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Abstract
Apparently healthy birds in protected areas in northeastern Brazil were investigated, whether shedding bacterial pathogens 
to the environment. We determined whether pathogens varied according to the level of the shared habitat human of each pro-
tected area, the type of vegetation, hosts’ group and different history traits as migration and foraging behavior, body mass, and 
sensitivity to human impacts. In addition, we also investigated whether the protected areas were preserving the wildlife from 
antibiotic-resistant bacteria. For that, oropharyngeal and cloacal swabs were collected from 507 individuals of 91 species. 
In the culture-dependent method, most of the bacterial isolates belonged to Enterobacterales, with the highest frequency of 
Klebsiella aerogenes (20.5%) and Escherichia coli (19.3%). There was no relationship between Enterobacterales occurrence 
according to the type of vegetation, hosts’ group and history traits as foraging behavior (foraging stratum and main trophic 
category), and body mass, and there was a low association between the protected area and Enterobacterales (φ = 0.17). For 
Mycoplasma, 10.8% of PCR-tested individuals were positive, with high variation among sampled families, but none of them 
was positive for M. gallisepticum and M. synoviae. The protected area closer to human settlements presented more resistant 
isolates to broad-spectrum antibiotics gentamicin (φ = 0.45) and tetracycline (φ = 0.37) and also presented the two positive 
samples to primary pathogenic Chlamydia psittaci. The birds in the sampled protected areas may host and spread potentially 
pathogenic microorganisms as C. psittaci and Citrobacter freundii in low frequency in balanced co-existence of host/parasite. 
However, antibiotic-resistant Enterobacterales in protected areas might represent an impact on its bird populations and on 
the conservation of the environment.

Keywords Conservation · Escherichia coli · Microbiota · Passerines · Pathogenic bacteria

Communicated by Caio Graco Machado.

 * Camile Lugarini 
 camile.lugarini@icmbio.gov.br

1 Centro Nacional de,  Pesquisa E Conservação de 
Aves Silvestres (CEMAVE), Instituto Chico Mendes 
de Conservação da Biodiversidade (ICMBio), Rod. 
Maurício Sirotski Sobrinho, km 02, Jurerê, Florianópolis, 
SC 88053-700, Brazil

2 Departamento de Medicina Veterinária, Universidade Federal 
Rural de Pernambuco (UFRPE), Rua Dom Manoel de 
Medeiros s/n, Dois Irmãos, Recife, PE 52171-900, Brazil

3 Instituto Brasileiro para Medicina da Conservação – 
Tríade, Rua Silveira Lobo, 32, PO Box 48, Casa Forte, 
PE 52061-030 Recife, Brazil

4 Faculdades Nova Esperança, Avenida Frei Galvão, 12, 
Gramame, João Pessoa, PB 58067-698, Brazil

5 Section for Food Safety and Zoonoses, Institute 
for Veterinary and Companial Animal Science, 
University of Copenhagen, Stigbøjlen 4, 
1870 Frederiksberg, Copenhagen, Denmark

6 Department of Bacteria, Parasites and Fungi, Statens Serum 
Institut, Artillerivej 5, 2300 Kbh S, Copenhagen, Denmark

7 Departamento de Patologia Animal, Faculdade de Medicina 
Veterinária E Zootecnia, Universidade de São Paulo, 
SP 05508-270 São Paulo, Brazil

/ Published online: 4 September 2021

Ornithology Research (2021) 29:149–159

http://orcid.org/0000-0001-7589-7113
http://orcid.org/0000-0003-0328-6692
http://orcid.org/0000-0002-2305-4330
http://orcid.org/0000-0002-7848-8769
http://orcid.org/0000-0002-1814-8121
http://orcid.org/0000-0002-2672-0749
http://orcid.org/0000-0002-1572-5026
http://orcid.org/0000-0002-2844-5509
http://orcid.org/0000-0001-6428-5146
http://crossmark.crossref.org/dialog/?doi=10.1007/s43388-021-00063-0&domain=pdf


1 3

Introduction

Populations of birds have been declining for decades, 
especially in the last 50 years (Rosenberg et al. 2019). 
Several anthropogenic factors are driven by the decline 
or extinction of the bird populations, which can include 
introduced, transmitted, or emerged pathogens (Daszak 
et al. 2000; Heard et al. 2013). Healthy wild migratory and 
resident birds are susceptible to several bacterial patho-
gens common to humans and domestic animals (Hubálek 
2004; Benskin et al., 2009; Stenkat et al. 2014; Dias et al. 
2019) and may present acute or chronic disease. They may 
die from the pathogen themselves, cure or become asymp-
tomatic reservoirs, and act as biological carriers of several 
bacteria for prolonged periods (Hubálek 2004; Benskin 
et al., 2009). They can also be responsible for transporting 
vectors of bacteria (Hasle, 2013; Lugarini et al. 2015) or 
become pathogen reservoirs of these vector-borne bacteria 
(Hornok et al. 2014). Despite its relevance for pathogen 
transmission, gastrointestinal microbial structure in wild 
birds remains understudied. Therefore, descriptive epide-
miological studies are needed to increase understanding of 
baseline microbial diversity within and among the avian 
group (Grond et al. 2018).

