ORIGINAL ARTICLE

Crack-free TiO₂ films prepared by adjusting processing parameters **via liquid phase deposition technique**

Jie Li1 · Hai‑Yan Xu1,2 [·](https://orcid.org/0000-0001-5749-7925) Ai‑Guo Wang1 · Feng‑Jun Zhang1,2 · Dao‑Sheng Sun1 · Won‑Chun Oh[3](https://orcid.org/0000-0002-0154-7388)

Received: 30 October 2019 / Revised: 25 November 2019 / Accepted: 9 December 2019 / Published online: 3 February 2020 © The Korean Ceramic Society 2020

Abstract

TiO₂ thin films with controllable morphology and grain size were prepared via a liquid phase deposition (LPD) technique. The effects of the processing parameters including the $(NH_4)_2$ TiF₆ concentration, solution pH, and $(NH_4)_2$ TiF₆:H₃BO₃ molar ratio on the grain size and morphology of the flms were investigated. The prepared samples were characterized by X-ray difraction, scanning electron microscopy, and ultraviolet–visible spectroscopy. The results showed that the deposition parameters signifcantly afected the growth and nucleation velocities of the crystalline grains, which resulted in the formation of TiO2 flms with diferent morphologies and grain sizes. The capillary stress among the grains of the flm, which resulted in the cracking of the film, depended on the size of the grains. Thus, the cracking of the LPD-derived $TiO₂$ films could be mitigated by adjusting the deposition parameters.

Keywords $TiO₂$ thin film \cdot Morphology control \cdot Size control \cdot Crack-free

1 Introduction

As one of the most promising semiconductors, titanium dioxide (TiO₂) has been extensively utilized in organic pollutant degradation [\[1](#page-5-0), [2\]](#page-5-1), solar energy conversion [[3–](#page-5-2)[7\]](#page-5-3), and photoelectrochemical water splitting $[8-11]$ $[8-11]$. Although TiO₂ shows good stability, non-toxicity, low cost, and high photocatalytic activity, its wide bandgap (3.2 eV for anatase) limits its applications in visible light [[12,](#page-6-0) [13](#page-6-1)]. Owing to their recycling ability, $TiO₂$ thin films deposited on various substrates have gained immense attention over the past 2 decades [\[14](#page-6-2), [15](#page-6-3)].

 \boxtimes Hai-Yan Xu xuhaiyan@ahjzu.edu.cn

 \boxtimes Won-Chun Oh wc_oh@hanseo.ac.kr

- ¹ Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei, Anhui 230022, People's Republic of China
- ² Key Laboratory of Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei, Anhui 230601, People's Republic of China
- Department of Advanced Materials Science and Engineering, Hanseo University, Seosan 31962, Korea

Liquid phase deposition (LPD) is a novel soft wet chemical technique for preparing various metal oxide flms. Unlike other flm-preparation techniques, LPD does not require vacuum, high temperature, expensive equipment, and special substrates $[16, 17]$ $[16, 17]$ $[16, 17]$ $[16, 17]$ $[16, 17]$. However, TiO₂ thin films prepared by the LPD method are highly susceptible to cracking [\[18](#page-6-6)]. $TiO₂$ thin films undergo cracking during drying because of the presence of capillary stress.

Gong et al. $[19]$ $[19]$ reported that the cracking of $TiO₂$ films can be mitigated by doping them with tungsten. At the tungsten content of 5% (at. %) the cracking of the flm could be eliminated completely. Zhang et al. [[20](#page-6-8)] reported that the deposition of WO_3 on TiO₂ films result in the formation of flower-like WO_3 crystals, and the cracks in LPD TiO_2 films can be completely eliminated by coating the surface of $TiO₂$ with WO_3 . The morphology of TiO₂ films can be tailored by adjusting the experimental conditions. Cheng et al. [[21\]](#page-6-9) reported that the substrate type afects the structural properties of TiO₂ thin films. The surfaces of TiO₂ films deposited on Si substrates are rougher than those of the flms deposited on glass. Lei et al. $[22]$ reported that $TiO₂$ monolayer flms show an acicular rod-like surface morphology, whereas SnO₂−TiO₂ bilayer composite films exhibit a network-like surface morphology with aggregated tiny $SnO₂$ nanosheets. Huang et al. [[23](#page-6-11)] reported that the deposition rate and surface roughness of $TiO₂$ films can be controlled by adjusting

the H_3BO_3 concentration. The results showed that high boric acid concentrations neutralized HF in the reactive solution, thereby generating flms with high surface roughness and large particle sizes.

