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Abstract
Power semiconductor chips are parallelly packed in modules to achieve a specific current capacity and power level. An inho-
mogeneous degradation of the solder layer makes the junction temperature between chips unevenly distributed in multichip 
modules. The real matters of the junction temperature represented by the terminal electrical characteristics are not known 
when a junction temperature difference occurs in the internal chip of a multichip IGBT module. This paper analyzes the 
electrothermal coupling characteristics among the chips in multichip modules and establishes a mathematical model of the 
electrothermal relationship. To accurately control the different temperature distributions and uneven aging conditions of paral-
leled chips, two power modules or two discrete devices packaged in a TO-247 are connected in parallel to simulate a multichip 
power module. The correctness of the proposed electrothermal model and the feasibility of simulating multichip modules 
are verified through experiments. The findings indicate that the temperature evaluated by the threshold voltage approaches 
the maximum temperature of the chips inside the module. The junction temperature evaluated by the maximum change rate 
of the collector–emitter voltage and that of the collector current approach are used to obtain the average temperature.

Keywords Multichip IGBT module · Collector–emitter voltage change rate · Collector current change rate

1 Introduction

As the foundation and core components of power electronic 
systems, power modules are the "hub" of power conversion 
and control [1]. Power modules usually operate under very 
severe working conditions, such as irradiation, NBTI, high 
electric fields, hot carrier injections, unclamped inductive 
switching, and so on [2–5]. They can withstand more than 
five million power cycles in their life cycle [6]. Thus, the 
aging problem is inevitable.

According to an industrial survey, about 34% of con-
verter failures are caused by device failures [7], and 55% of 

system failures are caused by temperature [8]. In addition, 
the failure rate of power devices is known to double when 
the temperature increases by 10 ℃ [9]. Therefore, it is very 
important to accurately monitor the junction temperature 
of IGBT modules [10]. There are three reasons why this is 
important. (1) Changes in the junction temperature can affect 
the physical parameters of a semiconductor and change its 
characteristics. (2) Any change in the IGBT health state 
caused by common faults (such as bond wire lift off and 
solder layer fatigue) is represented by a change in the IGBT 
junction temperature. Auxiliary manual intervention can 
prolong the lifetime of the device. (3) Improving the power 
density of the IGBT power module improves the system reli-
ability and reduces cost.

At present, there are four popular methods for junction 
temperature monitoring and estimation: (a) physical con-
tact methods; (b) optical methods; (c) thermal impedance 
model prediction; and (d) thermo-sensitive electric param-
eters (TSEPs). The physical contact measurement methods 
put the thermal sensor directly on the IGBT chip to directly 
measure the junction temperature [11, 12]. Although this 
method is simple and low cost, it has strong invasiveness and 
a slow response speed. The optical measurement methods 
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use infrared cameras to monitor the temperature of a device 
[13, 14]. This method has high accuracy and can measure 
the surface temperature field distribution of the die. How-
ever, its cost is high, and it is necessary to open the package 
of the tested module for direct measurements. The thermal 
impedance model prediction method simulates the junction 
temperature distribution through a finite element method 
when the power loss and thermal impedance models are 
determined [15, 16]. Although this method is non-invasive, 
it is affected by the time-varying thermal resistance network 
parameters, which results in junction temperature prediction 
errors [17]. The physical characteristics of semiconductor 
materials are correlated with temperature [18]. The tech-
nique to acquire junction temperature by this relationship is 
referred to as TSEPs. It is one of the most promising tem-
perature measurement methods since it is not necessary to 
break the power module and it has a rapid response time.

Most of the studies on the monitoring of chip junction 
temperature by TSEPs are concentrated on single-chip power 
modules. Commonly used TSEPs include the Miller plateau 
duration [19], the change rate of the voltage between the 
collector and the emitter [20], the short-circuit current [21], 
the turn-on/turn-off delay time [22], the threshold voltage 
[23], the gate current [24], the collector–emitter voltage 
[25], etc. The safe operation of IGBT modules using paral-
lel chips is becoming more and more important due to the 
development of high-power inverters [26]. However, when 
considering multichip modules with uneven temperature dis-
tributions between chips, the aforementioned methods are 
longer meaningful due to their lower sensitivity. In the case 
of multichip modules, considering that the electrothermal 
characteristics of chips cannot be the same, coupled with 
the non-uniformity of the chip cooling systems and operat-
ing conditions, some chips suffer from higher stresses. The 
biggest stressed chip solder layer degenerates the most. At 
the same time, the enhancement of thermal resistance accel-
erates the inhomogeneous degradation in multichip IGBT 
modules [27].