If birds can be contaminated by environmental bacteria 
from humans and domestic animals, they can be used as a 
sentinel of the contamination of soil, water, or plant mat-
ter with potential avian and/or human pathogens (Hamer 
et al. 2012). Understanding whether the different level of 
sharing human environment affect the infectious organ-
ism is important to access the risk of spreading these 
pathogens in stressful situations, such as climate changes, 
human contact, and overcrowding, which might unbal-
ance the host/parasite state (Corrêa et al. 2013). However, 
several other factors as the life history of the hosts (i.e., 
diet, nesting environments, social interactions), water, and 
ground can influence the bird’s bacterial exposure, suscep-
tibility, and spread (Benskin 2009; Grond et al. 2018). In 
this instance, the feeding ecology appears to be the main 
factor influencing the occurrence of different bacteria in 
healthy free-living birds (Brittingham et al. 1988; Sten-
kat et al. 2014). Terrestrial-foraging and water-dependent 
birds tend to increase the exposure to bacterial pathogens, 
because they may ingest contaminated food or water by 
bird droppings, nasal discharges, and respiratory exu-
dates with Chlamydia psittaci, Salmonella, Escherichia 
coli, Enterococcus faecalis, Clostridium, among others 
(Hubálek 2004). The body size may also influence sus-
ceptibility to pathogens as the bacterial acquisition occurs 
predominantly through foraging, and larger individuals 
should eat more, and increase the exposure to infected 
food (Benskin et al., 2009). Some groups of birds such as 

raptors are also more exposed to the potential pathogens 
from the intestines of the prey they ingest or scavengers, 
which are exposed to bacteria from carcasses. Birds inhab-
iting opened areas, which also can be benefited by human 
activities or adapted to perianthropic habitats, would have 
more exposure to the bacterial pathogens than birds that 
inhabits forest habitats, because they may share foraging 
areas with sewage, carrion, water, and contaminated food 
by the excreta of other animals or humans (Fenlon 1983; 
Williams et al. 1976; Silva et al. 2010). The shedding 
rate of an agent or duration and level of its bacteremia in 
infected migrating birds might increase due to the stress 
and reduce the resistance to infections during migration. 
In this sense, the number of pathogenic agents associated 
with migratory birds is probably greater than with resident 
species (Hubálek 2004).

Therefore, we tested whether the bacteria occurrence var-
ies according to the level of the shared habitat human or the 
type of vegetation the birds usually occupy (opened or for-
ested areas), hosts’ group, and different history as migration 
and foraging behavior (foraging stratum and main trophic 
category), body mass, and sensitivity to human impacts. We 
were also interested in whether the protected area is pre-
serving the wildlife from antibiotic-resistant bacteria. We 
focused on opportunistic and primary bacterial pathogens 
reported in birds, associated with humans and domestic ani-
mals shared environment, as Enterobacterales, Mycoplasma 
gallisepticum, M. synoviae, and Chlamydia psittaci (Brit-
tingham et al. 1988; Andersen and Vanrompay 2000; Nasci-
mento et al. 2005; Silva et al. 2010; Vilela et al. 2012; Dias 
et al. 2014, 2019; Afema and Sischo 2016; Silva et al. 2018).

Methods

Sampling

Sample collection was carried out at Guaribas Biological 
Reserve (GBR) in northern coastal Atlantic Forest of Paraíba 
state, Brazil, with a territorial extent of 4051.62 ha, divided 
into three small fragmented areas, surrounded by sugar 
cane plantations, villages, and indigenous communities in 
the municipalities of Mamanguape and Rio Tinto, and Raso 
da Catarina Ecological Station (RCES), a large continuous 
protected area with 104,842.84 ha in the municipalities of 
Jeremoabo, Rodelas, and Paulo Afonso, situated in Brazilian 
semiarid region, specifically in the Caatinga domain (Fig. 1). 
GBR birds would have a higher risk of acquiring and shed-
ding pathogenic bacteria, considering the proximity of the 
urban areas, while remoteness habitats of RCES, far from 
urban influence, could have a lower occurrence of patho-
genic bacterial pathogens.
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Birds were captured with mist nets, individually identi-
fied with aluminum leg bands, examined for body condi-
tion, body mass, sampled, and released. At the sampling 
moment, all birds were apparently healthy and samples 
were collected for culture-based methods and PCR. For 
culture and isolation, cloacal swabs were collected and 
stored in a Stuart medium at 4 °C and processed in 48 h. 
For molecular analysis, oropharyngeal and cloacal swabs 
were combined in the same vial with virus transport media 
(VTM): PBS-balanced salt solution supplemented with 
0.5% bovine albumin, antimicrobial agents (200 U/mL 
penicillin G, 200 U/mL streptomycin, 25 μg/mL fungi-
sone, and 6 μg/mL gentamycin), and 10% glycerol (Araujo 
et al. 2014). Samples were immediately stored in liquid 
nitrogen and then sent to the laboratory, stored at – 20 °C 
until processed.