In this study, we investigated the relationship between the deposition processing parameters (precursor concentration, solution pH, and precursor molar ratio) and the microstructure of $TiO₂$ films prepared by LPD. The cracking of the flms could be mitigated by controlling their morphology by varying the deposition conditions.

2 Materials and experiment

2.1 Chemicals

All the chemicals used in this study including ammonium fuorotitanate (95% purity), boric acid (99.8% purity), hydrofuoric acid, hydrochloric acid, acetone, and absolute ethanol were purchased from Sinopharm Chemical Reagent Co., Ltd (China) with analytical grade and were used without any further purifcation. Deionized (DI) water was used to prepare the reaction solution.

2.2 Preparation of TiO₂ thin films

The LPD method was used for preparing the thin flms. Prior to the preparation of the $TiO₂$ thin films, the glass substrates $(2 \text{ cm} \times 2 \text{ cm})$ were washed sequentially with acetone, absolute ethanol, and DI water for 10 min. Dilute HF (1:4 in volume) was used to etch the glass substrates for 1–3 min. The substrates were then rinsed with DI water and dried in air. The pH of the mixture of (NH_4) , TiF₆ and H₃BO₃ was adjusted by adding diluted HCl. The pre-treated substrates were then horizontally immersed (with the surface upside down) in the prepared solution in a beaker. The beaker was then heated at 80 °C for 3 h. The substrates were then taken out, rinsed with DI water, and dried in air at 60 °C.

2.3 Characterization

The phase compositions of the products were analyzed by X-ray difraction (XRD, Germany Bruker Science, Co. Ltd Bruker D8 ADVANCE) with monochromatized Cu–K radiation (λ = 0.1541874 nm). The morphologies of the products were examined using scanning electron microscopy [SEM, JEOL JSM-7500F (Japan)] at an acceleration voltage of 10 kV. The transmittance of the products was measured using ultraviolet–visible spectroscopy (UV–Vis, UV-8000S Yuanxi Instrument Co. Ltd, China).

3 Results and discussion

3.1 Phase structure analysis of the TiO₂ films

The XRD patterns of the samples with different raw material molar ratios are shown in Fig. [1.](#page-1-0) All the samples showed three sharp difraction peaks corresponding to the (101) , (004) and (200) $[24]$ $[24]$ planes of anatase TiO₂ (JCPDS) No. 21-1272). This indicates that the prepared samples were anatase titanium dioxide and showed good crystallinity. The samples showed no impurity peaks. No signifcant diference was observed in the shapes of patterns (a), (b), and (c) and their peak positions. This indicates that the (NH_4) ₂TiF₆: H₃BO₃ molar ratio did not affect the crystallinity of the obtained flms.

3.2 Efect of the precursor concentration on the TiO₂ films

The morphologies of the $TiO₂$ thin films obtained using 0.2 and 0.1 M $(NH_4)_2$ TiF₆ at pH = 2.0 and (NH_4) _{[2](#page-2-0)}TiF₆:H₃BO₃ = 1:1.5 are shown in Fig. 2a and b, respectively. The surfaces of both the flms showed a large number of cracks. These cracks resulted in the warping and peeling off of the films from the substrate (Fig. [2](#page-2-0)a2), which severely limited the practical applications of the films. Anatase $TiO₂$ films prepared by LPD generally show cracks [[25](#page-6-13), [26\]](#page-6-14). The optical microscopy observations revealed that the flms showed cracking only after complete drying and not after cooling and washing with DI water. This indicates that the flms cracked because of

Fig. 1 XRD patterns of the thin films with different (NH_4) ₂TiF₆: H3BO3 molar ratios. **a** 1:1.5; **b** 1:2, and **c** 1:3