For a single-chip module or multichip modules with an 
even temperature distribution, the evaluated temperature 
is the junction temperature of the chip or chips. However, 
what the evaluated temperature indicates is still unknown 
if multichip modules are subjected to uneven temperature 
distribution. From a practical point of view, the condition 
monitoring technology of power modules with parallel chips 
is urgently needed. A comparison of the new TSEPs method 
with existing methods is shown in Table 1.

This paper clarifies the electrothermal coupling char-
acteristics between chips in multichip modules, and 
establishes a mathematical model of the electrothermal 
relationship. Tests indicate that the temperature evaluated 
by the threshold voltage approaches the maximum tem-
perature in the chips within the module. In addition, the 

junction temperature evaluated by the change rate of the 
collector current and that of the collector–emitter volt-
age approaches the average junction temperature of the 
module.

2  Temperature evaluation of the TSEPs 
in multichip modules

Paralleling multiple devices or chips is considered as a 
promising solution for increasing the module or converter 
capacity. However, when considering multichip modules 
with uneven temperature distributions between the chips, 
estimating the temperature of multichip modules through 
TSEPs is no longer valid due to its low sensitivity. In 
this section, a mathematical model of the electrothermal 
relationship in a multichip power module is described in 
detail. Then, the physical significance of the evaluated 
junction temperature of the multichip module through 
existing TSEPs is clarified.

2.1  Threshold voltage

Previous studies [23] have shown that the threshold volt-
age is reduced when the temperature increases. Thus, the 
chip with the highest temperature (with the lowest thresh-
old voltage) plays a decisive role in the conduction of a 
multichip module. In the conduction transient process, 
the chip with the maximum temperature value is activated 
by a large current stress. Then, the temperature is further 
elevated as much as the positive feedback mechanism. 
Therefore, it is identified as the chip with the heaviest 
stress, which is more prone to aging and eventual failure. 
The expression of threshold voltage is:

Consequently, the temperature evaluated by the thresh-
old voltage is the maximum temperature of the chips in the 
multichip power module.

(1)Vthp(T)=Vth(Tmax).

Table 1  Comparison of the proposed method with existing methods

New TSEPs Optic Phy. co Ther. imp

Invasiveness Weak Weak Strong Weak Weak
Speed Fast Fast Low Low Fast
Cost Low Low High Low High
Online Easy Easy Diff Easy Diff
Object All Single chip All All All
Accuracy High High High Low High
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2.2  Maximum collector–emitter voltage change 
rate during turn‑off

To establish a mathematical model of the electrothermal 
relationship in a multichip module, the internal structure of n 
IGBT chips in parallel is built, as shown in Fig. 1, where L1n is 
the parasitic inductance in the gate path, while L2n and Rn are 
parasitic inductance and parasitic resistance of the main power 
path, respectively. The gate current ig is obtained as follows:

During the turn-off period, the collector–emitter voltage 
increases rapidly when the gate current charges the Miller 
capacitor, and the collector–emitter voltage change rate 
reaches the maximum value, which is [20]:

where Cgcx is the gate–collector capacitance of chip x.

From Eqs. (3) and (4), the relationship between the maxi-
mum change rate of the collector–emitter voltage and the tem-
perature is obtained when n chips are in parallel as follows:

It can be seen that the maximum change rate of the collec-
tor–emitter voltage is independent of the parasitic parameters 

(2)ig(t) =

n
∑

z=1

igx(t).

(3)Cgcx(T) =

CoxA
√

q⋅NB(T)⋅�

2Vce

Cox + A
√

q⋅NB(T)⋅�

2Vce

∝ NB(T) = kTx,

(4)
dvce

dt max
=

ig
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=

∑n

z=1
igx(t)

∑n

z=1
Cgcx(T)

.
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k
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x=1
Tx

.

in the gate path and the main power path. When all of the 
internal chips show the external module temperature:

where Tj is the evaluated temperature from the TSEPs in the 
module. From Eqs. (5) and (6), the following is obtained:

Then, the temperature evaluated by the maximum change 
rate of the collector–emitter voltage is the mean temperature 
of the chips within the multichip power module.

2.3  Maximum collector current change rate 
during turn‑off

For an inductive load, the maximum change rate of the col-
lector current is [28]:

where � is the large injection lifetime of the cut-off layer 
at 26.85 ℃, and IL is the load current. Therefore, the rela-
tionship between the maximum change rate of the collector 
current and the temperature is obtained when n chips are 
paralleled as follows:

It can be seen that the maximum change rate of the col-
lector current is only affected by the total load current and 
the temperature. The parasitic parameters in the gate path 
and the main power path are different, which results in une-
ven current in the power module while the total current of 
the multichip module remains unchanged. Thus, it does not 
change the maximum change rate of the collector current. 
When all of the internal chips show the external module 
temperature:

From Eqs. (9) and (10), the following can be obtained:
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Fig. 1  Internal structure of n IGBT chips in parallel
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Then, the temperature evaluated by the maximum change 
rate of the collector current is the mean temperature of the 
chips within the multichip power module.