Bacterial isolation

We used a culture-based method, involving general and 
selective media. The advantages of culture-based study are 
multifold and include reproducible results with minimal 
error; enable isolation of specific target organisms; and pro-
vide key data on multiple antibiotic resistance (McLain et al. 
2016). The samples were plated on Petri dishes containing 
blood agar base supplemented with sheep blood 8% and Lev-
ine agar, incubated at 37 °C for 24–48 h. Initial identification 
was performed by morphology and color of the bacterial 
colonies. An aliquot of the isolated colonies was submitted 
to the Gram stain. The Gram-positive cocci were submit-
ted to catalase, and Staphylococcus colonies were submitted 
to the coagulase test. Samples that were characteristic of 
Gram-negative coccobacillus were subjected to simplified 

Fig. 1  Sample collection was carried out at Guaribas Biological 
Reserve (GBR) in northern coastal Atlantic Forest of Paraíba state, 
Brazil, with the territorial extent of 4051.62  ha, divided into three 
small fragmented areas, surrounded by sugar cane plantations, vil-
lages, and indigenous communities in the municipalities of Maman-

guape and Rio Tinto, and Raso da Catarina Ecological Station 
(RCES), a large continuous protected area with 104,842.84 ha in the 
municipalities of Jeremoabo, Rodelas, and Paulo Afonso, situated in 
Brazilian semiarid region, specifically in the Caatinga domain
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biochemical profile: capacity for decarboxylation of lysine; 
citrate used as a source of carbon; mobility; production 
of hydrogen sulfide  (H2S); Simmons’ citrate agar; Voges-
Proskauer (VP); and sulfide indole motility (SIM) agar. For 
the Salmonella isolation, the samples were first subjected to 
pre-enrichment in peptone water and incubated for 24 h at 
37 °C. Then, an aliquot from the peptone water was enriched 
in tetrathionate and Rapapport-Vassiliadis selective medi-
ums broths at 37 °C for 24 h under agitation. After these 
steps, the samples were plated in xylose lysine deoxycholate 
(XLD) agar and bright green bile agar and confirmed with 
biochemical tests using triple sugar iron (TSI), lysine iron 
agar (LIA), and urea broth, following Litchfield (1973).

Four samples, randomly chosen, of Escherichia coli iso-
lates were stored at – 20 °C and submitted to PCR with 
the aim of amplification of attaching and effacing (eae) and 
bundle-forming pili structural (bfpA) genes of enteropatho-
genic (EPEC); aerobactin (iucD), cytotoxic necrotizing fac-
tor (cnf1), S fimbrial adhesion (sfa), and P fimbrial adhesin 
(papEF) genes of avian pathogenic (APEC); alpha-hemoly-
sin (HlyA) for uropathogenic (UPEC); and additional APEC 
genes for serum resistance (iss) and temperature-sensitive 
hemagglutinin (tsh) following Saidenberg et al. (2012).

Fifty-nine isolates were selected to be submitted to an 
antibiogram sensitivity test in disc diffusion assay in Muller-
Hilton Agar (Bauer et al., 1966). Isolates were classified 
as resistant or susceptible to each antibiotic using and the 
zones of inhibition according to the standards of the Clinical 
and Laboratory Standards Institute-CLSI (2019). The chosen 
antibiotics were based on Guo et al. (2016) that detected the 
highest frequencies and concentrations of tetracyclines, fluo-
roquinolones and sulphonamides as typical veterinary anti-
biotics in manure and soil of livestock farms soil. Therefore, 
one representative of the antimicrobial classes was used: 
tetracycline (30 μg), fluoroquinolone (norfloxacin, 10 μg), 
and sulfonamide (sulfazotrin 25 μg). Other classes of former 
studies considering bird bacteria were also considered as 
aminoglycoside (gentamicin, 10 μg) and beta-lactam (peni-
cillin G, 10 U, ampicillin, 10 μg, amoxicillin, 10 μg) (e.g., 
Afema and Sischo 2016; Matias et al. 2016).

Mycoplasma spp. and Chlamydia psittaci DNA 
detection

The suspension of VTM was thawed and centrifuged for 
5 min at 14,000 g; 500 μL was submitted to DNA extrac-
tion. DNA was extracted from swab samples with Wizard® 
Genomic DNA Purification Kit (Promega Corporation, Mad-
ison, WI, USA) or Qiagen DNA Easy Blood and Tissues Kit 
(Qiagen, Valencia CA, USA), according to manufactures.