Fig. 2 Surface morphologies of TiO₂ thin films prepared using different $(NH_4)_2$ TiF₆ concentrations: **a** 0.20 M; **b** 0.10 M; **c** 0.05 M; **d** 0.03 M and the $100,000 \times$ magnification micrographs of the TiO₂ thin films with the (NH_4) ₂TiF₆ concentrations of **e** 0.20 M, **f** 0.10 M

the mismatch in their coefficients of thermal expansion with that of the substrate $[18]$ $[18]$ $[18]$. According to the Laplace equation [[27](#page-6-15)],

$$
\Delta P = -2\gamma \cos \theta / r,\tag{1}
$$

where γ is the surface tension and r is the pore radius. When the pore size was less than 10 nm, the capillary stress, which caused the shrinkage of the flms was signifcant. The grain size of flms prepared from liquid solutions can be controlled by varying their growth and nucleation velocities. These velocities can be controlled by adjusting the ion concentration of the solution. The ion concentration can be simply adjusted by varying the concentration of the deposited solution. Therefore, crack-free $TiO₂$ films are obtained at low solution concentrations.

Figure [2](#page-2-0)c shows the SEM image of the flm prepared using 0.05 M (NH_4)₂TiF₆. The surface of the film was dense and uniform. The flm was composed of sub-micron-sized spherical clusters along with nano-sized grains $({\sim}80 \text{ nm})$. Figure [2](#page-2-0)d shows the SEM image of the flm prepared using 0.03 M (NH_4)₂TiF₆. The film showed flower-like morphology. There were some blanks among these fowers, and the surface density was low. The grains were elongated, but the size did not increase. This phenomenon occurred as follows [[28\]](#page-6-16):

$$
\left[\text{TiF}_6\right]^{2-} + n\text{H}_2\text{O} \leftrightarrow \left[\text{TiF}_{6-n}(\text{OH})_n\right]^{2-} + n\text{H}^+ + n\text{F}^-, \tag{2}
$$

$$
\left[\text{TiF}_{6-n}(\text{OH})_{n}\right]^{2-} + (6-n)\text{H}_{2}\text{O} \leftrightarrow \left[\text{Ti}(\text{OH})_{6}\right]^{2-} + (6-n)\text{HF},\tag{3}
$$

 $\overline{}$

$$
H_3BO_3 + 4HF \leftrightarrow BF_4^- + H_3O^+ + 2H_2O,
$$
 (4)

$$
[\text{Ti(OH)}_6]^{2-} + 2\text{H}^+ \leftrightarrow \text{TiO}_2 + 4\text{H}_2\text{O}.
$$
 (5)

These reactions proceeded smoothly towards the right when the concentration of $[TiF_6]^{2-}$ was high (0.1 M and 0.2 M). During the nucleation process, large quantities of raw materials were supplied and the solutions reacted quickly because of their high ionic concentrations. In this case, the nucleation velocity was much higher than the growth velocity, therefore, a large amount of $TiO₂$ grains were accumulated. However, the size of the grains did not increase, and the pore size remained small. The ΔP value increased according to Eq. ([1](#page-2-1)), resulting in the generation of cracks. The thin film prepared using 0.2 M $(NH_4)_2$ TiF₆ showed severe cracking as compared to the one prepared using 0.1 M (NH₄)₂TiF₆. This is because the higher $(NH_4)_2$ TiF₆ concentration resulted in smaller grains and pores. Fine clusters with the sizes of about 60–80 nm composed of a large number of fne grains with the sizes of less than 10 nm were observed (Fig. [2e](#page-2-0), f). On the contrary, in the case of the low ion concentration (0.03 M), the nucleation velocity was low and the diference between the growth velocities of diferent crystal planes increased because of the lack of growth units. Therefore, single grains grew into short rods with the size of ~100 nm. These short rods shared one end and aggregated to form fower-like particles because of the lack of nucleation sites.