According to the discussion above, although some of the 
fundamental equations are not novel, it is found for the first 
time that the physical significance of the junction tempera-
ture evaluated by threshold voltage (change rate of the volt-
age and that of the current) represents the highest (average) 
temperature in a multichip module.

3  Electrothermal coupling in multichip 
modules

3.1  Effect of the electrical difference between chips 
on temperature distribution

To improve the reliability of the multichip module, IGBT 
chips with same batch of identical electrical parameters are 
connected in parallel. However, the parasitic parameters in 
the gate path and the main power path are different in the 
power module due to the asymmetry in the layout design, 
which can lead to uneven current sharing. The junction tem-
perature of chip z in thermal steady state is:

where Ploss.z is the power loss of chip z. Rth is the junction-
to-case thermal resistance. According to the datasheet of 
the device and (12), the temperature difference between 
chips caused by electrical difference, which is generated by 
parasitic parameters or chip layout, does not exceed 3 ℃. 
In addition, the sensitivity of the threshold voltage is about 
10 mV/℃. Thus, the chip temperature difference caused by 
chip manufacturing tolerance is only 2–3℃.

3.2  Effect of the temperature difference caused 
by chip solder layer degradation on current 
distribution

Lai et al. found that the solder layer begins to deteriorate 
first, followed by junction temperature increases, which fur-
ther promotes the lift off of bonding wires [29]. The mod-
ules keep functioning properly at the beginning of its life. 
Although there is thermal coupling between the chips, previ-
ous researches have revealed that, above the base plate, there 
is barely any crosswise heat transfer between chips, and the 
temperature difference between chips caused by electrical 
differences or chip position differences does not exceed 3 ℃. 
After a long period of operation, some dies probably toler-
ant higher stress as a result of the inevitable differences of 
the chip electrothermal characteristics and the unevenness 
of the cooling system. Due to the temperature difference 

(12)Tjsz=Tc+Ploss,zRth,

caused by the electrical characteristics and position of the 
chips, the chip under the highest stress further accelerates 
the aging process and increases the temperature difference, 
which results in positive feedback.

Electrothermal simulations are carried out in MATLAB, 
and the electrothermal characteristic of two IGBTs are 
extracted from SKM50GB12T4 IGBTs rated at 1200 V/50A. 
According to previous research [30], for multichip modules, 
the higher the switching frequency, the greater the junction 
temperature difference between chips. The common switch-
ing frequency 4 kHz and duty cycle 50% settings are selected 
for the simulation.

At different temperatures, the I–V characteristics and 
switching losses are represented by a linearly interpolated 
look-up table (LUT) to evaluate the power losses of paral-
lel IGBTs. As shown in Fig. 2, a controlled power supply 
is connected to two IGBTs, and its current and junction 
temperature are determined by the LUT. The power losses 
are output to the thermal network model to estimate their 
junction temperatures. Meanwhile, the LUT also gives the 
I–V characteristic curves of two IGBTs at different junction 
temperatures to evaluate the current sharing characteristics.

The degradation level (DL) is defined according to the 
increase of the chip-to-case thermal resistance. Since IGBT 
1 is a healthy chip (DL 0), it is assumed that the degradation 
of IGBT 2 changes from DL 0 to DL 4. Figure 3 presents 
the temperature differences and current differences between 
the two IGBTs with uneven degradation levels. It was found 
that the junction temperature difference between chips due 
to solder layer degradation under rated current injection can 
be 40 °C. However, the current difference at the operating 
point of the rated current injection is less than 5A. As shown 
in Fig. 4, the percentage of temperature difference increase 
between chips is higher than the percentage of current dif-
ference reduction. It is also found that there is a correspond-
ing relationship between the DL of the solder layer and the 
difference between the maximum temperature and average 
temperature of the chips in the multichip module.

By clarifying the physical significance of the junction 
temperature evaluated through the dynamic TSEPs, this 
study creates new pathways for future research to realize 

Controlled
Power Supply

T1 T2

Look-up
TableIc1 Ic2

Vce1 Vce2

Thermal 
Network

Tj1 Tj2

P1 P2

Fig. 2  Electrical–thermal modeling
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the condition monitoring of initial solder layer degradation 
in multichip modules.

