
Vol.:(0123456789)

Journal of the Korean Ceramic Society (2024) 61:367–390 
https://doi.org/10.1007/s43207-024-00365-1

REVIEW

A review of photocatalytic  CO2 reduction: exploring sustainable carbon 
emission mitigation from thermodynamics to kinetics and strategies 
for enhanced efficiency

Hassan Akbar1,3 · Muhammad Subhan Javed2 · Syeda Tehreem Iqbal2 · Muhammad Iftikhar Khan2 · Tauseef Anwar6 · 
Faiza Anjum2 · Ashfaq Ahmad4 · Muhammad Muneeb2 · Asghar Ali2  · Won‑Chun Oh5

Received: 29 October 2023 / Revised: 11 December 2023 / Accepted: 5 January 2024 / Published online: 21 February 2024 
© The Korean Ceramic Society 2024

Abstract
To mitigate the increased  CO2 emission,  CO2 reduction to multi-carbon fuels or other useable substances is an appealing 
yet essential approach. Since, reduction of  CO2 is a thermodynamically uphill process, an economical  CO2 fixation is only 
achievable if energy source used is of renewable energy such as solar energy. Photocatalytic  CO2 reduction is a complex pro-
cess due to its dependency on catalyst design, selectivity, efficiency, and photostability. The competence of a photocatalytic 
 CO2 reduction reaction is effected by factors, such as the type of photocatalyst used their band-gap energy, surface area, and 
structure of the crystal. This review discusses the kinetics and thermodynamics of photocatalytic  CO2 reduction and consid-
ers the effects of parameters like defects and impurity doping on photocatalysis. The study also focusses on the selectivity 
of products, i.e., methane, methanol, formaldehyde, etc. This comprehensive review provides insights into the development 
and improvement of photocatalytic efficiency for  CO2 photoreduction, contributing to the reduction of carbon emissions and 
a more sustainable future.
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1 Introduction

Human activities, particularly the combustion of fossil fuels, 
such as coal, oil, and natural gas, have markedly increased 
 CO2 emissions. This surplus of  CO2 intensifies the green-
house effect, trapping heat within Earth's atmosphere, conse-
quently leading to global warming and alterations in climate 
patterns. The mitigation of  CO2 emissions stands as a pivotal 
aspect in addressing climate change and safeguarding the 
environment [1]. The stability of carbon dioxide arises from 
its molecular structure and the thermodynamics governing the 
chemical processes involved—specifically, the carbon–oxygen 
bonds in  CO2 exhibit notable strength. The formation of this 
compound releases a substantial amount of energy [2]. To 
curtail  CO2 emissions, diverse effective strategies exist. These 
encompass measures, such as transitioning to sustainable 
energy sources, advocating for energy conservation, adopting 
cleaner transportation methods, refining waste management 
practices, and supporting reforestation initiatives. One preva-
lent method employed for  CO2 reduction is carbon capture 
and storage (CCS), which involves capturing  CO2 emissions 
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from industrial processes or power generation facilities and 
subsequently securely storing them underground. Another 
notable approach is carbon utilization or recycling, wherein 
captured  CO2 is converted into valuable products such as 
fuels, chemicals, and construction materials. Furthermore, 
some researchers are engaged in developing innovative cata-
lysts and processes for the direct conversion of  CO2 into use-
ful chemicals and fuels through electrochemical or chemical 
reactions [3]. These endeavors are geared toward converting 
 CO2 from a greenhouse gas into valuable resources, thereby 
contributing to the reduction of  CO2 emissions and fostering a 
more sustainable future. Robust research and development in 
this domain are imperative for combatting climate change and 
achieving practical carbon management. Another encourag-
ing process known as artificial photocatalytic system (APS), 
involves photocatalysts, typically semiconductor materials, 
to harness solar energy for the conversion of  CO2 into valu-
able products [4]. Catalytic environmental remediation holds 
paramount importance owning to its potential to expedite 
chemical reactions crucial to pollutant degradation without 
being consumed in process. Catalysts act by increasing reac-
tion rates, lowering activation energy and fostering selectivity 
and specificity toward target contamination. This technology 
is promising avenue for mitigating  CO2 emission and has the 
potential to play a crucial role in the transition toward a low 
carbon future. Photocatalysts can be used for the separation of 
water molecule into  H2 and  O2 utilizing solar energy for this 
purpose [5–8]. Photoreduction of  CO2 is of great interest. It is 
studied globally to overcome the world’s energy crises [9, 10]. 
Researcher are dedicated to develop effective photocatalyst 
for the conversion of  H2O to molecules and reduction of  CO2 
into fuels  (H2,  CH3OH,  CH4, CO, HCHO, and HCOOH) [11]. 
Photocatalytic  CO2 reduction is more complex due to reasons 
like selectivity, efficiency, catalyst design, energy require-
ments, and photostability [12–14]. Due to these reasons, 
an artificial need for photosynthesis is required which aims 
to improve the conversion of  CO2 and water. The primary 
objective behind the development of efficient photocatalyst for 
water splitting and  CO2 reduction is to harness the abundant 
and sustainable power of sunlight as a driving force for chemi-
cal reaction. This endeavor addresses two critical global chal-
lenges: the transition to clean energy sources and reduction of 
carbon emission. Catalysts that are explored so far are either 
homogenous or heterogeneous catalysts. Heterogeneous cata-
lysts are in different phase from the reactants, making it easier 
to separate them from reaction mixture by catalysts’ recy-
cling. This reduces the chances of contamination and provides 
larger surface area for reactants to interact [5, 15–17]. Vari-
ous semiconductors are used for photoreduction of  CO2 like 
 TiO2 [18–20],  BiVO4 [21–23], MOFs [24–26], metal halide 
perovskite [27–29], etc. The photoreduction is basically a sur-
face/interface reaction [30]. The key requirements are needed 
to be met to effectively utilize the energy from visible-light 