For Mycoplasma spp., a set of primers based on the 
amplification of mycoplasmal 16S rRNA sequences (van 
Kuppeveld et al. 1992, 1994) was used: GPO-3 (5′-GGG 

AGC AAA CAG GATrAGA TAC CCT-3′) and MGSO (5′-TGC 
ACC ATC TGT CAC TCT GTT AAC CTC-3′) that amplify a 
product of 280 bp with the thermal cycles, following and 
reaction according to Santos et al. (2013). Positive screened 
samples were submitted to Mycoplasma gallisepticum 
(MG)/Mycoplasma synoviae (MS) amplification.

For MG, the pair of primers was used: MG-14F (5′-GAG 
CTA ATC TGT AAA GTT GGTC-3′) and MG-13R (5′-GCT 
TCC TTG CGG TTA GCA AC-3′) that produces an amplicon 
with 481 bp (OIE 2008). For MS, the pair of primers MS–F 
(5′-GAG AAG CAA AAT AGT GAT ATCA-3′) and MS–R (5′-
CAG TCG TCT CCG AAG TTA ACAA-3′) was used, which 
generate products with 207 bp (Lauerman et al. 1993). The 
final volume of the reaction was 50 μL, including 2.5 μL of 
10 × PCR buffer, 2 μL of  MgCl2, 1 μL of dNTP mixture (l0 
mM), 0.5 μL of each primer (20 pmol/μL), 0.5 μL of Taq 
(2.5 U/μL), 8.5 μL of ultra-pure water, and 5 μL of template 
DNA. As a positive control, we used the standard strains of 
“American Type Culture Collection” (ATCC) MG (MGR-
13610) and MS (WVU-1853). PCR cycle was performed 
with 40 cycles at 94 °C for 30 s, at 55 °C for 30 s and at 
72 °C for 1 min, and final extension at 72 °C for 5 min. 
Amplification products were subjected to 30-min electro-
phoresis in 1.5% agarose gel, under 80-Volt. Electrophoresis 
gels were carried out in 1 × TAE buffer (EDTA Tris acetic 
acid), exposed to ultra-violet light, and photographed by 
photo documentation.

For Chlamydia psittaci, PCR based on the conserved 
region of the major outer membrane protein (MOMP) gene 
was performed using the pairs of primers Cpsi A (5′-ATG 
AAA CAT CCA GTC TAC TGG-3′) and Cpsi B (5′-TTG TGT 
AGT AAT ATT ATC AAA-3′), which amplify a product of 
300 bp. The final volume of the reaction was 25 μL, includ-
ing 10 mM of Tris–HCl (pH 8.3), 4 mM of  MgCl2, 0.2 mM 
of dNTP mixture, 5 pmol of each primer, 0.5 U of Taq poly-
merase, 5 μL of template DNA, and ultra-pure water. PCR 
cycle was performed with the first cycle at 94 °C for 5 min, 
followed by 40 cycles at 94 °C for 1 min, at 50 °C for 1 min 
and at 72 °C for 2 min, and final extension at 72 °C for 
10 min. Brazilian strain Cpsi/Mm/BR01 (GenBank num-
ber JQ926183.1) and ultra-pure water were used as positive 
and negative controls, respectively. Amplification products 
were subjected to 40-min electrophoresis in 1.5% agarose gel 
colored with 0.5 μg/10 mL of GelRed (Uniscence do Bra-
sil), under 100-Volt. Electrophoresis gels were carried out 
in 1 × TAE buffer (EDTA Tris acetic acid), exposed to ultra-
violet light, and photographed by photo documentation.

Statistical analysis

We tested by the chi-square test whether there was the asso-
ciation between Enterobacterales and Mycoplasma occur-
rence and (1) the protected areas (GBR or RCES) and (2) 
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type of vegetation (forested—arboreal Caatinga and sem-
ideciduous forest—vs. opened areas—Cerrado enclaves 
and shrubby Caatinga). Chlamydia psittaci occurrence was 
excluded due to the low number of positive samples. We 
tested by the G-test on the DescTools package test whether 
there was an association between Enterobacterales occur-
rence: (1) hosts’ traits as foraging stratum, and main trophic 
category, and (2) sensitive to anthropogenic activities. For 
the relationship between migratory status and occurrence of 
Enterobacterales, we used Fisher’s exact test, as the expected 
cell values fell below 5. The occurrence was calculated by 
the proportion of the positive samples for each bacterium 
divided by the number of examined samples * 100. The 
main trophic category of bird species and foraging strata 
was based in Wilman et al. (2014) when available or Silva 
et al. (2003), Donatelli et al. (2004), Telino-Júnior et al. 
(2005), and Del Hoyo et al. (2020). Sensitivity of species 
to anthropogenic impacts was based on Stotz et al. (1996) 
and migration status followed Somenzari et al. (2018). We 
used logistic regression to see if the presence or absence of 
Enterobacterales (dependent variable) of positive samples 
was associated with the body mass of the sampled birds 
(independent variable).