The thin flms prepared with diferent ion concentrations showed signifcantly diferent optical transmittance owing to their diferent microstructures. The flms prepared using the high concentration solutions (0.10 and 0.20 M) were

Fig. 3 UV–Vis transmittance spectra of the flms with diferent (NH_4) ₂TiF₆ concentrations

transparent to visible light. However, the flms prepared using the low concentration solutions (0.03 and 0.05 M) were white and opaque to visible light. Figure [3](#page-3-0) shows the transmittance of the flms prepared at diferent ionic concentrations. The transmittances of the flms (in the visible light range of the spectrum) with the solution concentrations of 0.03 and 0.05 M were less than 30% (Fig. [3c](#page-3-0), d), while those of the flms with the solution concentrations of 0.10 and 0.20 M were higher than 70% (Fig. [3a](#page-3-0), b). It can be observed that the cracks on the 0.10 and 0.20 M flms showed no significant effect on their transmittance $(>70\%)$. The low transmittance of the 0.03 and 0.05 M flms can be attributed to light scattering. This is consistent with the microstructure observations of the flms (Fig. [2\)](#page-2-0). The grain size of the 0.10 and 0.20 M flms was less than 10 nm, which is much smaller than the visible light wavelength. Therefore, these flms were transparent to visible light. However, the grain size of the 0.03 and 0.05 M films was ~ 100 nm, which is of the same order of magnitude as the wavelength of visible light. The flms acted as inhomogeneous media for visible light. When photons hit the sub-micrometer $TiO₂$ grains, serious scattering occurred, which resulted in a low transmittance. Moreover, it can be observed that there were interference fringes on the 0.20 M flm. This indicates that the thickness and optical constants of this flm remained constant. When the flm was irradiated with photons, light interfered on the surface and interference fringes were generated.

The 0.1 and 0.2 M TiO₂ thin films showed absorption edges at \sim 306 and \sim 310 nm. On the other hand, the 0.03 and 0.05 M films showed absorption edges at \sim 300 nm. The absorption edge of the flms prepared at high concentrations showed a red shift. This can be explained by the surface effect of nano-materials. The high-concentration films showed crystalline grains with sizes less than 10 nm. The high surface energy induced lattice distortions in the films, which caused variations in the bond length of the films.

3.3 Effect of solution pH on the TiO₂ films

The reaction ion concentration of the deposition solution was afected not only by the concentration of the raw materials, but also by the pH of the solution and the molar ratio of the raw materials. Therefore, the efect of the solution pH on the size and morphology of the $TiO₂$ films was investigated. Figure [4](#page-3-1) shows the SEM images of the samples prepared with 0.03 M (NH_4)₂TiF₆ and 0.045 M H₃BO₃ at different pH values. A flower-like $TiO₂$ thin film was obtained at the solution pH of 1.5 (Fig. [4](#page-3-1)a). The grain size of this film was about 200 nm. The grains accumulated at particular sites and formed fower-like clusters. Furthermore, the fowerlike clusters grew sparsely on the surface of the substrate and a discontinuous flm was observed. At the solution pH of 2.0, the grain size of the obtained flm decreased to about 100 nm, and the micromorphology of the flm transformed to sphere-like clusters composed of \sim 100-nm grains. With a

Fig. 4 Surface morphologies of the $TiO₂$ thin films prepared at different pH values. **a** 1.5; **b** 2.0; **c** 2.3; **d** 2.5

further increase in the solution pH, the grain size of the flms decreased further and the density of the flms increased. As can be observed from Fig. [4c](#page-3-1) the flm prepared with the solution pH of 2.3 was uniform and dense and the grain size was only about 80 nm. The morphology of the flm with the solution pH of 2.5 is shown in Fig. [4](#page-3-1)d. No significant difference was observed in the morphologies of flms shown in Fig. [4d](#page-3-1) and c. The grains agglomerated into spheres with a size of ~ 150 nm and the flm was dense and compact. The grain size was less than 80 nm. The density of the $TiO₂ film$ on the surface of the substrate increased with an increase in the pH from 2 to 2.3. The morphology of the flm changed gradually from sparse fower-like to dense and compact clusters with an increase in the solution pH.

This phenomenon can also be explained by reactions [\(2](#page-2-2)), [\(3](#page-2-3)), [\(4\)](#page-2-4), and ([5\)](#page-2-5). According to reaction [\(2](#page-2-2)), when pH value was low (1.5 and 2), there were less OH− ions in the solution but more H^+ ions. As a result, the process of TiO₂ formation was disadvantageous. When the pH value was relatively high (2.3 and 2.5), there were a large number of OH− ions in the solution and reaction ([2\)](#page-2-2) was more likely to proceed to the right. Therefore, the flm was continuous and consisted of a large amount of $TiO₂$. Moreover, during the growth of the thin flm, the amount of OH− increased and the grains tended to nucleate. The flm was very compact and continuous (Fig. $4c$, d).

