultures.

The change in future habitat, especially the loss of suit-
able habitat, was observed to be the lowest in the Himalayan 
region (Western Himalaya and Eastern Himalaya) and the 
Nilgiri mountains (Malabar and Deccan) for any vulture. 

Fig. 7   Habitat suitability classes 
distribution (yellow = unsuit-
able, blue = moderate, 
pink = high) of Gyps vultures 
in different floristic regions of 
India. Top row: Gyps indicus 
and Gyps bengalensis. Middle 
row: Gyps tenuirostris. Bottom 
row Gyps himalayensis and 
Gyps fulvus. Distribution of 
Gyps tenuirostris and Gyps 
himalayensis may be seen 
confined to northern floristic 
regions with limited expanse
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Most of the changes or habitat conversion were seen in the 
plains and at the fringes of suitable or unsuitable areas for 
all the species found therein. The West Indian Plain, Central 
India and Gangetic Plain FRs were found more prone to loss.

Discussion

This study has produced habitat suitability maps derived 
from statistical models for five Gyps species. Naoroji 
(2006), referring to the limitation of existing range maps, 
has recorded that exact distribution of a species depends 
on availability of suitable habitat. Bustamante and Seoane 
(2004) have further suggested that SDM generated maps 
are improvement of traditional range maps based on broad 
survey of species presence. This study also provides the 
first account of a national baseline of species-wise suitable 
projected habitat of Gyps vultures and possible changes in 
the future in different floristic regions using field surveys 
in > 17% of total area considered, citizen science and pub-
lished occurrence records, bioclimatic variables and SDM. 
The resulting analysis has shown a concern for suitable 
area showing a decreasing trend in the future for critically 
endangered resident species. Though citizen science data is 
considered unstructured, integration of expert survey data 
with the filtered citizen science data has been in vogue and 
is known to result in improved inference, predictive abil-
ity and ultimately with increased extent of inference of the 
structured surveys or expert data (Robinson et al. 2020).

Our study is based on MaxEnt algorithm which uses 
presence-only data. Using presence-only data to calibrate 
distribution models has some known drawbacks which may 
limit model performance (Brotons et al. 2004; Alatawi et al. 
2020). Importantly, presence-only methods probably over-
estimate species occurrence, because locations predicted to 
be suitable may not in fact be occupied, as a result of lim-
ited species dispersal. As a result, using presence-absence 
data is strongly recommended whenever available (Brotons 
et al. 2004). However, presence-only records often the only 
available information about species occurrences, and these 
are still informative about the true underlying distribution 
(Zaniewski et al. 2002). Despite using presence-only data, 
Maxent has been shown to perform well, generating predic-
tive models even with biased data and small sample sizes 
(Hernandez et al. 2006; Pearson et al. 2007; Wisz et al. 
2008). Kaky et al. (2020) have also reviewed that though 
MaxEnt models were criticised by some researchers earlier, 
it continued to be frequently used to fit models across many 
different taxa, geographical areas, time periods and envi-
ronmental scenarios (Achour and Kalboussi 2020; Anoop 
et al. 2020; Anand et al. 2021; Cable et al. 2021; Dobrev 
and Popgeorgiev 2021; Gao et al. 2021; Gao and Shi 2021; 
Grimshaw et al. 2021; Jha and Jha 2021a,b,c; Mushtaq et al. 

2021; Oliveira et al. 2021; Panthi et al. 2021, among oth-
ers). MaxEnt has numerous advantages like (1) it can work 
with a small sample size especially rare and threatened spe-
cies (Hernandez et al. 2006; Wisz et al. 2008; Kumar and 
Stohlgren 2009; Abolmaali et al. 2018), (2) it is easy to use 
and very useful when presence-absence data collection is 
impractical (Phillips et al. 2006; Kumar and Stohlgren 2009; 
Angelieri et al. 2016), (3) both categorical and continuous 
environmental layers can be applied in this software and 
(4) it measures importance of each environmental variable 
using the jackknife test, in terms of gain (Elith et al. 2011; 
Groff et al. 2014).

Despite the universal use of MaxEnt software, Cobos 
et al. (2019) and de Andrade et al. (2020) have recently 
suggested use of R packages which allows robust processes 
of modelling and straightforward construction of complex 
ecological niche models. Therefore, it is advisable that R 
packages, such as “kuenm,” “ENMTML,” “maxnet,” and 
“dismo,” may be used for prediction improvement in future 
modelling. It is further proposed that future models must 
contain modelled future LULC for enhanced accuracy in 
prediction, since climatic prediction may be an overesti-
mation without LULC (Jha and Jha 2021b). Preston et al. 
(2008) also stated that distribution models predicting species 
responses to climate change included mostly climate vari-
ables and rarely the biotic interactions.