For estimation of the association between the Entero-
bacterales occurrence and well-sampled hosts’ families and 
orders, we used a minimum sample size of ~ 8 positive sam-
ples, considering accurate estimates of prevalence depends 
on adequate sampling (Jovani and Tella 2006): Columbi-
formes (Columbidae), Apodiformes (Trochilidae), and Pas-
seriformes (Thamnophilidae, Dendrocolaptidae, Pipridae, 
Rhynchocyclidae, Tyrannidae, Polioptilidae, Passerellidae, 
and Thraupidae). Turdidae was excluded as presented no 
Enterobacterales. For Mycoplasma, we compared the occur-
rence of well-sampled families: Columbiformes (Colum-
bidae) and Passeriformes (Thamnophilidae, Furnariidae, 
Pipridae, Tyrannidae, Passerellidae, Parulidae, Thraupidae, 
and Cardinalidae). Rhynchocyclidae and Turdidae were not 
considered, because there were no positive samples for these 
families. For the association, we used the G-test on the Desc-
Tools package. Significance was established at P < 0.05. Phi 
coefficient (φ) was used to measure the strength of associa-
tion between two categorical variables and was calculated 
with the Psych package. All statistical tests were performed 
in R v3.6.3 (R Core Team 2020).

Results

We sampled 507 individuals from 91 species, 30 families 
of 10 orders of birds, 245 from GBR, and 262 from RCES, 
from March 2012 to December 2013. The most common 
sampled bird species belonged to Passeriformes order 
(88.4%) with 20 families, followed by Apodiformes (4.7%) 

and Columbiformes (3.6%); the other seven orders have had 
less than 10 samples each (Suppl. Material, Table S1). Most 
(97.2%) of the species were residents and only six (2.8%) 
species were considered partially migratory, according to 
Somenzari et al. (2018).

Bacterial isolation

For bacterial isolation, samples from 292 individuals were 
collected (92 from RCES and 200 from GBR). Overall, 136 
samples (43.5%) were positive for at least one bacterium 
colony in the culture-dependent method, representing 161 
isolates. Most of them (57.1% of the total) were Gram-
negative strains that belonged to Enterobacterales. The 
occurrence of Enterobacterales was higher for Klebsiella 
aerogenes (11.3%) and Escherichia coli (10.7%), followed 
by Gram-positive bacteria Staphylococcus spp. (6.8%) and 
Bacillus spp. (6.5%). Only one strain of Staphylococcus was 
positive coagulase (S. aureus; 0.3% occurrence). No sample 
was positive to Salmonella spp. Escherichia coli isolates 
submitted to PCR did not amplify fragments of the tested 
genes of pathotypes EPEC, APEC, and UPEC.

The occurrence of Enterobacterales was significantly 
higher (χ2 = 8.8, df = 1, P < 0.01; φ = 0.18) in RCES (41.3%) 
than GBR (23.5%) (Suppl. Material, Tables S2). We did not 
find significant differences in the prevalence of Enterobac-
terales between hosts’ orders and families, type of vegeta-
tion, migratory status, forage strata, main trophic category, 
and sensitivity to anthropogenic activities (Suppl. Material, 
Tables S1 and S3). The logistic regression did not show an 
association of the occurrence of aerobically bacteria and the 
body mass of the sampled birds (Z =  − 1.539; P = 0.12).

From isolates submitted to antibiogram, 20.3% was sus-
ceptible to all seven tested antibiotics (Suppl. Material, 
Table S4). Klebsiella aerogenes have more isolates resist-
ant to tetracycline; however, it was not significant when 
compared with other tested bacteria. GBR presented more 
resistant isolates to gentamicin (χ2 = 9.5, df = 1, P = 0.002; 
φ = 0.45) and tetracycline (χ2 = 4.8, df = 1, P = 0.03; 
φ = 0.37) than RCES. No difference was detected between 
the types of vegetation.

Mycoplasma spp. and Chlamydia psittaci DNA 
detection

We tested 287 samples (176 from RCES and 111 from 
GBR) oropharyngeal/cloacal samples of healthy birds for 
Mycoplasma spp. and obtained 10.8% amplicons of 280 bp 
(Suppl. Material, Tables S1 and S2). From 31 Mycoplasma 
spp.-positive samples, none presented amplified products for 
MG and MS. For Chlamydia psittaci, we tested 292 sam-
ples (169 from RCES and 123 from GBR) and only 0.7% 
yielded C. psittaci DNA from Gray-fronted Dove (Leptotila 
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verreauxi) and Striped Cuckoo (Tapera naevia), both from 
GBR (Suppl. Material, Tables S1–S3). Because we obtained 
only two positive samples, we did not perform any statistical 
analysis.