4  Experimental verification

4.1  Experimental platform

From the above analysis, the three TSEPs are only affected 
by the DC bus voltage, load current, and temperature. They 
are independent of the parasitic parameters in the gate path 
and the main power path. When initial solder layer degrada-
tion occurs in the module, an uneven temperature distribu-
tion of the chips occurs. However, the total load current and 
DC bus voltage of the power module remain constant. This 
research focuses on finding the corresponding relationship 
between the characteristics of the multichip module termi-
nals and the internal chip junction temperature. It also aims 
to clarify the physical significance of the junction tempera-
ture evaluated by electrical parameters. To eliminate the 

parallel uneven current phenomenon caused by the discrete-
ness of the parameters of the IGBT and the inconsistency 
of the external main circuit and driving circuit parameters, 
chips (devices) of same model and batch are used in paral-
lel in the multichip module. For multichip modules, it is 
difficult to accurately control different temperature distri-
butions or uneven aging of chips. Therefore, devices of the 
same type and batch are selected and set up in parallel to 
simulate a multichip power module in a double pulse test 
rig. The differences between the simulated multichip power 
module and the actual multichip power module are the lay-
out and parasitic parameters, which are independent of the 
TSEPs. The circuit topology and experimental platform 
are shown in Fig. 5. The half bridge power module con-
sists of an IGBT and a diode chip on each leg, as shown in 
Fig. 5b. The upper half bridge leg of the half bridge module 
SKM50GB12T4 (1200 V, 50A) and Infineon discrete IGBTs 
RGS50TSX2DHR (1200 V, 50A) packaged in TO-247 are 
separately selected as the devices under test (DUT) to verify 
the applicability of the proposed model and the feasibility 
of the simulated multichip modules in two applications. The 
details of the two DUTs are shown in Fig. 5c.

To obtain waveforms of parallel IGBTs under different 
junction temperatures, two heating platforms were placed 
under D1 and D2. Before the test, the baseplates of D1 and 
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D2 were heated up for 20 min to ensure thermal equilibrium 
[31]. An infrared camera is used to measure the temperature 
of the module chip and the black case of the discrete devices, 
so that the accuracy of the temperature controlled by D1 and 
D2 is higher than 99%. While adjusting the temperature of 
the baseplate, the corresponding voltage and current wave-
forms of the IGBTs under different temperature differences 
are measured.

4.2  Threshold voltage

The condition of the multichip module with an even tem-
perature distribution is simulated by heating up two par-
allel IGBTs to the same temperature. Figure 6 shows Vge 
and Ic waveforms of different devices with an even tem-
perature distribution. The Vth measurement is the value of 
vge obtained when the IGBT is turned on. The value of Vth 
for different DUTs as a function of temperature when the 
conduction current is 40 mA, 60 mA, and 80 mA are shown 
in Fig. 7. Although the values of Vth for different semicon-
ductor devices are different, they show a linear relationship 
with temperature. The temperature sensing properties under 
different conduction currents are almost identical, which is 
approximately equal to 10.76 mV/°C for discrete IGBTs 
(approximately 9.44 mV/°C for modules). Thus, the Vth LUT 
for different devices can be established.

Heating up two IGBTs to different temperatures simu-
lates a multichip module with an uneven temperature dis-
tribution. Figure 8 shows Vge and Ic waveforms of different 
devices with uneven temperature distributions. According 
to the above, the temperature sensing properties under dif-
ferent values of conduction current are almost the same. 
Hence, the corresponding gate–emitter voltage of 80 mA 
conduction current is chosen to obtain the threshold volt-
age. The temperature evaluated by the Vth LUT of distinct 
devices is shown in Table 2. As can be seen from Table 2, 

for discrete IGBTs or power modules, the junction tem-
peratures evaluated by Vth all approach the maximum tem-
perature of the parallel chip. Although the parasitic induct-
ance of the power modules topology is much higher than 
that of discrete IGBTs, the maximum estimation error for 
any type of IGBT is no more than 3 ℃. Thus, the physical 
significance of the temperature evaluated by the threshold 
voltage is the maximum temperature of one of the chips 
in multichip modules.
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Table 2  Tj (°C) Evaluated by the Vth of different DUTs

High (°C) Low (°C) Ave. (°C) Discrete (°C) Module (°C)

40 25 32.5 38.53 38.24
60 40 50 58.65 57.33
80 60 70 77.36 77.25
110 80 95 107.16 107.03
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4.3  Maximum collector–emitter voltage change 
rate during turn‑off