Habitat determinants

Bioclimatic habitat determinants used in this study sourced 
from WorldClim follow the dynamic approach. Bede-
Fazekas and Somodi (2020) recently discovered potential 
traps in the use of the widely applied dynamic approach but 
simultaneously stated that this approach cannot be ignored 
also. The models presented here were with good to excel-
lent prediction power due to uncertainty removal (De Marco 
and Nobrega 2018). MaxEnt variable contribution table 
showed that major determinants of suitable habitat for Gyps 
species in the study area are land use/land cover (LULC), 
annual mean temperature (bio1) and temporal variants of 
precipitation, e.g. bio19 (precipitation of coldest quarter), 
bio15 (precipitation seasonality) and bio18 (precipitation 
of warmest quarter). This finding is in general agreement 
with Herrero et al. (2006) which states that the influence 
of vegetation cover on the distribution of animal species, in 
providing food and shelter, also acts as a limiting factor to 
the spread of species. Freeman et al. (2019) also had a simi-
lar observation suggesting that forest cover is a more vital 
driver as compared to climate for the current distribution of 
the target species.

However, climate variables, particularly rainfall and 
temperature, generally influence habitat quantity and qual-
ity affecting the structure, composition and dynamics of 
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wildlife species (Kupika et al. 2018). Jha and Jha (2020) 
also reported LULC as the most prominent determinant of 
the distribution of different vulture species, followed by iso-
thermality, and precipitation seasonality in Central India. 
The findings of this study broadly concur with this but dif-
fer in order of preference of these determinants in different 
species when considered on a much larger scale at country 
level. More so, several studies suggested the influence of 
bioclimatic variables in habitat determination in raptors 
(Gschweng et al. 2012; Liminana et al. 2012) and vultures 
(Zhang et al. 2019; Anoop et al. 2020) although the set of 
covariates were not similar in these different and distant 
localities.

Moreover, the lowest spatiotemporal occupancy in 
agricultural landscape (0.0010 km−2) and highest in built-
up area (0.0112 km−2) followed by forest (0.0064 km−2), 
water (0.0054 km−2), scrubland (0.0050 km−2) and waste-
land (0.0013 km−2) could be speculated to play a role in 
the prediction of habitat suitability corresponding to their 
importance. As suggested by response bars, built-up area, 
land covered by buildings and other manmade structures 
(Buchhorn et al. 2020) including road, railway, paved land 
and urban park (Venter et al. 2016) favours the Gyps spe-
cies in providing foraging materials, for example, acciden-
tal carcasses, direct disposal of dead animals, feed through 
slaughterhouses and bone mills etc. Forest is the next favour-
able area for nesting as well as foraging while agricultural 
landscape is the least suitable for lack of nesting sites.

Response curves indicated varied impact of the covariates 
on vulture presence. Habitat suitability is a product of inter-
action among numerous covariates in different quantities 
(grades), not a function of any single variable (Richard et al. 
2018; Jha and Jha 2021b). Quite a few among these could be 
following Liebig’s Law of the Minimum (a covariate behav-
ing as limiting factor). Hence, considering a single variable 
in isolation may be misleading as the species choose their 
habitat based on the interaction of several factors (Golter-
man 1975; Jha and Jha 2021b). However, a thumb rule 
can be drawn from response curves that increase in mean 
annual temperature beyond 24 °C produces stress conditions. 
Another stressing factor is precipitation in coldest quarter 
(bio19) beyond 200 mm for resident Gyps, though migratory 
ones have no such impact. However, precipitation in warm-
est quarter (bio18) beyond 500 mm enhances the probability 
of occurrence for all the Gyps species except G. indicus. 
Further generalisation reveals that precipitation seasonality 
(bio15) will be useful for residency but mean annual tem-
perature beyond 30 °C may become intolerable.