spectrum for photocatalytic reaction, which include appropri-
ate band gap [31], photogenerated charge separation [32, 33], 
selectivity, stability, and activity for existing photocatalytic 
 CO2 photoreduction. Facilitating the efficient generation of 
charge carriers through light absorption and subsequent sur-
face reactions are essential aspects of  CO2 photoreduction 
as they determine the whole efficiency and selectivity of the 
process in converting  CO2 into valuable fuels or chemicals 
[4, 34, 35]. Previous research has shown that defects in pho-
tocatalytic materials can alter their electronic structure and 
optical properties [36–39]. These defects could be minimized 
by doping, enabling the material to absorb a wider range of 
light and promoting efficient charge separation and reducing 
recombination rates [40–42]. There is an increasing interest in 
harnessing  CO2, the most abundant and economically viable 
carbon-rich resource, for the progress of alternating energy 
innovation [43]. The concept of utilizing photocatalytic reac-
tions for sustainable solar energy, to transform atmospheric 
 CO2 waste into alternative fuels, offers a feasible resolution. 
This innovation strategy not only diminishes carbon dioxide 
emissions but also concurrently upcycle it as a renewable 
fuel increasing solar energy resources [44]. Effective pho-
tocatalytic performance hinges on various factors, in which 
the presence of highly efficient photocatalyst stands out as 
a pivotal determinant. Conversely, optimizing light absorp-
tion, minimizing photon losses, and mitigating charge carrier 
recombination have garnered considerable focus in shaping 
a more proficient designing of catalyst. The main goal of this 
review paper is to furnish an extensive literature overview 
concerning the evolution of various catalysts for conversion 
of  CO2 to other fuels. In this context, the paper provides a 
thorough examination of the working mechanism, develop-
mental aspects, and proactive measure aimed at addressing 
 CO2 photocatalytic reduction. Additionally, it offers insight 
into future objectives and directions. The overarching aim of 
this review is to furnish essential background knowledge and 
outline general research pathways for individuals engaged or 
intending to enter the domain of  CO2 conversion processes.

2  Thermodynamics of photocatalytic  CO2 
reduction

Thermodynamics of  CO2 reduction reaction is found to be 
contingent on redox potential ΔE° and Gibbs free energy 
ΔG° [45]. Due to highly positive ΔG°, which indicates that 
the reaction is endothermic and not favorable under standard 
conditions,  CO2 reduction is an energetically uphill and non-
spontaneous process [46, 47], which means that it requires 
an input of energy to proceed and it is not favorable for nor-
mal temperature and pressure ranges. Compared to water 
splitting where ΔG° is negative, indicating thermodynamic 
favorability and spontaneity under standard conditions,  CO2 
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reduction requires significantly more energy to drive the pro-
cess. Therefore, the energy storage ratio of  CO2 reduction, 
i.e., the amount of energy needed for the reaction compared 
to the energy stored in the resulting products, is generally 
much higher than that for water splitting [48–50]. The reac-
tions along with the redox potential and Gibbs free energy are 
given below from Eqs. 1–6 in which Eq. 1 shows the water 
splitting, while Eqs. 2–6 shows  CO2 reduction [51]

As shown in Fig. 1, the electrons are responsible for  CO2 
reduction to convert it into low carbon fuels like CO and 
HCOOH, while on the other hand, holes in valance band 
interact with water molecules to produce  O2 [45].

In  CO2 photoreduction, the band gap holds great impor-
tance. The photoreduction takes place if the conduction band 
level is higher than that of reduction potential of  CO2, while 
valence band on the other hand is more positive than that of 
oxidation potential [45].

Photocatalytic properties arise when electron and hole 
charge carries are generated by absorbing incoming photons 
with energies equal or greater than that of band gap (Eg). 
Electrons in conduction band interact with  H2O to produce 
of  H2 and with  CO2 to produce other useful fuels [7, 16, 
53, 54]. Many potential semiconductors have been studied 
based on this basic principle; some of them are  TiO2 [55, 
56], ZnO [57–61], ZnS [61–64],  SrTiO3 [65–68], SiC [57, 
69–71],  Cu2O [72–75], CdS [57, 76–81], GaP [57, 82], TaON 
[83–86],  C3N4 [87–89],  BiVO4 [90–94], and  Ta3N5 [95–98]. 
Among them,  TiO2 has been studied more because of its 
abundance, stability, photocatalytic activity, low toxicity, 
and versatility. One other main reason is it being primar-
ily active under UV light due to its wide band gap, which 

(1)
H2O(l) → H2(g) + 1∕2O2(g),

ΔG◦ = 237 kj/mol, ΔE◦ = 1.23V

(2)
CO2(g) → CO(g) + 1∕2O2(g),

ΔG◦ = 257 kj/mol, ΔE◦ = 1.33V

(3)
CO2(g) + H2O(l) → HCOOH(l)+1∕2O2(g),

ΔG◦ = 286 kj/mol, ΔE◦ = 1.48V

(4)
CO2(g) + H2O(l) → HCHO(l) + O2(g),

ΔG◦ = 522 kj/mol, ΔG◦ = 1.35V

(5)
CO2(g) + 2H2O(l) → CH3OH(l) + 3∕2O2(g),

ΔG◦ = 703 kj/mol, ΔG◦ = 1.21V

(6)
CO2(g) + 2H2O(l) → CH4(g) + 2O2(g),

ΔG◦ = 818 kj/mol, ΔE◦ = 1.06V.

restricts its ability to absorb visible-light wavelength effec-
tively [99–102]. The remaining materials are good photo-
catalyst for  CO2 photoreduction under visible light. These 
photocatalysts with more negative CB facilitates electron 
transfer and promote more efficient  CO2 conversion [4], as 
shown in Fig. 2.

An electrochemical reaction with higher standard potential 
is more thermodynamically favorable and tends to proceed in 
forward direction. Table 1 shows some of the electrochemi-
cal reactions with standard potential ΔE° at  250 C tempera-
ture and pH kept at 0. These data are further illustrated using 
graphical plot in Fig. 3. The standard potential provides 
insight into the spontaneity of the electrochemical process 
and its feasibility under standard conditions [103, 104].

3  Kinetic study of  CO2 photoreduction

The kinetics of  CO2 photoreduction is well explained by 
empirically derived Langmuir Hinshelwood model which 
also leads to micro-kinetic modeling [109]. The advantage of 
describing heterogeneous catalysis is it provision of insights 
into reaction mechanism, surface adsorption, the reaction 
rates at the catalyst surface, and the irradiance. Using this 
information, the rate of the reaction can be found using Eq. 1 
[45]. The major flaw of this LH-based model is that it is 
time taking and much effort is needed in gathering the  CO2 
photoreduction kinetics. Since heterogeneous catalytic reac-
tion is majorly surface reactions, it is essential to determine 
the moles of reactants consumed or products generated per 
unit of time and per unit of reaction volume [109], while 
light is an additional requirement for some catalytic reaction. 