The UV–Vis transmittance spectra of the samples are shown in Fig. [5](#page-4-0). The absorption edges of all the as-prepared TiO₂ thin films appeared at \sim 300 nm. The effect of the solution pH on the transmittance of the flms was not signifcant (Fig. [5](#page-4-0)). However, the transmittance of the flm with the lowest pH (1.5) was the highest. This can be attributed to the very low $TiO₂$ content and the discontinuous growth of this flm. This flm also showed the leakage of light during the testing process. In some areas, photons irradiated the glass

Fig. 5 UV–Vis transmittance spectra of the flms with diferent pH values

substrate. At the same time, the transmittance of the glass substrate (not the $TiO₂$ thin film) was investigated. Hence, its transmittance was relatively high.

3.4 Efect of the raw material molar ratio on the TiO₂ films

The grain size and morphology of $TiO₂$ films can be tai-lored by controlling the raw material molar ratio. Figure [6](#page-4-1) shows the morphologies of the flms prepared with diferent (NH_4) ₂TiF₆:H₃BO₃ ratios (1:1.5, 1:2, and 1:3). The 1:1.5 film (Fig. [6](#page-4-1)a) was composed of micro clusters of \sim 100nm gains. The substrate was not completely covered with the clusters. In other words, this flm was not fully dense (Fig. [6](#page-4-1)a). The grain size of the 1:2 thin film $(\sim 80 \text{ nm})$ was smaller than that of 1:1.5 film (Fig. [6b](#page-4-1)). The fine grains grew and agglomerated into microspheres. However, the compactness of the obtained flm did not improve. The 1:3 flm was dense and homogeneous (Fig. [6c](#page-4-1)). The flm was compact and consisted of fne grains. Therefore, the grain size of the flms decreased with an increase in the amount of H_3BO_3 . The morphology of the flms changed from micro-sized fowers to spheres and then to compact nano-sized grains with an increase in the ratio of H_3BO_3 .

According to reactions (2) (2) , (3) (3) , (4) (4) , and (5) (5) , H_3BO_3 acted as a F− scavenger [\[28](#page-6-16)]. As can be observed from Fig. [6,](#page-4-1) the flms became denser and more uniform with an increase in

Fig. 6 Surface morphologies of the as-prepared $TiO₂$ thin films with different (NH₄)₂TiF₆:H₃BO₃ molar ratios. **a** 1:1.5; **b** 1:2; **c** 1:3

Fig. 7 UV–Vis transmittance spectra of the flms with diferent $(NH_4)_2TiF_6:H_3BO_3$ molar ratios

the H_3BO_3 concentration. This is because at high H_3BO_3 concentrations, the solution consisted of a few F− ions. As a result, reaction ([4](#page-2-4)) proceeded towards the right. Reactions (2) (2) , (3) (3) , and (5) (5) proceeded towards the right when the F− content was low. A large number of crystal nuclei were formed rapidly on the substrate at high H_3BO_3 concentrations. The process of nucleus formation consumed most of the $[Ti(OH)₆]^{2–}$ ions, which caused the reaction to quickly reach the equilibrium state before the growth of the nuclei. As a result, the obtained flm was uniform and compact.

Figure [7](#page-5-6) shows the transmittance spectra of the thin films. All the samples showed adsorption edges at 300 nm. No signifcant diference was observed between the curve shapes and transmittances of the samples. As can be observed from Fig. [6](#page-4-1), the scattering phenomenon was caused by the submicron cluster of nanograins. The size of the clusters exactly matched with the wavelength detected. Therefore, the transmittances of thin flms were relatively low. All the three curves showed slight interference fringes, indicating the uniformity of the thin flms.

4 Conclusion

In summary, $TiO₂$ films with controllable grain size and morphology were prepared using the LPD technique. The grain size and morphology of the $TiO₂$ films were controlled by adjusting the deposition parameters including the raw material concentration, solution pH, and raw material molar ratio. Here, the ion concentration, which was controlled by varying the deposition parameters, afected the nucleation and growth velocities of the $TiO₂$ films, which in turn affected the grain size of the films. The capillary stress among the grains was controlled accordingly.