Model robustness

Despite the weakness of AUC as an inadequate model 
evaluator (Lobo et al. 2008; Fourcade et al. 2014; Jiménez-
Valverde 2014), model performance is commonly evalu-
ated by AUC values of the Receiver Operating Character-
istic (DeLong et al. 1988), especially MaxEnt (Gao and 
Shi 2021). For example, it was preferred in recent studies 
on animals (Achour and Kalboussi 2020; Mori et al. 2020), 
birds (Tehrani et al. 2021), raptors (Regos et al. 2021) and 
vultures (Khwarahm et al. 2021), since AUC is one of 
those statistics which provides a good information to judge 
the model performance where only presence data are used 
(Proosdij et al. 2016; Anand et al. 2021). Although AUC 
is widely applied (Abolmali et al. 2018; Abdelaal et al. 
2019; de Luis et al. 2019; Achour and Kalboussi 2020; 
Mori et al. 2020; Anand et al. 2021; Jha and Jha 2021b), 
many agree that it tends to be overoptimistic (Lobo et al. 
2008; Shabani et al. 2016), and hence, it is often comple-
mented by another measure of model goodness. Therefore, 
CBI and TSS may be used as additional and better assess-
ment as suggested by Allouche et al. (2006), Breiner et al. 
(2015), Manzoor et al. (2018) and Shabani et al. (2018). 
The reason for this could be as suggested by Lobo et al. 
(2008, 2010) that AUC is influenced by species prevalence 
but TSS has been widely advocated as a suitable discrimi-
nation metric less dependent on prevalence (Allouche et al. 
2006; Somodi et al. 2017). Additionally, Sun et al. (2021) 
suggested that AUC is suitable for evaluating models built 
based on presence-absence data, and the CBI (Hirzel et al. 
2006) evaluates presence-only models such as MaxEnt 
used in this study.

Model performance could be assessed by their categories 
as suggested in different studies. For example, AUC closest to 
a value of 1 would be a perfect model and AUC = 0.5 would 
indicate that the model performed no better than random (Bar-
ragan -Barrera et al. 2019). However, models are excellent 
with AUC > 0.9, good with AUC between 0.8 and 0.9, fair 
with AUC 0.7–0.8 and uninformative with AUC < 0.7 (Swets 
1988; Araújo et al. 2005). TSS values are categorised as excel-
lent with > 0.8, good between 0.6 and 0.8, fair with 0.4 and 
0.6, poor or no predictive ability with < 0.4 (Rew et al. 2020). 
The Boyce index varies between − 1 and + 1. Positive values 
indicate a model in which predictions are consistent with the 
distribution of presences in the evaluation data set, values 
close to 0 mean that the model is not different from a random 
model, and negative values indicate counter predictions (Hir-
zel et al. 2006; Di Cola et al. 2017). All our predictions (AUC 
between 0.781 and 0.976, TSS between 0.478 and 0.852 and 
CBI between 0.978 and 0.997) are very useful and considered 
suitable for conservation planning (Pearce and Ferrier 2000).

The models for the present, both with and without LULC, 
predicted results which varied in the expanse of habitat. The 

Fig. 8   Short term projected habitat suitability (yellow = unsuitable, 
blue = moderate, pink = high) of resident Gyps vultures under moder-
ate (RCP 4.5) and extreme (RCP 8.5) scenarios. Top row: Gyps indi-
cus. Middle row: Gyps tenuirostris. Bottom row: Gyps bengalensis 

◂
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former had a lesser spread of suitable area than the latter 
which could be attributed to the fact that the environmental 
umbrella is mostly smaller than the climatic umbrella due to 
the specific requirements of a niche, e.g. trees/cliffs, water 
and ungulate/cattle concentration (Jha and Jha 2021a,b). 
This implied that the actual suitable habitat area was an 
overestimation in the case of bioclimatic models. This was 
similar across all the future models which are bioclimatic in 
nature also supported by Preston et al. (2008).

Habitat availability

Species distribution modelling was used to predict the 
habitat suitability, shaped by environmental factors, which 
was then reclassified in two classes. The first was the class 
comprising moderately and highly suitable areas and the 
second comprising unsuitable area for different species of 
Gyps in India, for each floristic region. It is apparent that 
HGV and SBV have restricted suitable habitats in the north 
which also overlaps other species (WRV, EGV). The habitat 
of INV is distributed mainly in the central and south-western 
part, mostly overlapping with WRV everywhere and EGV in 

northern part. This indicates lower availability of projected 
suitable area kilometrage per species due to inter species 
competition in particular regions for shelter, territory and 
available food. Possible reason for the overlap was assigned 
to availability of ample source of carrion and relatively low 
availability of nest sites (Ferguson-Lees and Christie 2001). 
For example, large vultures like Lammergeier and Himala-
yan griffon are reported to coexist in closer proximity along 
with Saker Falcon (Katzner et al. 2004). However, overlap-
ping areas due to sympatric nature of the species should be 
highly valued and protected (Zhang et al. 2019) to maximise 
multispecies conservation. Ground verification of selected 
sites was done in Western Himalaya tarai, Gangetic Plain, 
Central India and West Indian Plain (Madhya Pradesh, 
Uttar Pradesh and Rajasthan). It was observed that WRV 
and SBV preferred trees while INV chose cliff nesting sur-
rounded by forests. This agreed with many studies (Maj-
gaonkar et al. 2018; Jha et al. 2021) in different provinces 
but with a couple of exceptions (Khatri 2015; Navaneethan 
et al. 2015). Vultures showed an affinity to localities closer 
to water sources, mostly rivers or large waterbodies. Anoop 
et al. (2020) also recorded the use of riparian forested area 