There was a significant difference in the occurrence of 
Mycoplasma spp. (G-test = 22.2, df = 9, P < 0.01, φ = 0.37) 
according to the family Cardinalidae (50%), Furnariidae 
(27.3%), Columbidae (22.2%), Pipridae (16.7%), Parulidae 
(12.5%), Tyrannidae (10.5%), Passerellidae (7.1%), Tham-
nophilidae (3.7%), and Thraupidae (3.03%) (Suppl. Mate-
rial, Table S1). We did not find significant differences in the 
frequency of Mycoplasma between hosts’ orders, sampled 
protected area, and the type of vegetation.

Discussion

This study reported the occurrence of Enterobacterales, 
Mycoplasma spp., and C. psittaci in swabs of free-living 
birds from protected areas of Caatinga and Atlantic For-
est in northeastern Brazil. Formerly, it was demonstrated 
that the microbiota of passerine and woodpeckers (Britting-
ham et al. 1988) was mostly composed of Gram-positive 
microorganisms. However, current studies showed frequent 
isolation of Enterobacterales bacteria in healthy free-living 
populations by culture-dependent methods (Saidenberg 
et al. 2012; Vilela et al. 2012; Stenkat et al. 2014; Serafini 
et al. 2015; Vaz et al. 2017; Machado et al. 2018). There-
fore, Gram-negative bacteria may represent some part of the 
total aerobically cloacal bacteria of free-living wild birds, 
not representing an uncommon finding (Grond et al. 2018). 
Our sample units included understory passerines and near-
passerine birds, and high occurrence of Enterobacterales 
was common as previously reported to asymptomatic pas-
serines (Horn et al. 2015; Matias et al. 2016; Beleza et al. 
2019), birds of Caatinga (Saidenberg et al. 2012; Machado 
et al. 2018), and Atlantic Forest, including birds in protected 
areas (Serafini et al. 2015; Vaz et al. 2017). These bacteria 
are often related to secondary infections, but can function 
as the primary pathogen in certain circumstances, depend-
ing on the virulence and the host response to the infections 
(Benskin et al., 2009). Escherichia coli represents one the 
most commonly isolated Gram-negative bacterial species 
of the normal gastrointestinal microbiota of many pas-
serines (Horn et al. 2015; Matias et al. 2016) and several 
non-passerine avian species (Silva et al. 2009; Marietto-
Gonçalves et al. 2010; Santos et al. 2010; Saidenberg et al. 
2012; Corrêa et al. 2013; Lopes et al. 2015; Serafini et al. 
2015; Matias et al. 2016; Vaz et al. 2017; Machado et al. 
2018). Our results showed that E. coli was common in pas-
serines and non-passerines species of Caprimulgiformes, 
Columbiformes, Galbuliformes, and Piciformes. Escheri-
chia coli is often implicated in primary or secondary avian 

diseases (Gerlach 1994) and mortality in birds (Marietto-
Gonçalves et al. 2007). Therefore, access to the degree of 
pathogenicity is important, due to the risk of the spread of 
pathogens in the environment, contributing to the epidemio-
logical chain of several enteric diseases. However, the four 
tested samples used in this study did not show genes related 
to pathogenicity.

It was stated that Enterobacterales in carnivorous or 
omnivorous birds was a consequence of its growing moti-
vation by animal protein diet (Glunder 2002). Brittingham 
et al. (1988) and Gerlach (1994) suggested that this bacteria 
family usually does not belong to the normal gastrointestinal 
microbiota of granivorous and herbivorous birds. However, 
Stenkat et al. (2014) isolated Enterobacterales regularly from 
all trophic categories sampled. In fact, there was no evidence 
of the influence of the main trophic category in the Entero-
bacterales occurrence in our study, showing that other fac-
tors are also involved in the occurrence of the Gram-negative 
in the gastrointestinal tract. We discarded the hypothesis that 
the ground-foraging birds could host higher enterobacterial 
occurrence. However, the sampled birds here were passer-
ines and near passerines that are supposed to have less con-
tact with fecal material, as they perch in branches and are not 
concentrated in the ground roosting. Waterbirds tend to be 
in contact with feces on the ground or in water and are more 
likely to become infected in case of environmental contami-
nation (Silva et al. 2010, 2018; Stenkat et al. 2014); birds 
exposed to large aggregations for feeding or breeding may 
also spread gastrointestinal microbiota among conspecifics 
(Grond et al. 2018), which are not the case of our sampled 
birds. We also discarded the initial hypothesis that these 
birds were more exposed to human and domestic waste (less 
sensitive to anthropogenic impacts), being more affected by 
Enterobacterales. In fact, we could find a higher occurrence 
of Enterobacterales in the RCES than GBR. These results 
have to be carefully interpreted as there was a low associa-
tion between the two variables (φ = 0.18), showing that other 
variables are hidden and influencing results.