Fig. 1  Representation of  CO2 photoreduction in a semiconductor. 
Reprinted from [45, 52]
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By maintaining both of these quantities, we can achieve the 
desired rate of reaction for  CO2 photoreduction

Here, r is the rate of reaction (μmol  gcat−1  h−1), k is the 
rate constant (μmol  gcat−1  h−1), I is the irradiance, α is the 
reaction order of light intensity (dimensionless), ki repre-
sents the equilibrium adsorption constants for reactants 
and product  (bar−1), pi refers to partial pressures for reac-
tants and products (bar), n indicates the absorbed reactants 
that are involved in surface reaction, and z indicates all the 
reactants and products [45]. Selectivity of catalyst is also 
based on temperature, because increasing the temperature 
also enhances the diffusion rate of molecules which directly 
impacts the rate of reaction [45]. LH-based kinetic model for 
 CO2 photoreduction is given by Fig. 3 [110–115].

(7)r = kl�

∏n

i=1
kipi

�

1 +
∑z

i=1
kipi

�n .

Fig. 2  Energy band characteris-
tics in various semiconductors’ 
photocatalysts and the redox 
potentials of  CO2 reduction in 
an aqueous solution pH = 7 [4]

Table 1  Standard potential for  CO2 reduction reaction [49, 105–108]

Electrochemical half-reaction Standard 
potential 
ΔE°

2H+  +  2e− ⟶  H2(g) 0
2H2O(l) +  4h+ ⟶  O2(g) +  4H+ 1.229
CO2(g) +  e− ⟶  CO2−  − 1.9
2CO2(g) +  2H+  +  2e− ⟶  H2C2O4(aq)  − 0.475
CO2(g) +  2H+  +  2e− ⟶  HCO2H(l)  − 0.2
CO2(g) +  2H+  +  2e− ⟶  CO(g) +  H2O(l)  − 0.12
CO2(g) +  4H+  +  4e− ⟶  C(s) +  2H2O(l) 0.21
CO2(g) +  4H+  +  4e− ⟶  HCHO(l) +  H2O(l) 0.07
CO2(g) +  6H+  +  6e− ⟶  CH3OH(l) +  H2O(l) 0.03
CO2(g) +  8H+  +  8e− ⟶  CH4(g) +  2H2O(l) 0.17
2CO2(g) +  8H2O(l) +  12e− ⟶  C2H4(g) + 12OH 0.07
2CO2(g) +  9H2O(l) +  12e− ⟶  C2H5OH(l) +  12OH− 0.08
2CO2(g) +  13H2O(l) +  18e− ⟶  C3H7OH(l) +  18OH− 0.09

Fig. 3  Illustration of the 
Langmuir–Hinshelwood (LH)-
based kinetic model for  CO2 
photoreduction. [Step 1;  H2O 
and  CO2 diffuse to photocata-
lyst surface, step 2; molecules 
migrate within the active sites, 
step 3; light needed for rate of 
reaction, step 4; photoreaction 
start at active sites of two adja-
cent sites, Step 5; a the desired 
product is desorbed]
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An LH-based model kinetics equation was developed for 
the gathering of the photoreduction catalysts for carbonate 
by UV/TiO2 in aqueous solution [116]. Using UV light and 
 TiO2 to reduce carbonate in a solution is more effective when 
the solution is slightly acidic compared to when it is alkaline. 
The result also indicates that the speed at which this reduc-
tion happens increases when you have stronger UV light; 
however, adding too much  TiO2 actually blocks the UV light 
from penetrating the solution, as a result, slowing down the 
reaction [116, 117].

Hence, studies show that the photoreduction of  CO2 is 
thermodynamically favorable than that of kinetics photore-
duction due to the context of multi-electron reduction pro-
cesses [4], The efficiency of photocatalytic  CO2 reduction is 
influenced by factors such as the type of photocatalyst used, 
their band-gap energy, surface area, and structure of the crys-
tal. Furthermore, several factors including lighting conditions 
(intensity, wavelength, and duration of illumination), along 
with reaction condition (temperature, pH), and co-catalyst 
enhance the photocatalytic efficiency. These factors improve 
adsorption, enable effective charge separation, and catalyze 
the conversion of reactants into valuable products. The choice 
of co-catalyst depends on the specific photocatalyst being 
used [118]. Basics of photocatalytic process can be summa-
rized as follows:

 (I) Photon is absorbed with sufficient energy which 
generates  e−/h+ pairs.

 (II) Separation of these charge carries and their trans-
portation from valence band to conduction band.

 (III) The occurrence of the chemical reaction on the sur-
face [7, 119, 120].

The most frequently employed type of light is ultravio-
let (UV) light source for photocatalysis, even though only 
4% of solar energy is UV light, while 43% is visible light 
[121–123]. Hence, using narrow band photocatalyst in visi-
ble-light spectrum would be more energy efficient [124, 125].

The efficiency of a photocatalytic material can be calcu-
lated by its product yield. R can be given by

The common unit for R is mol  h−1  g−1 for the catalyst, 
while for the product, it is commonly measured in molar units 
(µmol) or in concentration units (ppm) [121]. The efficiency 
of photocatalyst depends upon the amount of photocatalyst, 
light intensity, the area exposed for their interaction, etc. The 
product which is formed by the photocatalyst can be meas-
ured by their quantum yield [121], using the formula below

R =
n(Product)

Time × m(catalyts)
.

As photocatalytic reaction strongly depends upon the 
photoabsorption, so the photocatalytic activity be contin-
gent with the incident light wavelength. The quantum yield 
is calculated by calculating the intensity of light and amount 
of catalyst [126]. Experimental measurements required to 
determine the quantum yield for a photocatalytic process 
involving the production of carbon monoxide, formic acid, 
formaldehyde, methanol, and methane in a photocatalytic 
reaction are calculated. It is expressed as a percentage and 
is a measure of the efficiency of the process in converting 
absorbed photons into the formation of formic acid.