Fig. 9   Short-term projected 
habitat suitability (yel-
low = unsuitable, blue = moder-
ate, pink = high) of wintering 
Gyps vultures under moderate 
(RCP 4.5) and extreme (RCP 
8.5) scenarios. Top row: Gyps 
fulvus. Bottom row: Gyps 
himalayensis 
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in the Western Ghats (Malabar region) being used by WRV 
for nesting. Kumar et al. (2014) and Misher et al. (2017) had 
similar observations of cliff nesting in INV along a river in 
Central India. Nests were mostly found in areas free from 
disturbance but cases of nesting near human settlements 
was recorded in the case of WRV. Such plasticity was also 
reported elsewhere (Bahadur et al. 2019).

Impact of climate change

Climate is considered a primary factor in constraining 
the distribution of plant species (Banag et al. 2015). This 
could be a possible reason for the change in habitat area in 
the future in this study, since other anthropogenic factors 
have not been considered in modelling. The impact is evi-
dent from the change in habitat expanse in the short- and 
long-term future. As a result of loss of suitable area and 

Fig. 10   Long-term projected 
habitat suitability (yel-
low = unsuitable, blue = moder-
ate, pink = high) of resident 
Gyps vultures under moderate 
(RCP 4.5) and extreme (RCP 
8.5) scenarios. Top row: Gyps 
indicus. Middle row: Gyps 
tenuirostris. Bottom row: Gyps 
bengalensis 
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gain from unsuitable area, a trend of net loss is observed in 
different scenarios of emission and term tenures. Different 
observations of a decrease in suitable habitat of wildlife 
species in general (McDonald et al. 2019) and vultures 
specifically (Ilanloo et al. 2020) support our finding. How-
ever, such an expansion and contraction of habitat area 
may have a bearing on the Gyps species population as 
habitat is an important place for the survival, reproduc-
tion and population development of any organism. Any 
changes in the quantity, quality and distribution of habitat 
have a wide range of effects on spatial dynamics and can 
directly affect the distribution, quantity and survival rate 
of organisms (Zhang et al. 2019). Nevertheless, such areas 
require advance planning to mitigate the loss and exploit 
the gains. Another point of interest of conservation should 

be the highland areas where there was the lowest change in 
habitat due to climate change as also observed by Banda 
and Tassie (2018) in endemic bird species.

However, the highest number of floristic region (FR) 
as well as the largest area coverage in decreasing order, 
i.e. WRV (1,253,037 km2, 8 FR) > INV (786,121 km2, 6 
FR) > EGV (548,181 km2, 4 FR) > HGV (343,094 km2, 3 
FR) > SBV (108,091 km2, 3 FR), indicated better adapt-
ability and lower vulnerability to varied bioenvironmental 
conditions of the former ones than the latter ones. There-
fore, priority must be given to conservation of species with 
lower adaptability or higher vulnerability against climate 
change.

Fig. 11   Long-term projected 
habitat suitability (yel-
low = unsuitable, blue = moder-
ate, pink = high) of wintering 
Gyps vultures under moderate 
(RCP 4.5) and extreme (RCP 
8.5) scenarios. Top row: Gyps 
fulvus. Bottom row: Gyps 
himalayensis 
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Management implications

Predictive models are a useful tool for wildlife managers to 
make better decisions about biodiversity management and 
conservation (Rodriguez et al. 2007). This study provided 
potential habitat areas for different Gyps species based on 
predictive modelling under different scenarios. All the mod-
els are robust enough to be replicated but a point of concern 
could be the future predictions which do not consider land 
use while it is evident that there is a constant change in for-
est, agricultural, built-up and other landcover. Nevertheless, 
due to a timely intervention in the management of forests, 
a positive shift, i.e. increase in (very dense forest and) open 
forest but decrease in moderately dense forest (ISFR 2021), 
was seen. Therefore, it is assumed that there may not be a 
negative change in vulture habitat or at least it may remain 
unchanged on this account.