The environment can be the main factor affecting pas-
serine gut bacteria (Hird et al. 2014), but the host taxonomy 
might be the strongest determinant of the gut microbial com-
munity (Hird et al. 2015). Then, the susceptibility among 
bird groups is highly variable (Matias et al. 2016), and the 
influence of the environment in the gastrointestinal bacte-
ria can be less expressive for some bird groups (Stenkat 
et al. 2014). The susceptibility of the bird depends on the 
specificity of each strain of the bacteria (Afema and Sischo 
2016), which can justify the difference in the occurrence of 
Mycoplasma in well-sampled families. Nineteen host species 
have described the hosting DNA of Mycoplasma spp. There 
are several species of Mycoplasma, but only MG, MS, and 
M. meleagridis are considered economically important to 
the poultry and turkeys and obligatory notifiable according 
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to the Brazilian National Avian Sanitary Program. Several 
other mollicutes, including M. iowa, M. iners, M. galli-
narum, M. pullorum, M. gallopavonis, M. gallinaceum, M. 
columbinasale, M. columbinum, M. columborale, M. lipofa-
ciens, M. glycophilum, M. cloacale, M. anseris, Uraaplasma 
galorale, and Acholeplasma laidlawii are not pathogens of 
major concern with very low or even lack of pathogenicity 
(Nascimento et al. 2005).

We found similar positivity (10.6%) as found by Silva 
et al. (2016) in captive psittacine birds (16.5%) in northeast-
ern Brazil, showing that it is possible to find Mycoplasma 
spp. in health birds in captivity or wildlife. The Mycoplasma 
prevalence might be higher in healthy captivity birds, and 
also comprehend pathogenic MG and MS (Carvalho et al. 
2017; Magalhães et al. 2020), which was not the case in 
this pioneering study in healthy free Brazilian birds, prob-
ably due to low exposition to competent hosts, as birds 
of prey, Galliformes, Piciformes (Magalhães et al. 2020) 
or Psittaciformes (Carvalho et al. 2017). The differences 
found between the well-sampled families in the prevalence 
of Mycoplasma reaching 50% for Cardinalidae are prob-
ably related to the high specificity to their hosts and must 
be focused on in future studies. Some wild passerines as 
House Finches (Carpodacus mexicanus) are affected by con-
junctivitis caused by MG (Farmer et al. 2005), as a result of 
shifts and mutations (Staley et al. 2018), which might also 
represent an important factor to control the bird populations 
in Brazil in the future.

Chlamydia psittaci is widespread in Brazil and has been 
detected in different avian species, especially in psittacines 
maintained in captivity (Raso et al. 2002; Santos et al. 2014) 
or in healthy free-living populations (Raso et al. 2006; Ribas 
et al. 2014), and pigeons (Leal et al. 2015; Ferreira et al. 
2016). The prevalence of C. psittaci in the sampled pro-
tected areas was low, in agreement with other rural sampled 
sites. Even in more susceptible bird’s groups, the prevalence 
tends to be low or null in cloacal and tracheal or oropharyn-
geal samples (Raso et al. 2006; Ribas et al. 2014; Vaz et al. 
2017), while in urban habitats (Leal et al., 2015) and cap-
tive psittacine birds the prevalence is higher, with 10–72% 
of positivity for C. psittaci (Raso et al. 2002; Santos et al. 
2014; Vilela et al. 2019), especially when birds are submit-
ted to the stress of the illegal trade, high-density facilities 
and poor management conditions (Santos et al. 2014; Vilela 
et al. 2019). The abundance of susceptible hosts may be 
linked with the high prevalence, while less impacted habitats 
present low occurrence of the bacteria, due to the diversity 
of birds (Lima et al. 2011). The presence of C. psittaci in 
GBR was related especially with Columbidae, a common 
reservoir family for the pathogen (Kaleta and Taday 2003), 
but it is the first time it is found in L. verreauxi. On the other 
hand, Cuculiformes is one of the families with less effort 
spent in surveys and is new host species for C. psittaci.

The absence of Salmonella, MG, MS, pathogenic E. coli 
and other bird primary bacteria in this study, as Klebsiella 
pneumoniae (Gerlach 1994) and also viruses in these sam-
pled populations (Lugarini et al. 2018) can be justified by the 
low contamination and spread bacteria and other pathogens 
in the protected relicts. These protected areas showed low 
risk for emergence of bacteria in birds, different of previ-
ously searched high disturbed areas (e.g., Silva et al. 2009; 
Afema and Sischo 2016; Dias et al. 2019), showing their 
importance to safeguard birds healthy. Low primary bacteria 
occurrence across sampled sites may be directly related to 
high species richness and low migrant density that is respon-
sible to spread pathogens (Afema and Sischo 2016). Most 
of the sampled species are resident and the occurrence of 
these bacteria represents the local microbiota of the birds. 
Compared to migratory birds, residents may be less exposed 
to diverse microbiota (Grond et al. 2018). Therefore, the 
“dilution effect” of bird richness, especially non-competent 
hosts, can account for the low capacity of transmission of 
pathogens for humans and animals (Swaddle and Calos 
2008; Keesing et al. 2010).