Numerous efforts have been dedicated to find suitable 
single-phase photocatalyst that can be driven by visible light 
(CdS [78, 81, 127],  C3N4 [87, 128, 129],  WO3 [130, 131], 
 CaFe2O4 [132],  LaCoO3 [133],  BiVO4 [134, 135],  Bi2WO4 
[136, 137],  Fe2V4O13 [138], and  InTaO4 [139–142] are active 
photocatalyst under visible region), and various strategies 
have emerged in the field of photocatalytic  CO2 reduction. 
These strategies include techniques like doping, alloying, 
utilizing surface plasmonic effects, introducing structural 
defects, sensitization, and forming solid solution [4, 143, 
144]. Here, we will discuss two of these strategies, i.e., impu-
rity doping and structural defects.

4  Impurity doping

To enhance the light-driven properties of utilizing semiconduc-
tors to enhance the photocatalytic reduction of  CO2, doping 
is the first strategic process which modulates the arrangement 
of electrons within a material, optical properties, and surface 
chemistry of the photocatalyst, leading to improved catalytic 
activity, selectivity, stability, and reduced energy barriers. Dop-
ing can be a versatile and effective strategy to customize the 
properties of photocatalysts for  CO2 reduction. The success 
of doping primarily hinges on the choice of dopants, dopants 
methods, and their potential impact on catalytic performance. 
Doping can create active sites on catalyst surface that facilitate 
 CO2 adsorption, activation, and reduction, enabling achieve-
ment of two-step photoexcitation using photons with low-
energy visible-light spectrum [145, 146]. On the other hand, 

Overall quantum yield (%) = Number of reactant electron
Number of absorbed photon

× 100%

(App) quantum yield (QY%) = Number of reactant electrons
Number of incident photon

× 100%

(App) quantum yield of CO (%) = 2 × Number of CO molecules
Number of incident photons

× 100%

(App) quantum yield of HCOOH(%) = 2 × Number of HCOOH molecules
Number of incident photons

× 100%

(App) quantum yield of HCHO (%) = 4 × Number of HCHO molecules
Number of incident photons

× 100%

(App) quantum yield of CH3OH (%) =
6 × Number of CH3OH molecules

Number of incident photons
× 100%

(App) quantum yield of CH4 (%) =
8 × Number of CH4 molecules
Number of incident photons

× 100%.
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nonmetal ion doping can shift the adsorption edge of the cata-
lyst material toward longer wavelengths, enabling adsorption 
of visible light and that absorption is important for harnessing 
solar energy [147–149]. Nitrogen and iodine are well-studied 
material for their red shift optical behavior and they improve the 
visible-light absorption properties of wide-band-gap semicon-
ductor materials [150].  TiO2 is considered to be very prominent 
and potentially studied semiconductor material which has been 
investigated and developed [151]. Some important parameter 
for selectivity of the product includes temperature, pressure, 
and nature of the photocatalyst [152]. On the basis of these 
parameters, liquid-phase system is preferable. Many up-to-date 
research efforts have primarily focused on liquid samples, leav-
ing the gas phase largely unexplored. This bias toward liquid-
phase studies is often due to analytical limitations, as it is easier 
to analyze and quantify products in a liquid medium. However, 
this focus on liquid-phase studies has left the investigation of 
gas-phase products relatively neglected and less well under-
stood. Gas phase system are reported solar products which are 
strongly dependent on the photocatalytic process, CO and  CH4 
and their metal-doped properties are more functional for their 
production [153]. Among all metals, platinum (Pt) exhibits 
favorable results for methane due to higher surface electron 
density [154, 155]. Similarly, Cu [156], Ag [157], Ni [158], 
Mg [159], Au [160], Rh [161], and graphene [162] produce 
methane at a higher quantity in gas phase of  CO2 reduction. 
While in liquid-phase conversion of  CO2 reduction, the by-
product is mostly methanol  CH3OH. Materials like Cu [115, 
163], Ag [157], Ni [164, 165], Zn [166], and graphene-based 
material [167] are mostly studied broadly for their selectivity 
in photocatalytic  Co2 reduction, and their comparison is shown 
in Fig. 4.

The doping metal cations are more functional not only for 
creating space for active oxygen sites in reaction, but they are 
also for charge separation and adsorption through band-gap 
states. Contrary to this, we have to limit their concentration, 
because if dopant concentration increases, it will decrease the 
activity of photocatalytic  CO2 reduction.

5  Structural defects

Structural defects have crucial role in the photocatalytic 
 CO2 reduction process. These defects can include vacan-
cies, interstitials atoms, grain boundaries, and other lat-
tice imperfections in a photocatalytic material. Defects can 
impact the material’s electronic structure, surface reactivity, 
and charge carrier dynamics. All of these factors play a vital 
role in facilitating the  CO2 reduction reaction. These defects 
introduce localized energy levels within the band gap of the 
material, promoting the absorption of a broader range of light 
wavelengths. An increased light absorption can improve the 
effectiveness of the photocatalytic process. Moreover, defects 

can assist as trapping sites for charge carriers, leading to 
prolonged lifetimes and improved segregation of electrons 
and holes, which is essential for redox reaction involved in 
 CO2 reduction. However, excessive defects might lead to an 
increased recombination of charge carrier, offsetting the ben-
eficial effects [170–172].

Liu et  al.[173] performed an investigation on the 
nanocrystals structure of  TiO2 and found that  TiO2 poly-
mers can exhibit various crystalline configuration including 
(anatase, rutile, brookite, and  TiO2(B) polymorphs) [174]. 
It is worth noting that the formation of brookite is relatively 
infrequent or sporadic [175–177]. The photocatalytic  CO2 
reduction is found to follow the sequence anatase > brook-
ite > rutile [4]. Increase in generation of CO and  CH4 from 
 CO2 photoreduction in the existence of oxygen vacancies 
provides additional electronic states that can capture charge 
carriers  (e−/h+) generated upon light absorption.  Ti+3 species 
can act as electron donor, and its presence can also influence 
the charge carrier dynamics and surface activity, leading to 
an enhanced catalytic activity [173, 178]. Dislocations and 
grain boundaries are areas of crystal lattice mismatch within 
a material. These regions can create charge separation and 
accumulation zones, enchasing the disentanglement of pho-
togenerated electron–hole pairs, as a result, charge carries 
can migrate to these regions and participate in  CO2 reduction 
reaction. Recognizing and addressing these defects through 
precise material design, controlled synthesis techniques, and 
innovative surface modification strategies are crucial steps 
toward maximizing the performance of photocatalytic  CO2 
reduction.