However, the prediction of suitable habitat for Gyps vul-
tures combined and species-wise independently differed in 
the floristic regions. Highly suitable area in the all-species 
combined prediction was reduced when compared with 
species individually; for example, SBV in Assam, INV in 
Central India, WRV in Central India and West Indian Plain, 
and EGV in West Indian Plain had much larger expanses 
of suitable area. This is due to the fact that the algorithm 
of the SDM works on specific requirement of a species. In 
the case of all Gyps vultures, common minimum suitability 
criteria were considered and a projection was made. Such 
a prediction indicated that species-wise management plan-
ning should be a better option than combined conservation 
efforts wherever feasible. Nevertheless, in Indian context, 
all species information is equally important since the Forest 
Departments look after overall vulture conservation.

Keeping the above in view, the predictions from this 
study could be used for conservation planning in the study 
area. As regards the planning structure, Indian governance 
is federal in nature where the responsibility of making a 
standard policy for conservation, if needed, rests with the 
Centre while states are responsible for implementing this 
strategy at a local level. In such a scenario, a large research 
study area becomes useful for the formulation of a com-
mon management strategy by the central government for the 
states. The following measures could be considered based 
on the above findings.

This study provided the expanse of suitable area in dif-
ferent floristic regions for different species. However, it is 
important to focus on land use in the area for any conserva-
tion programme. For example, in the case of reintroduction 
of a species, availability of nesting, roosting, and foraging 
area all become important. The agricultural land falling in 
suitable areas may provide only foraging opportunity, while 
forests, tall trees, or cliffs, depending on species, would be 
a must for nesting and roosting requirement.

Vulture centric development of existing suitable areas 
must be carried out. The concept of Vulture Protection Area 
(overlapping areas of high suitability for multiple species) 
and Vulture Conservation Area (species wise high suitability 
area) must be introduced in order to secure fruitful conserva-
tion. This must include roosting, nesting and foraging area 
for vultures/species in the core zone and foraging area in the 
periphery for buffer function. Going by the area prediction, 
and availability of sufficient nesting structures, feasibility 
of Vulture Conservation Areas may be explored in differ-
ent floristic zones, for example, SBV Protection Area in the 
eastern part of Eastern Himalayas, INV-WRV Conservation 
Area in the eastern and western part of Central India. The 
area expanse of such reserves could be as large as possible 
after taking into consideration threats and opportunities, 
since vultures are highly mobile organisms and are capable 
of long-distance foraging trips, up to 100 km (Moleón et al. 
2020). Within these reserves and outside, if feasible, sug-
gested activities could be (i) in situ conservation of vultures 
in highly suitable areas; (ii) habitat maintenance for expan-
sion of territory in moderately suitable areas; (iii) planning 
in advance for habitat improvement in unstable areas since 
changing climate can cause changes in the geographic dis-
tribution of the amount and quality of habitat (Holyoak and 
Heath 2016); (iv) expansion of favourable area for vultures 
which have shown habit plasticity (Genero et al. 2020), an 
agroforestry model could also be adopted by including trees 
of moderate height for shelter and rearing of medium sized 
vertebrates for food (Hiraldo et al. 1991; Chhangani 2007) 
in the areas where only foraging is possible; and (v) above 
all there is a need to protect the landscape (moderate and 
highly suitable area) against human-induced large-scale 
habitat change like, deforestation for development, in order 
to slow down species extinction (Kentie et al. 2018).

Conclusion

Though the models generated in this study based on biocli-
matic variables could be further improved by incorporating 
bioenvironmental variable like dynamic LULC layers for 
future prediction, they are strong enough and should be used 
as a starting point for immediate management planning of 
Gyps vulture conservation in various floristic regions.

Our study of Gyps vultures’ habitat suitability impacted 
by impending climate change identified habitat variables 
and provided delimitation of stable and unstable habitats 
of suitable and unsuitable nature in Indian context for the 
first time. This has direct implication on management of 
imperilled vultures since stable and suitable area could be 
used for in situ conservation and reintroduction of the spe-
cies. Unstable area could be used for habitat improvement 
by ensuring nesting and foraging resources for further use by 
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vultures in expanding their territory for increasing popula-
tion. In general, development of reserves, protection of large 
trees, adoption of agroforestry etc. could be useful in model 
predicted areas to attempt a reversal of the endangered sta-
tus, to some extent, of indigenous vultures in different floris-
tic regions. The study also indicated better adaptability and 
lower vulnerability to varied bioenvironmental conditions of 
the different Gyps species. Therefore, priority must be given 
to conservation of species with lower adaptability or higher 
vulnerability against climate change.
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