Therefore, crack-free LPD-derived TiO₂ films were obtained by simply adjusting the deposition parameters. At very low nucleation velocities (lower concentration, 0.03 M; or lower pH, 2.0; or higher ratio, 1:1), the grains tended to grow and the morphology of the flm transformed to fower-like. At very high nucleation velocities (higher concentration, 0.1 M and 0.2 M), the grain size decreased and the flm became dense. However, numerous micro-scale cracks were observed on the flm because of its large capillary stress.

Acknowledgements This work was fnancially supported by Outstanding Young Talents Support Program in Colleges and Universities (gxyqZD2016150), National Natural Science Foundation of China (51778003 and 51578004), and Major Projects of Natural Science Research in Anhui Colleges and Universities (KJ2018ZD050).

References

- 1. X.D. Yang, Y.Q. Wang, Z.S. Wang, X.Z. Lv, H.X. Jia, J.H. Kong, M.H. Yu, Preparation of CdS/TiO₂ nanotube arrays and the enhanced photocatalytic property. Ceram. Int. **42**, 7192–7202 (2016)
- 2. W. Liang, J. Li, Y. Jin, Photo-catalytic degradation of gaseous formaldehyde by TiO₂/UV, Ag/TiO₂/UV and Ce/TiO₂/UV. Build. Environ. **51**, 345–350 (2012)
- 3. A.M. Bakhshayesh, M.R. Mohammadi, D.J. Fray, Controlling electron transport rate and recombination process of $TiO₂$ dyesensitized solar cells by design of double-layer flms with diferent arrangement modes. Electrochim. Acta **78**, 384–391 (2012)
- 4. J. Wan, Y. Lei, Y. Zhang, Y. Leng, J. Liu, Study on TiO₂ photoelectrode to improve the overall performance of dye-sensitized solar cells. Electrochim. Acta **59**, 75–80 (2012)
- 5. A.S. Shikoh, Z. Ahmad, F. Touati, R.A. Shakoor, S.A. Al-Muhtaseb, Optimization of ITO glass/TiO₂ based DSSC photoanodes through electrophoretic deposition and sintering techniques. Ceram. Int. **43**, 10540–10545 (2017)
- 6. C. Xu, Y.J. Zhong, Y.N. Zheng, W.Y. Huang, C. Jin, B.B. Xu, R.Q. Yao, Z.D. Feng, Micromixing-assisted preparation of $TiO₂$ flms from ammonium hexafuorotitanate and urea by liquid phase deposition based on simulation of mixing process in T-shaped micromixer. Ceram. Int. **45**, 11325–11334 (2019)
- 7. G.Y. Roh, H.S. Sung, Y.C. Lee, S.E. Lee, Study on optical characteristics of nano hollow silica with $TiO₂$ shell formation. J. Korean Ceram. Soc. **56**, 98–103 (2019)
- 8. H. Wu, Z. Zhang, Photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant on highly smooth and ordered $TiO₂$ nanotube arrays. J. Solid State Chem. **184**, 3202–3207 (2011)
- 9. Z. Zhang, M.F. Hossain, T. Takahashi, Photoelectrochemical water splitting on highly smooth and ordered $TiO₂$ nanotube arrays for hydrogen generation. Int. J. Hydrogen. Energ. **35**, 8528–8535 (2010)
- 10. M. Frites, S.U.M. Khan, Visible light active hydrogen modifed (HM)-n-TiO₂ thin films for photoelectrochemical splitting of water. Electrochem. Commun. **11**, 2257–2260 (2009)
- 11. A. Boonserm, C. Kruehong, V. Seithtanabutara, A. Artnaseaw, P. Kwakhong, Photoelectrochemical response and corrosion behavior of CdS/TiO₂ nanocomposite films in an aerated 0.5 M NaCl solution. Appl. Surf. Sci. **419**, 933–941 (2017)
- 12. D. Wu, M. Long, Realizing visible-light-induced self-cleaning property of cotton through coating N-TiO₂ film and loading AgI particles. ACS. Appl. Mater. Inter. **3**, 4770–4774 (2011)