Stimulated by the essential researches of  CO2 adsorption 
and dissociation at defect sites, incredible efforts have been 
done on the photocatalytic decrease of  CO2 by means of 
defect-mediated materials. For illustration, the co-exposed 
(001) and (101) facets of oxygen-deficient TiO2 nanocrystals 
were described to accomplish a quantum yield of 0.134% for 
 CO2 drop to CO underneath the expose of visible light [179, 

Fig. 4  Phase selectivity products in gas and liquid for  CO2 reduction 
[115, 152, 157, 160, 168, 169]
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180]. The electronic structure of catalyst is tuned by defect 
engineering, which extra advances the photocatalytic activity 
for the application of  CO2 reduction. For example, the defect-
rich  BiVO4 nanosheets were produced and executed in  CO2 
photoreduction. In the accumulation of vacancies persuaded 
by defects, the addition of interstitial and substitutional atoms 
into material lattice by doping [181]. The exotic atoms can be 
employed as active sites to alter the adsorption of  CO2 and 
related intermediates, forming various products. For illustra-
tion, it was described that the choosiness of  CO2 reduction 
could be mostly transformed by acquaint with various single-
atom metal sites to g-C3N4 matrix.

6  Graphene‑based nanomaterials

The initial isolation of graphene occurred and characterized 
in 2004 [182]. The diverse synthesis methods and distinc-
tive characteristics of nanomaterials based on graphene make 
them highly favorable contender for the future technologies. 
Graphene is like a super-thin layer of sheets composed of car-
bon atom arranged in hexagonal pattern and incredibly thin 
that its thickness of only 0.334 nm which makes it the slen-
derest material globally. And because one of a kind properties 
like larger surface area (~ 2600  m2/g) [183], higher electron 
mobility (200,000  cm2/Vs) [184], escalate thermal conduc-
tion (3000–5000 Wm/K) [185], maximal optical transpar-
ency (97.4%) [186], and possessing remarkable strength 
characterized by a high young’s modulus of 1TPa [187]. A 
carbon allotrope that exists primarily in a two-dimensional 
form composed of  sp2 carbon atom with hybridize orbitals 
is typically referred to as graphene (Fig. 5) by (Armano and 
Agnello) [188].

Apart from graphene, reduced graphene oxide (RGO), 
in addition to pure graphene, can serve as a viable material 
for  CO2 capture. When considering the production quantity, 
graphene oxide (GO) which is an intermediate product in gra-
phene synthesis is also a valuable candidate. Between 2014 
and 2022 in Fig. 6 [189], there has been remarkable threefold 
increase in the number of research publication focused on 
environmentally friendly methods for producing graphene 
from natural carbon resources.

Regarding the advancement of graphene, there have been 
significant development as considered a viable element for 
 CO2 capture application [190]. Graphene-based nanomateri-
als are the strongest cross-linking systems with strong light 
absorption and many functional groups. However, mass pro-
duction of catalysts is still a challenge in terms of morphol-
ogy, composition, and yield and cost control. This review 
provides an in-depth discussion of the combination of gra-
phene with other nanomaterials, leading to new nanocompos-
ites that can exhibit good properties such as rapid separation, 
transport, high surface area, and better  CO2 adsorption level. 

For charge transfer method heterojunctions, methods such as 
type II and type Z are common. In graphene heterojunctions, 
the graphene itself acts as electron tunneling, changing the Z 
type to the II type. Therefore, more attention should be paid 
to the Z shape of graphene-based nanomaterials (Table 2).

7  Summary and categories 
of graphene‑based composite 
photocatalyst

Table 3 summarizes the graphene-based composite photo-
catalyst for  CO2 reduction. In summary, the main finding 
indicates that the graphene-based composite designed for 
reducing  CO2 through photocatalysis typically involves a 
combination of graphene and semiconductors. In this setup, 
semiconductor captures light energy, while graphene serves 
as a co-catalyst. Furthermore, there are reports indicating 
that substances derived from graphene, like graphene oxide 
(GO) and nitrogen-doped graphene, can act like semiconduc-
tors. These materials have been shown to effectively use light 
energy to reduce  CO2. Hence, they can be seen as a different 
category of photocatalyst based on derivatives of graphene.

The  CO2 transformation process comprises two essential 
steps:  CO2 capture and subsequent transport to the catalytic 
site [216, 217]. Porous capture materials are rich in adsorp-
tive sites, yet they exhibit lower catalytic activity for  CO2 
reduction compared to semiconductor or precious metals 
[218, 219]. Hence, the overall photoreduction efficiency is 
primarily contingent on the transfer of  CO2 from the cap-
ture materials to the photocatalyst [220]. Consequently, to 
attain greater  CO2 conversion rates, an effective photocatalyst 
must possess both a substantial  CO2 adsorption capacity and 
minimum diffusion distance. Creating a porous composites 
structure involves integrating hyper-crosslinked polymers 
(HCP) onto graphene functionalized with  TiO2  (TiO2-FG) 
through an in situ knitting process. The HCPs, which consti-
tute organic microporous materials in their pure form, exhibit 
a substantial surface area, exceptional  CO2 adsorption capac-
ity, and remarkable physiochemical durability. Notability, this 
instance represents the integration of microporous organic 
polymers with photocatalyst for  CO2 conversion, a distrac-
tive approach amid the numerous reported photocatalytic 
methods. The  TiO2-G composite is first obtained through the 
reduction of graphene oxide (GO), followed by the in situ 
growth of anatase  TiO2 crystal featuring reactive [32, 215], 
via solvothermal process [221]. Ultra-thin polymer layer is 
hyper-crosslinked onto  TiO2-FG by knitting syn-PhPh3 and 
connecting them to the open phenyl groups on graphene. This 
well-defined HCP-TiO2-FG structure is expected to improve 
the adsorption capacity for  CO2 due to the enhanced char-
acteristics of HCPs, and the short diffusion distance around 
the  TiO2 photocatalyst. This structure envisioned to boost 
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the reactivity of  CO2 molecules, fascinating the production 
of  CH4. Well-defined structure is depicted in Fig. 7 [222].

