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Abstract
The photovoltaic properties depend on the internal (IQE) and external (EQE) quantum efficiency. However, to calculate this 
quantum efficiency theoretically, we have determined the optical and electronic properties of  Cd1−xZnxTe bulk and CdTe 
thin film. CdTe thin film is immensely interesting narrow band gap semiconductor with high absorption 100 ×  104  cm−1 
for the visible solar spectrum having promising applications in new-generation electronics and photo-electronic devices. 
 Cd1−xZnxTe bulk is a semiconductor with a narrow bandgap value. The band gap values decrease slightly linearly from 
1.708 to 1.642 eV with increase of Zn content. Optical reflectivity and absorption are discussed in detail. The IQE and EQE 
quantum efficiency of CdTe thin film and Zn doping CdTe bulk are investigated and analyzed. Our results are more consist-
ent with the experimental results.
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1 Introduction

Photovoltaic is environmentally friendly [1, 2]. In fact, the 
photovoltaic properties depend on the internal (IQE) and 
external (EQE) quantum efficiency [3–6]. Theoretically, the 
quantum efficiency is related by determination of the optical 
properties [7–9]. Specifically, IQE is the ratio of the number 
of electronic charges collected to the number of photons 
absorbed. It makes it possible to overcome the reflectance 
and the transmittance of the cell. It only takes into account 
the absorbed photons [10, 11]. It means that the 1-R factor is 
always less than 1. This explains that the IQE is always big-
ger than the EQE [12, 13]. However, when the IQE is low, 
the active layer of the solar cell is not able to take advantage 
of all the photons [14].

Currently, the CdTe thin-film solar cell technology is 
widely produced in the world [15, 16]. This is because CdTe 
is chemically stable [17] and has distinct properties i.e. it 
has a direct band gap close to 1.5 eV, just in the middle of 
the solar spectrum, and possess high-absorption coefficient 

(α) (>  104  cm−1) for the visible solar spectrum [18, 19]. The 
EQE of CdTe thin film remarkable electron photon of about 
92% and short circuit with current density greater than 25 
(mA/Cm2) [20]. With regard to the open circuit voltage of 
the CdTe it breaks the 1 V barrier [21].

On the other hand, CdTe can be easily doped with either 
p-type or n-type semiconductors. Furthermore, in the peri-
odic table. We find that the elements in the first and fifth 
columns act as acceptors, while the elements in the third 
and seventh columns act as donors. Moreover, some of these 
elements show a particular behavior in CdTe, depending on 
their place(s) in the crystal lattice.

Recently, work intensively obtained high-class CdZnTe 
crystals at a low cost. Due to their working potential at room 
temperature. Since it works at room temperature, it is also 
very important for nuclear detectors [22, 23].

In this work we will study the effect of Zn-doping CdTe 
bulk on external EQE and internal IQE quantum efficiency 
using FP-LAPW method and to compare the results obtained 
with the experimental results.
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2  Computational detail

The DFT calculation implemented on Wien2k package 
employed to calculate the electronic and optical properties of 
 Cd1−xZnxTe (0 < x < 0.5) bulk and CdTe thin film. The lattice 
parameter of CdTe is a = 6.529 Å (Fig. 1) [24]. GGA-PBE 
is used to describe the electron–electron exchange and cor-
relation potential. While TB-mBJ approximation is used to 
ameliorate the gap’s energy [25–27].

The modified Becke–Johnson (mBJ) potential read as:
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The cut off energy is − 9.0 Ry. The full Brillouin zone is 

defined with 10 × 10 × 10 meshesof Monkhorst–Pack k points. 
The electronic states 4d10 5s2, 3d10 4s2 and 4d10 5s2 5p4 are 
considered as the valence states of Cd, Zn and Te atoms 
respectively.

The absorption and reflectivity are calculated from the 
dielectric function [28]:

With ε1(ω) is the real part and ε2(ω) the imaginary part
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2 are reflectivity and absorption 
respectively. N is the number of layers in the thin film struc-
ture. It’s N = 1 if the structure is bulk.

The internal quantum efficiency (IQE) is given by:

3  Discussion and results

3.1  Electronic properties

Studying electronic properties of materials gives us an idea 
of all physical properties of these materials. These proper-
ties are manifested in the total and partial electron density.

The calculated density of states (DOS) of our materials 
is discussed in terms of the contribution of the constituent 
atoms various s, p, and d-states. The Fermi level is marked 
with dashed lines, which are located at point zero.

3.1.1  CdTe thin film

The total and partial density of CdTe thin film plotted in 
Fig. 2. Figure 2a shows that CdTe is a semiconductor with a 
narrow band gap 1.58 eV using TB-mBJ. This value in good 
agreement with the value found theoretically by LDA + U 

(4)IQE =
EQE

1 − R
.

Fig. 1  Structure of Zn-doped CdTe
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(1.53 eV) [24] and experimentally value (1.5 eV) [29]. 
As shown in Fig. 2b, the Te-p and Cd-d orbitals are often 
responsible for this band gap. In Fig. 3 we plotted the band 
structure of CdTe thin film. This figure demonstrate that 
the CdTe thin film has direct band gap (Γ–Γ) property. This 
property makes CdTe thin films suitable for single-junction 
solar cells and ideal for photovoltaic applications [30].