- 13. C.X. Lei, Z.D. Feng, H. Zhou, Visible-light-driven photogenerated cathodic protection of stainless steel by liquid-phase-deposited TiO2 flms. Electrochim. Acta **68**, 134–140 (2012)
- 14. B. Dudem, L.K. Bharat, J.W. Leem, D.H. Kim, J.S. Yu, Hierarchical Ag/TiO₂/Si forest-like nano/micro-architectures as antireflective, plasmonic photocatalytic, and self-cleaning coatings. ACS. Sustain. Chem. Eng. **6**, 1580–1591 (2017)
- 15. Y. Yu, J. Wang, J.F. Parr, Preparation and Properties of $TiO₂/$ fumed silica composite photocatalytic materials. Procedia. Eng. **27**, 448–456 (2012)
- 16. Y. Ding, C. Yang, L. Zhu, J. Zhang, Photoelectrochemical activity of liquid phase deposited TiO₂ film for degradation of benzotriazole. J. Hazard. Mater. **175**, 96–103 (2010)
- 17. M. Mallak, M. Bockmeyer, P. Löbmann, Liquid phase deposition of $TiO₂$ on glass: systematic comparison to films prepared by sol–gel processing. Thin Solid Films **515**, 8072–8077 (2007)
- 18. B. Ma, G.K. Goh, J. Ma, T.J. White, Growth kinetics and cracking of liquid-phase-deposited anatase flms. J. Electrochem. Soc. **154**, D557–D561 (2007)
- 19. J. Gong, C. Yang, W. Pu, J. Zhang, Liquid phase deposition of tungsten doped TiO₂ films for visible light photoelectrocatalytic degradation of dodecyl-benzenesulfonate. Chem. Eng. J. **167**, 190–197 (2011)
- 20. M. Zhang, C.Z. Yang, W.H. Pu, Y.B. Tan, K. Yang, J.D. Zhang, Liquid phase deposition of WO_{3}/TiO_{2} heterojunction films with high photoelectrocatalytic activity under visible light irradiation. Electrochim. Acta. **148**, 180–186 (2014)
- 21. X. Cheng, K. Gotoh, Y. Nakagawa, N. Usami, Efect of substrate type on the electrical and structural properties of $TiO₂$ thin films deposited by reactive DC sputtering. J. Crys. Growth. **491**, 120– 125 (2018)
- 22. C.X. Lei, X. Huang, X. Liu, A.S. Wang, G.S. Zhang, D.L. Peng, Photoelectrochemical performances of the SnO₂−TiO₂ bilayer composite flms prepared by a facile liquid phase deposition method. J. Alloy. Compd. **692**, 227–235 (2017)
- 23. J.J. Huang, S.L. Ou, C.F. Hsu, X.Q. Shen, The efect of boric acid concentration on the TiO₂ compact layer by liquid phase deposition for dye-sensitized solar cell. Appl. Surf. Sci. **477**, 7–14 (2019)
- 24. M.C. Marchi, S.A. Bilmes, C.T.M. Ribeiro, E.A. Ochoa, M. Kleinke, F. Alvarez, A comprehensive study of the infuence of the stoichiometry on the physical properties of TiOx flms prepared by ion beam deposition. J. Appl. Phys. **108**, 064912 (2010)
- 25. M. Mahé, J.M. Heintz, J. Rödel, P. Reynders, Cracking of titania nanocrystalline coatings. J. Eur. Ceram. Soc. **28**, 2003–2010 (2008)
- 26. H. Pizem, C.N. Sukenik, U. Sampathkumaran, A.K. McIlwain, M.R. De Guire, Effects of substrate surface functionality on solution-deposited titania flms. Chem. Mater. **14**, 2476–2485 (2002)
- 27. F. Fresno, R. Portela, S. Suárez, J.M. Coronado, Photocatalytic materials: recent achievements and near future trends. J. Mater. Chem. A. **2**, 2863–2884 (2014)
- 28. Y. Gao, Y. Masuda, K. Koumoto, Microstructure-controlled deposition of $SrTiO₃$ thin film on self-assembled monolayers in an aqueous solution of $(NH_4)_2$ TiF₆−Sr(NO₃)₂−H₃BO₃. Chem. Mater. **15**, 2399–2410 (2003)