Morphology of as above composites HCP-TiO2-FG was 
inspected by FE-SEM, TEM, and atomic microscopy (AFM). 
Using FE-SEM analysis, we found that the pure HCPs, pro-
duced through our previous knitting technique, displayed 
structural layering within their bulk composition. In XRD, 
the samples compromised exclusively of anatase  TiO2 crys-
tals. Incorporating HCPs layer did not induce any change 

in the crystal phase of  TiO2, but it did lead to a noticeable 
enlargement in the particular size in Fig. 8a, and the surface 
structure and composition is given by XPS measurement. In 
contrast to  TiO2-G, the strength of Ti and O signal peaks in 
 TiO2-FG and HCP-TiO2-FG gradually diminished, primarily 
because of  TiO2 content. In high-resolution C1s spectra, the 
proportion of  sp2 and  sp3 signal exhibits an upward trajectory 
following the functionalizing and knitting. This change was 
attributed to an increase in the  sp2 presence in comparison 

Fig. 5  Two dimensional structure of graphene: a SLG structure, A and B sublattice denotes carbon positions, b BLG stacking types, c TLG stak-
ing types, and d π covalent bond and sigma bond arrangement in the hexagonal lattice of graphene [186, 189]
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to the generation of  sp3 C [223], as shown in Fig. 8b; nota-
bly, the peak of Ti2p experienced a shift of approximately 
(~ 0.2 eV) toward higher energy upon the creation of HCP 
layers. This electronic conformation shows the interaction 
between HCP and  TiO2. FT-IR spectrum of  TiO2-FG, the 
FT-IR spectrum of HCP-TiO2-FG distantly exhibits pro-
nounced C–H-stretching vibration of methylene around 
2920  cm−1 and distinctive peaks related to the vibrations of 
the aromatic ring skeleton at approximately 1485  cm−1 [224, 
225]. Incorporating phenyl groups into  TiO2-FG led to the 
emergence of supplementary peak at 136.7 ppm within the 
carbon region. This peak was attributed to the functionali-
zation of  TiO2-G. Additionally, the resonance at 127.2 ppm 
was assigned to the  sp2 carbon of graphene. The increase 
intensity of resonance peak around 136.7 ppm can be attrib-
uted to the abundant introduction of  sp2 carbon through the 
process of knitting syn-phph3 with  TiO2-FG to create HCP-
TiO2-FG and simultaneously the formation of methylene 
with new peak at 32.9 ppm Fig. 8c [222]. The composite 
structure HCP-TiO2-FG outstanding thermal stability even 
at temperature as high 400 °C due to presence of HCPs lay-
ers firmly on graphene. Porosity measurement is shown in 
Fig. 8d, both  TiO2 and  TiO2-FG shown IV isotherms, with 
less nitrogen adsorb quantity, these findings suggest limited 
surface area and the presence of mesoporous [226, 227]. The 
substantial specific surface area and the presence of numer-
ous ultra-microspores in the HCP-TiO2-FG composite have 
prompted us to explore its gas adsorption capabilities [228, 
229]. Remarkably, HCP-TiO2-FG exhibits  CO2 uptake, 
impressive 12.87% at 1 bar and 273.15 K, to contextualiza-
tion these findings comparative analysis with various porous 
photocatalysts reported under analogues condition, as shown 
in Fig. 8e, f.

The integration of a semiconductor along with any pho-
tosensitizer or organic sacrificial reagent (Fig. 9a, b) shows 

the production  CO2 conversion products within a 5 h pho-
tocatalytic reaction, facilitated under visible-light condition 
(λ = 420 nm). Notably, this processes yielded the primary 
gases CO and  CH4, generated through 2e and 8e reduc-
tion processes [221]. The porous HCP-TiO2-FG catalyst 
exhibited a notable average conversion efficiency at rate Re 
of 264 µmol  g−1  h−1. Additionally,  CH4 and CO rates are 
27.6 µmol  g−1  h−1 and 21.63 µmol  g−1  h−1. Figure 9c shows 
as HCP-TiO2-FG material displayed a remarkable 83.7% 
electron consumption selectivity for  CH4 production, while 
also effectively preventing  H2 evolution during the photocata-
lytic reaction. This underscores its high selectivity of  CO2 
photoreduction and the undesired  H2O reduction.  CO2 con-
version products were scarcely observed (< 1 µmol  g−1  h−1) 
in the case of commercial  TiO2 (P25) and pure  TiO2 featur-
ing reactive (001) facets. This was primarily attributed to 
their constrained light absorption in the visible spectrum, 
in Fig. 9d. The combination of  TiO2 with graphene, result-
ing in  TiO2-G, and significantly enhanced  CH4 production 
(to 2.42 µmol  g−1  h−1) through the improvement of visible-
light adsorption and electron transport properties [230–232]. 
Incorporating porous HCPs layers enriched the adsorption 
sites, leading to elevated  CO2 uptake and enhanced visible-
light absorption [233]. Consequently, the creation of the well-
structural HCP-TiO2-FG composite significantly elevated the 
rate of photocatalytic  CO2 reduction. To assess the effec-
tiveness of charge separation, transparent amperometric I–T 
curves were recorded during exposure to visible light. As 
shown in Fig. 9e, the resulting materials demonstrate excel-
lent photocurrent stability throughout light on–off cycles, 
aligning consistently with the photocatalytic assessments. 
Notably, the pure  TiO2 system displayed a minimal signal, 
HCP-FG exhibits a weak photocurrent response, while the 
HCP-TiO2-FG composites show better current intensity 
[234]. The route for charge carrier transfer and separation 
is typically contingent on the band gap of the photocata-
lyst [235]. HCP-FG exhibits its highest occupied molecular 
orbital (HOMO) and lowest unoccupied molecular orbital 
(LUMO) energy levels positioned at − 5.34 eV and − 3.00 eV 
verses vacuum level shown in Fig. 9d obtained by optical 
absorption. An overarching framework delineating the  CO2 
conversion process over the HCP-TiO2-FG photocatalyst is 
hereby put forth in Fig. 9f, and when exposed to visible-light 
irradiation, HCP-FG plays a dual role as a  CO2 adsorbent 
and a photosensitizer. It directly absorbs photons, thereby 
instigating the transition from the highest occupied molecu-
lar orbital (HOMO) to lowest unoccupied molecular orbital 
(LUMO) [236, 237].