Heating two parallel IGBTs to the same temperature simu-
lates a multichip module with an even temperature distri-
bution. Figure 9 shows dVce/dtmax waveforms of different 
devices. It can be seen that the maximum change rate of the 
collector–emitter voltage is reduced when the temperature 
is increased, which indicates subzero temperature reliance. 
The dVce/dtmax values of different DUTs as a function of 
temperature are shown in Fig. 10. Although the maximum 
change rates of the collector–emitter voltage of different 
devices are different, they have a linear relationship with 
temperature. Results show that the temperature sensitivity 
is approximately 9.88 V/us °C for discrete IGBTs (approxi-
mately 7.69 V/us °C for modules). Thus, it is possible to 
create a LUT of the maximum change rate of the collec-
tor–emitter voltage of different devices.

A multichip module with an uneven temperature distribu-
tion is simulated by heating two parallel IGBTs to the dif-
ferent temperatures. Figure 11 shows dVce/dt waveforms of 
different devices with uneven temperature distributions. The 
temperature evaluated by the maximum change rate of the 
collector–emitter voltage LUT of different devices is shown 
in Table 3. From this table, for either discrete IGBTs or 
power modules, the junction temperatures evaluated by the 
maximum change rate of the collector–emitter voltage are 
all approaching the average temperature of the parallel chip. 
Regardless of what type of IGBT is used, the maximum esti-
mation error is no more than 3℃. Thus, the physical signifi-
cance of the temperature evaluated by the threshold voltage 
is the average temperature of one chip in multichip modules.

4.4  Maximum collector current change rate 
during turn‑off

Figure 12 shows dic/dt waveforms of different devices 
with even temperature distributions. These results indi-
cate that the maximum change rate of the collector cur-
rent decreases with an increase of the temperature, which 
shows a negative temperature dependency characteristic. 
The dic/dtmax values of different DUTs as a function of the 
temperature is shown in Fig. 13. Although the maximum 
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Table 3  Tj (°C) Evaluated by the dVce/dt of different DUTs

High (°C) Low (°C) Ave. (°C) discrete (°C) Module (°C)

40 25 32.5 32.79 33.46
60 40 50 47.40 48.25
80 60 70 70.14 72.84
110 80 95 92.98 97.58
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change rates of the collector currents of different devices 
are different, they are linear with respect to the measured 
temperature. These results show that the temperature sen-
sitivity is approximately 13.55 A/us °C for discrete IGBTs 
(approximately 16.72 A/us °C for modules) Thus, it is pos-
sible to create a LUT of the maximum change rates of the 
collector currents of different devices.

Figure 14 shows dic/dt waveforms of different devices 
with uneven temperature distributions. The temperatures 
evaluated by the maximum change rate of the collector 
current LUT of different devices is shown in Table 4. As 
can be seen from this table, for discrete IGBTs or power 
modules, the junction temperatures evaluated by the maxi-
mum change rates of collector currents all approach the 
average temperature of the parallel chip. Regardless of 
what type of IGBT is used, the maximum estimation error 
is no more than 3 ℃. Thus, the physical significance of 
the temperature evaluated by the maximum collector cur-
rent change rate is the average temperature of the chip in 
multichip modules.

5  Conclusion

This paper establishes a mathematical model of the elec-
trothermal relationship. The characteristics of the elec-
trothermal coupling between chips in a multichip module, 
and the influence of solder layer aging on it are analyzed 
through simulations. Simulation and experimental results 
show a number of things.

1. The proposed junction temperature measurement 
method is independent of both the internal chip layout 
and the parasitic parameters inside multichip modules.

2. The physical significance of the temperature evaluated 
by the threshold voltage is the highest temperature of 
one of the chips in a multichip module, and the physical 
significance of the temperature evaluated by the maxi-
mum change rate of the collector–emitter voltage or 
the maximum change rate of the collector current is the 
average temperature of the chips in multichip modules.

3. There is a corresponding relationship between the DL 
of the solder layer and the difference between the maxi-
mum temperature and average temperature of the chips 
in multichip modules.

Although the mathematical model of the electrothermal 
relationship is not novel, this research provides a new path 
for future research, and the corresponding relationship will 
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Table 4  Tj (ºC) Evaluated by the dic/dt of different DUTs

High (°C) Low (°C) Ave. (°C) discrete (°C) Module (°C)

40 25 32.5 34.22 33.57
60 40 50 46.06 48.12
80 60 70 69.05 71.23
110 80 95 96.73 94.05
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be studied in the future. A solder layer aging monitoring 
method based on combined TSEPs will be proposed in the 
future. In addition, the different IGBT modules will be 
connected in parallel to propose an IGBT parallel current 
sharing control method.
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