3.1.2  Cd1−xZnxTe (0 < x < 0.5) bulk

The total (TDOS) and partial (PDOS) density of 
 Cd1−xZnxTe bulk are plotted in Fig. 4a and b. Figure 4a 
shows that  Cd1−xZnxTe bulk have semiconductor charac-
ter with a narrow band gap 1.708, 1.673 and 1.642 eV 
for x = 0, 0.25 and 0.5 using TB-mBJ approximation. Fig-
ure 4a shows the dependence of the change in the bandgap 
value on the change in the zinc content in  Cd1−xZnxTe 
bulk. The bandgap value decreases linearly from 1.708 to 
1.642 eV using TB-mBJ when substituted Zn in Cd [31], 
which may be due to the quantum nature of  Cd1−xZnxTe 
bulk. THIS may be due to the quantum nature of these 
systems A new energy levels appear in the positive energy 

region [3.34 eV, 3.67 eV] due to Zn atom, which are absent 
in the band diagram of pure cadmium telluride.

3.2  Internal and external quantum efficiency

The calculation of the external and internal quantum effi-
ciency and photovoltaic properties linked by the calculation 
of absorption and reflectivity.

3.2.1  CdTe thin film

The absorption curve of CdTe thin film is presented in 
Fig. 5a). The three peaks correspond to a direct (Γ–Γ) tran-
sition. The direct optical transition mainly goes from the 
occupied state of the valence band (VB) Te-p and Cd-d. 
The transition band 3–4 eV ranges between the Te-p, Cd-s 
in valance band and Te-p Te-s, Te-d, Cd-d and Cd-s. The 
transition band 5–6 eV ranges between the Te–d state and 
the Te-p state in the conduction band. Band transitions from 
6 to 8 V come from the Te–s state, Te-p and the Cd-d in 
valence band and Te-p Te-d states in the conduction band. 
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Fig. 2  TDOS (a) and PDOS (b) of CdTe thin film using TB-mBJ approximation

Fig. 3  Energy band structure 
calculated using GGA (a) and 
TB-mBJ (b) approximations of 
CdTe thin film
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Fig.4  a Total DOS of Zn-doping CdTe using TB-mBJ approximation. b Partial DOS of Zn-doping CdTe using TB-mBJ approximation. c Band 
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However, the reflectivity of CdTe display in Fig. 5b. It has 
starts at 0.184%. Several peaks are seen in the reflectivity 
plot which is due to electron transition.

Figure 6a displays the external quantum efficiency EQE 
for CdTe thin film. The maximum of EQE for CdTe is equal 
to 72.55% above band gap 1.58 eV. This value very close to 
that found experimentally 80% [32] and 92% [20]. Regarding 
Fig. 6b the maximum internal quantum efficiency of CdTe 
thin film was above 100% when the light energy is larger 
than the band gap 1.58 eV. This value of IQE demonstrates 
efficient conversion of absorbed photons into electrons and 
shows that efficient transport of these carriers out of the 
apparatus [33].

3.2.2  Cd1−xZnxTe (0 < x < 0.5) bulk

The absorption curve of  Cd1−xZnxTe bulk is presented in 
Fig. 7a. The first peak mainly starts from the occupied state 
of the valence band (VB) Te-p and Cd-d for CdTe and Te-p, 
Zn-d and Cd-d for Zn doping CdTe. The transition band 
3–4 eV ranges between the Te-p, Cd-s in valance band and 
Te-p Te-s, Te-d, Cd-d and Cd-s in conduction band. While 
when Zn doped Cd, this peak also goes from Zn-s in valence 
band and conduction band. In addition, the absorption spec-
tra show that with an increase in the Zn concentration, the 
absorption edges shift towards shorter waves. In addition, 
there is a high absorption of the  Cd1−xZnxTe materials under 
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Fig. 5  Absorption (a) and reflectivity (b) of CdTe thin film vs. of photon energy
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study for the infrared and visible range of solar radiation. 
This kind of materials active in infrared and visible radia-
tion are generally suitable for endemic photovoltaic devices 
[34]. However, the reflectivity of  Cd1−xZnxTe bulk display in 
Fig. 7b. The R curve for three materials starts approximately 
from the same point 0.189%.

Figure 8 display the external quantum efficiency EQE 
vs. photon energy of  Cd1-xZnxTe bulk. The maximum 
of EQE of Zn doping CdTe is equal to 44%, 43.79% and 
43.71% when the light energy is larger than the band gap 
1.708 eV, 1.673 eV and 1.642 eV for CdTe,  Cd0.75Zn0.25Te 
and  Cd0.5Zn0.5Te bulk, respectively.

Figure 9 displays the internal quantum efficiency IQE vs. 
photon energy of Zn doping CdTe bulk. The maximum of 
IQE is higher than 76.35%, 75.88% and 75.11% when the 
light energy is greater than the band gap 1.708 eV, 1.673 eV 

and 1.642 eV for CdTe,  Cd0.75Zn0.25Te and  Cd0.5Zn0.5Te bulk 
respectively.

4  Conclusion

The CdTe thin film was successfully studied using density 
functional theory (DFT) calculation. The direct band gap is 
evaluated as 1.58 eV with high-absorption 100  104  cm−1 for 
the visible solar spectrum. Internal quantum efficiency (IQE) 
and external quantum efficiency (EQE) are determined. We 
found good results compared to those found experimentally 
and theoretically.

Regarding  Cd1−xZnxTe bulk we demonstrated that Zn-
doped CdTe bluk decreased the bandgap to an optimal 
value, which led to the fact that  Cd1−xZnxTe bulk can 
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become a promising candidate for work in solar cells 
application. The obtained results of studies of the elec-
tronic properties of these materials were compared with 
existing experimental data and other theoretical calcula-
tions. The absorption spectra show that with an increase 
in the Zn concentration, the absorption edges shift towards 
shorter waves. Internal quantum efficiency (IQE) and 
external quantum efficiency (EQE) of Zn doping CdTe 
bulk are investigated.
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