Overall, 5.1% of tested isolates have been considered 
resistant to three tested antibiotics or more. These results 
have to be carefully interpreted, as few antimicrobial classes 
were opportunistic tested (Magiorakos et al. 2012). Kleb-
siella aerogenes, Corynebacterium spp., and Staphylococcus 
spp. presented resistant isolates to all the tested antimicro-
bial drugs. However, Enterobacterales are intrinsic resistant 
to penicillin (Magiorakos et al. 2012), and it is known that K. 
aerogenes and Citrobacter freundii are intrinsic resistant to 
penicillin, ampicillins, and cephalosporin (CLSI 2019). The 
fact of tetracycline showed resistance for more than half of 
K. aerogenes isolates; the potential pathogenic bacterium E. 
coli showed resistance to a broad-spectrum of antimicrobial 
drugs such as tetracycline, gentamicin, and norfloxacin, and 
S. aureus and Shigella isolates which showed high resist-
ance to sulfazotrin antibiotic resistant are important con-
cerns since even in low disturbance regions we can observe 
the resistance of bacteria against antibiotics. Amoxicillin, 
ampicillin, tetracycline, gentamicin, and sulfonamide are 
commonly used human and veterinary drugs, and the emer-
gence of resistance may indicate a widespread of resistant 
bacteria in different environments (Machado et al. 2018), 
with the excessive and inadequate use of antibiotics (Nasci-
mento et al. 2003). The spread and elevated use of antibiot-
ics in songbirds for example, at home, can be the cause of 
the spread of multi-resistant drug isolates into wild birds 
(Horn et al. 2015). Livestock is the main reservoir of resist-
ant bacteria for environmental contamination (Sayah et al. 
2005) and the contact between poultry, backyard chickens, 
and captive birds is common (Scherer et al. 2011). In ques-
tionnaires applied for subsistence farmers around GBR (data 
not showed), most of them are related to the use a broad 
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range of antibiotics, including tetracycline, which are com-
monly found in pet shops in the region and are sold without 
veterinary prescription. The backyard chickens created sur-
rounding GBR, which might be responsible for the resistant 
strains (Guo et al. 2016), were seen in strict contact with 
the wild birds since they forage inside boundaries of the 
protected area, especially in the fragment near to the urban 
area of Rio Tinto municipality. Notably, GBR presented a 
higher frequency of resistant isolates. Not surprised, the only 
C. psittaci-positive samples were from GBR. For C. psittaci, 
birds can develop acute, subacute, chronic, and unappar-
ent diseases; the last form of the disease is more common, 
responsible for the intermittent spread of the pathogen, 
shedding the organism over long periods, contributing to 
the dissemination, and representing a significant source of 
infection for other birds (Fudge 1996). Another potentially 
primary pathogenic enterobacteria found only in GBR was 
C. freundii, isolated from one apparently healthy individual, 
indicating that wild birds at GBR host it in low frequency, 
and may be transient reservoirs (Glunder 2002). This bac-
terium was also isolated previously from black cormorants 
Phalacrocorax carbo (Stenkat et al. 2014) and red-tailed 
parrots Amazona brasiliensis (Vaz et al. 2017), and here 
from one black-cheeked gnateater (Conopophaga melanops), 
a threatened species. No bird sampled presented signals of 
any diseases and the presence of bacteria, suggesting a bal-
anced co-existence of host/parasite. However, the lack of 
clinical signs can be also attributed to the fast removal of ill 
and dead birds from predators and scavengers, which do not 
allow us to notice mobility or mortality (Brand 1989). The 
occurrence of a primary pathogen in a free-living population 
without apparent infection can alert to the potential risk of 
outbreaks if stressful episodes, such as abrupt variation in 
weather conditions and environmental changes, including 
habitat loss (Ribas et al. 2014). Moreover, C. psittaci rep-
resents important zoonosis (Petrovay and Balla 2008) and 
the contact of humans with free-living birds is common in 
northeast Brazil, driven by the trapping and traffic (Alves 
et al. 2013), which can also impact public health (Raso et al. 
2014).

Brazil has a high diversity of resident and migratory birds 
and several habitats that are crucial for their conservation. 
Here, it was demonstrated the presence of Enterobacterales 
as the usual constituents of the aerobically cloacal bacteria 
of wild birds in protected areas and the low prevalence of 
Mycoplasma spp. and C. psittaci. In addition, in Guaribas 
Biological Reserve closer to human settlement, the samples 
presented resistant isolates to broad-spectrum antibiotics like 
gentamicin and tetracycline and also presented few samples 
to primary pathogenic bacteria as C. psittaci and C. freun-
dii. Then, the birds in the sampled protected areas may host 
and spread potentially pathogenic microorganisms in low-
frequency balanced co-existence of host/parasite; however, 

primary pathogenic bacteria and drug-resistant bacteria in 
free-living birds associated with human and domestic ani-
mal shared environment can represent an impact to its bird 
populations and conservation of the environment.
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