Another brief mechanism for  CO2 reduction process over 
 CuInSnS4 a single metal sulfides, the context of this study, 
in situ Fourier-transform infrared spectroscopy is employed 
to analyze and contrast the reaction intermediates present 
on the catalyst surface [238]. No discernible macroscopic 

Fig. 6  Publication trends for graphene and its derivative over recent 
years [189]
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infrared absorption peaks corresponding to reaction inter-
mediate are observed on  Cu2S  SnS2 even in the presence of 
light irradiation. This absence may be attributed to their lim-
ited chemical interaction with  CO2 [239]. Conversely,  In2S3 
exhibits a pronounced activation effect on  CO2 adsorption 
at the surface when subjected to light irradiation [240] in 
Fig. 10a. Even in the absence of light,  CO2 chemisorbs onto 

 In2S3 evident from the 1150  cm−1 IR peak denoting an O–S-
stretching vibration [241], sufficient oxygen–sulfur bonding. 
The oxygen atom of  CO2 is chemically linked to the sulfur 
atom of  In2S3 [242]. Under light exposure, specific infrared 
peaks on the catalyst surface are detected. 1225  cm−1 peak 
corresponding to bidentate bicarbonates vibrations, while 
the 1412  cm−1 peaks signifies monodentate bicarbonates 

Fig. 7  (I) Enhancing the functionalization of  TiO2-G through the formation of Diazonium salts. (II) Merging  TiO2-FG with syn-PhPh3 via sol-
vent knitting technique. Upper right corner provide the detailed sectional view of the HCP-TiO2-FG composite [221]

Fig. 8  Chemical composition, porous characteristics, and  CO2 
adsorption capacity of different photocatalyst. a XRD image, b  C1 
sketch HCP-TiO2-FG, c  C13 (CP/MAS), d  N2 adsorption at 77.3  K, 

and e, f volumetric  CO2 adsorption and desorption at 273.15 K and at 
298.15 K for 1 bar [221]



379Journal of the Korean Ceramic Society (2024) 61:367–390 

vibration [243]. Of particular significance, the 1610  cm−1 
peak is associated with the *COOH group, a critical inter-
mediate in the  CO2 reduction to CO process. Remarkably, 
the polymetallic sulfide  CuInSnS4 displays robust  CO2 chem-
isorption and substantial  H2O physisorption (Fig. 10b).

The  CO2 adsorption configuration on  CuInSnS4 is pivotal 
in determining its outstanding  CO2 photoreduction activity 
and selectivity. To investigate the  CO2 conversion pathways 
on the  CuInSnS4 photocatalyst surface, DFT calculation were 
conducted, as shown in Fig. 11.

The adsorption arrangement of  CuInSnS4 is illustrated for 
each for each incremental step, encompassing  CO2 adsorp-
tion through  CH4 generation. Various intermediate states, 
including  CO2*, COOH, CHO*,  CH2O*, and  CH3* and their 
corresponding C atom are depicted which consistently main-
tain strong bonds with electron-deficient sulfur atoms on the 
(111) plane of the  CuInSnS4 nano-signal crystal.

Fig. 9  The photoreduction of  CO2, optical and photoelectrical char-
acteristics, and the intricacies of the charge transfer pathways all con-
tribute to the assessment of the photocatalytic efficiency, specifically: 
a  CH4 and b CO in the context of photocatalytic  CO2 reduction, c 

average conversion efficiency rate of  CH4 and CO, d UV absorption 
of catalyst, e amperometric I–T curve of sample, and f suggested 
mechanism of charge separation and transfer in the composite photo-
catalyst HCP-TiO2-FG [221]

Fig. 10  In-situ FT-IR spectra for adsorbed  CO2: a  In2S3 and b  CuInSnS4 [238]
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8  Advantages of using carbon materials 
for  CO2 reduction

Using carbon materials in photocatalytic reaction has advan-
tages like providing more spaces for reactions, making  CO2 
easier to work with, separation of charges and absorbing 
more light energy for better performance. Materials made 
from carbon, like graphene oxide, graphene, carbon nano-
tubes (CNTs), and g-C3N4, offer an expanded surface area of 
the catalyst, when they are combined [244]. g-C3N4 has many 
imperfections on its surface, because it contains hydrogen 
atoms and has an abundance of electrons. These imperfec-
tions make it useful for catalytic reactions as they help elec-
trons move around more easily on the surface of catalyst. 
Yang et al. created nanosheets made of NiAl-layered double 
hydroxide (NALDH). They then joined these nanosheets with 
g-C3N4 nanosheets and observed a very closed connection 
between the two nanosheets, forming a strong heterojunc-
tion [245, 246]. Additionally, they include graphene aerogels, 
which played a role in extending the structure into network-
like structure. In this research, they used both graphene 
nanosheets as well as aerogels to enhance the performance 
of the photocatalyst. Creating these extremely close connec-
tions between sheets reduced the distance for the conveyance 
of electric charges and also gave plenty of active sites for 
chemical reaction to occur. Using  N2 adsorption–desorption 
measurements, a significant enhancement in the specific 
surface area and pore volume was determine over a broad 
range, as shown in Fig. 12a [247]. In recent work by Chen 
et al. combined porous carbon nanofiber with added nitrogen 
with the mixture of nickel and molybdenum phosphide (Mo/
Ni-PS@PAN), they used a method involving phosphatization 

to make the catalyst particular larger, increasing their size 
from 20 to 50 nm. They conducted carbonization to further 
enlarge the size. When nanoparticles of MoP were mixed 
with evenly spread-out nickel atoms, it produced a material 
known as NiMoP@NCPF, through the process of carboniza-
tion the size expend from 50 to 100 nm, as shown in Fig. 12b, 
c. The porous structure of the material they obtained played a 
pivotal role in enhancing  CO2 adsorption while carrying out 
the photocatalytic reduction reaction as indicated in Fig. 12d 
[248].

Apart from the characteristic of pore structures, the way 
gases interact with the surface is also vital for  CO2 adsorp-
tion. Therefore, when we modify the surface of carbon 
materials, we can make  CO2 molecules more polar and thus 
enhance their adsorption. This is achieved by incorporating 
the fundamental functional group within the carbon frame-
work [249–251]. Various forms of carbon materials have been 
utilized as support materials for the photoreduction of  CO2. 
Carbon-based materials hold tremendous promise for their 
high efficiency in  CO2 adsorption to their adjustable structure 
and ample surface area [252]. As g-C3N4, it can have a sub-
stantial surface area. In certain instance, graphene materials 
can be modified by adding protons, utilizing substances that 
protonate to boost area of interest. In recent research, Wu 
et al. conducted innovative research where they used g-C3N4 
as a template. They created layer of g-C3N4 and introduced 
a combination of Ni/Co metal into the empty spaces within 
g-C3N4 using phosphoric acid [253–255]. With the addition 
different amounts metal dopants, it caused a transformation 
in the microstructure leading the formation of g-C3N4-Ni-
Co with various sizes, as shown in Fig. 13a–c. And by add-
ing bimetallic dopant will create more hole in g-C3N4 which 
increase the nitrogen vacancies [256]. Figure 13d shows the 

Fig. 11  a Calculate adsorption 
configuration of  CO2 & reactive 
on  CuInSnS4, and b Gibbs free 
energy of  CO2 to  CH4 [238]
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catalyst activity at different proportions and the by-product is 
formed is CO, the porous structure provides numerous spots 
and a broad catalytic surface area, speeding up the reaction. 
As a result, this significantly boost the CO production rate to 
13.51 mmol/g/h, which is surpassing the achieved value by 
a factor 3.9 times, with g-C3N4, as shown in Fig. 13e [257].

Numerous research articles have been extensively 
explored the field of  CO2 photoreduction, with semicon-
ductor like  TiO2 emerging as the promising candidates for 
achieving reliable results. Despite notable achievements in 
this area, several challenges persist in the development of 
semiconductor photocatalyst, including low thermal and 
chemical stability, and reduced efficiency under specific 
conditions. In contrast, polymeric materials exhibit range 
of appealing characteristics, including cost-effectiveness, 
low toxicity, widespread availability, and light weight 
nature, ease of synthesis and use, and excellent flexibil-
ity [258, 259]. g-C3N4 stands out as an appealing poly-
meric photocatalyst, demonstrating superior performance 
even without the need for need metal composites of noble 
metal. In polymeric materials, the production of  (e−) and 
 (h+) pairs occurs more rapidly compared to semiconduc-
tor photocatalyst like g-C3N4, primarily due to the pres-
ence of piled π bonds [260–263]. These accumulated π 
bonds within polymers facilitate instant charge transfer 
processes, as they were well candidates for catalyzing the 
 CO2 photocatalytic reduction [260, 264–267]. The role of 

these stacked π bonds in  CO2 photoreduction is significant, 
although research in this area for π conjugated materials 
are is still in its nascent stages. These stacked π bonds can 
play a pivotal role in the photoreduction of  CO2; however, 
research on π conjugated materials is still in nascent stages 
[258].

Intensified research into polymeric materials derived 
from carbon holds greater promise for enhancing the pho-
tocatalytic reduction of  CO2 when compared to current 
semiconductor photocatalyst. While these promising mate-
rials have shown favorable outcomes, further adjustments 
and the fine-tuning of band gaps are essential to achieve 
optimal results. It is crucial to consider both materials 
design and reaction methodology in this context. However, 
equally significant is evaluating the overall performance 
and sustainability of the entire energy generation and con-
version process. With the aim of producing environmen-
tally friendly fuels and mitigating the greenhouse effect in 
the future, it necessitates a more through and expansive 
investigation. This entails employing advanced tools and 
conducting detailed studies to gain a deeper understanding 
of these reaction [267–270].

Fig. 12  a  N2 adsorption and desorption curves and the accompanying 
image depicting pore size spread image of NALDH. Reproduced with 
the permission from reference [247]. b, c SEM image of NiMoP@

NCPF, and d BET (Brunauer–Emmett–Teller) of NiMoP@NCPF and 
NiMoP@NCSF [248]
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9  Conclusion

In a global context increasingly oriented toward sustainable 
solutions, photocatalytic carbon dioxide photoreduction 
emerges as a pioneering innovation, presenting a promising 
avenue for addressing carbon emissions. By leveraging the 
transformative potential of light to convert carbon dioxide 
into valuable resources, this approach not only tackles envi-
ronmental challenges but also unveils a spectrum of pos-
sibilities for cleaner energy and greener technologies. This 
comprehensive review primarily centers on elucidating the 
factors influencing product outcomes in  CO2 photoreduction.

CO2 photoreduction, while holding promise as a sustain-
able approach for mitigating carbon emissions, confronts 
several challenges. The primary hurdle lies in the inherently 
low efficiency of the photoreduction process due to the lim-
ited absorption of solar radiation by  CO2 and the competitive 
reduction of protons to hydrogen. Furthermore, a significant 
challenge is the selectivity toward desired products, often 
resulting in the generation of undesired by-products. Prod-
uct distribution forms the basis for tailoring catalyst yield of 
desired products, emphasizing the necessity of achieving a 
delicate equilibrium between product selectivity and overall 
process efficiency. Thermodynamic considerations, such as 

redox potential and Gibbs free energy, offer insights into the 
energy requirements and feasibility of the process, predicting 
electron pathways and routes for optimal conditions condu-
cive to efficient  CO2 reduction. Additionally, the adsorption 
and  CO2 activation properties eliminate product oxidation, 
maximizing efficiency. This implies that a purposefully engi-
neered semiconductor with an enhanced adsorption ratio 
facilitates reaction kinetics.

Optimizing the compositional balance between these fac-
tors, although challenging, is essential for achieving high effi-
ciency in  CO2 photoreduction, necessitating further modifica-
tions. To ascertain production yield, differentiation between 
derivation from  CO2 and impurities is imperative, achievable 
through isotope labeling in nano-scale probes.

To address the challenges involved in engineering of pho-
tocatalytic materials with enhanced properties’ development 
of innovative reactor system is crucial. Perspective solutions 
involve the engineering of photocatalytic materials with 
enhanced light absorption properties and tailored catalytic 
sites for improved selectivity. Integration of tandem catalysis, 
wherein multiple catalytic processes are sequentially cou-
pled, may further enhance overall efficiency. Future strate-
gies should focus on the exploration of novel materials, such 
as semiconductor nanomaterial and molecular catalysts, and 

Fig. 13  a–c SEM visual representation of g-C3N4-Co1.6-Ni0.4 in various sizes, d CO generation time, and e CO production rate g-C3N4–Cox-Niy 
[257]
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the implementation of advanced computational approaches to 
guide catalyst design. Concurrently, a thorough investigation 
into photostability is imperative. The development of a robust 
and stable photocatalytic system capable of sustained opera-
tion under diverse conditions remains a critical objective. 
Additionally, efforts toward understanding the fundamental 
mechanistic aspects of  CO2 photoreduction will be pivotal 
for optimizing and scaling up this technology to contribute 
substantively to carbon management and sustainable energy 
systems.
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