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Abstract
MicroRNAs (miRNAs), molecules comprising 18–22 nucleotides, regulate expression of genes post-transcriptionally at the 
3′ untranslated region of target mRNAs. However, the biological roles and mechanisms of action of miRNAs in breast cancer 
remain unelucidated. Thus, in this study, we aimed to investigate the functions and possible mechanisms of action of miRNAs 
in breast cancer to suppress carcinogenesis. Using miRNA databases, we selected miR-34a and miR-605-5p to downregu-
late MDM4 and MDM2, respectively, because these ubiquitin E3 ligases degrade p53 and promote carcinogenesis. Results 
showed that miR-34a and miR-605-5p suppressed MDM4 and MDM2 expression, respectively. Moreover, they reduced the 
expression of yes‑associated protein 1 (YAP1), a well-known oncogene involved in Hippo signaling, but upregulated the 
mRNA and protein expression of yippee-like 3 (YPEL3). To elucidate whether these miRNAs promote cellular senescence 
and death through YPEL3 upregulation, we examined their effects on cellular proliferation, SA-β-gal activity, and mito-
chondrial activity in human breast cancer MCF-7 cells. Given their upregulating effect on YPEL3 expression, miR-34a and 
miR-605-5p increased the number of β-galactosidase-positive cells and depolarized live cells (by 10%–12%). These data 
suggest that miR-34a and miR-605-5p promote cellular senescence and cell death. Thus, they may act as tumor suppressors 
by inducing Hippo signaling and may serve as novel therapeutic agents in breast cancer treatment.
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Introduction

P53 is a tumor suppressor protein that functions in vari-
ous processes, including DNA repair, cell cycle regulation, 
cell aging, and apoptosis, and plays a key role in tumor 
prevention. In the normal state or absence of stress in the 
cell, MDM2 degrades and inhibits p53. P53 is activated in 
response to cellular stresses, such as DNA damage, aber-
rant cell cycle, hypoxia, and oxidative stress [1]. Sustained 
p53 activation prevents and repairs DNA damage. P53 ini-
tiates various cellular responses by selectively regulating 

target genes in response to stress. Thus, p53 must be tightly 
regulated by other factors to avoid unnecessary activation. 
MDM2 and MDM4 are E3 ubiquitin ligases that suppress 
p53 activation, making them essential negative regulators 
of p53 [2].

MDM2 binds to and degrades p53 through ubiquitination. 
Therefore, MDM2 is important for balancing p53-mediated 
tumor suppression. Disruption of this balance may impair 
the function of p53 and promote tumorigenesis. MDM2 
overexpression is another molecular mechanism that inacti-
vates p53 during cellular tumorigenesis [3].

MDM4 is an MDM2 homolog that inhibits p53 in vivo, 
suggesting its important role in cancer development [4]. 
Recent biochemical studies have shown that the MDM4 
RING domain plays an essential role in the polyubiqui-
tination and degradation of MDM2-dependent p53 [5]. 
MDM2 and MDM4 bind to each other and play nonover-
lapping roles in regulating p53 activity. MDM4 expres-
sion is increased in patients with hepatoblastoma, and this 
phenomenon is correlated with decreased expression of 
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the p53 target gene [6]. Although MDM2 alone can inhibit 
p53, heterodimerization of MDM2 and MDM4 plays a 
critical role in p53 inhibition [7]. This complex acts more 
effectively than MDM2 alone, and MDM4 accelerates the 
MDM2-mediated degradation of p53 [8]. High expression 
of MDM4 and MDM2 occurs frequently in human cancers, 
including breast cancer, gliomas, soft tissue sarcomas, 
and melanomas [9]. These proteins are overexpressed in 
various tumors and are considered oncogenic; thus, their 
expression must be properly regulated to prevent cancer 
development [10].

MicroRNAs (miRNAs), small non-coding RNAs 
that consist of 18–22 nucleotides and are endogenously 
expressed, play a major role in the expression of target genes 
[11]. These molecules are located in target mRNAs and 
frequently found in the 3ʹ untranslated regions (3ʹ-UTRs). 
Although the binding sites of miRNAs and target genes have 
been estimated from various bioinformatics data, the func-
tions of all the estimated miRNA binding sites are not com-
pletely understood [12]. Endogenous miRNAs have attracted 
considerable research attention because they influence sev-
eral biological processes in the human body and demonstrate 
strong biomarker potential. In patients with non-small cell 
lung cancer, the upregulation of miR-155 and downregula-
tion of let-7 expression are associated with poor prognosis 
[13]. Members of the miR-29 family induce tumors in breast 
cancer and reverse aberrant methylation in lung cancer by 
targeting DNA methyltransferases 3A and 3B [14]. MiR-
380-5p, which is highly expressed in mouse embryonic stem 
cells and neuroblastoma, is associated with poor prognosis 
of neuroblastoma patients [15]. Consequently, the relative 
levels of miRNAs affect mRNA expression, which plays an 
important role in carcinogenesis and other diseases [16].

Cellular senescence, in which cell division is restricted 
for a long period, is a key factor in human aging and can be 
induced in response to cellular stress and stimuli, such as 
DNA damage, cellular stress, telomere shortening, reactive 
oxygen species activation, and oncogene activation [17]. 
Cells under stress are usually damaged, which consider-
ably increases the possibility of cancer development [18]. 
Cellular senescence can either be beneficial or detrimental 
depending on the biological function and type of the cell 
undergoing this phenomenon [19]. Moreover, it ultimately 
leads to apoptosis [20]. The accumulation of senescent cells 
decelerates tissue regeneration and causes inflammation, 
leading to aging and carcinogenesis. Despite these studies, 
the biological roles and mechanisms of action of miRNAs 
in breast cancer remain unclear to date.

Thus, in this study, we aimed to investigate the functions 
and possible mechanisms of action of miRNAs in breast can-
cer to suppress carcinogenesis. This study offers miRNAs 
that can serve as novel therapeutic agents in breast cancer 
treatment.

Materials and methods

Chemicals and reagents

Antibodies against MDM2 and MDM4 were purchased from 
Santa Cruz Biotechnology (Dallas, TX, USA). A polyclonal 
antibody for YPEL3 was obtained from Boster Bio (Pleasan-
ton, CA, USA). RPMI 1640 medium and fetal bovine serum 
(FBS) were purchased from HyClone (Logan, UT, USA). 
Doxorubicin was obtained from Selleck Chemicals (Hou-
ston, TX, USA). The enhanced chemiluminescence (ECL) 
kit and bicinchoninic acid (BCA) protein assay kit were pur-
chased from Thermo Fisher Scientific (Waltham, MA, USA). 
QGreenBlue 2X qPCR Master Mix was obtained from Cell 
Safe (Yongin, Korea), and D-Plus™ CCK cell viability assay 
kit was purchased from Dongin biotech (Seoul, Korea). All 
the chemicals and reagents used in the experiments were of 
the highest commercially available quality.

Cell culture

Human breast cancer MCF-7 cells were purchased from 
Korea Cell Line Bank (Korea). The cells were cultured in 
RPMI 1640 medium supplemented with 10% (v/v) heat-
inactivated FBS, 100 U/mL penicillin, and 100 μg/mL strep-
tomycin at 37 °C in a humidified atmosphere of 5% CO2.

Transient transfection of miRNA

MiRNA mimics were obtained from BIONEER (Daejeon, 
Korea), and the sequences were as follows: Hsa-mir-34a 
(UGU​UGG​UCG​AUU​CUG​UGA​CGGGU), Hsa-mir-605-5p 
(UCC​UCU​UCC​GUG​GUA​CCC​UAAAU). The cells were 
transfected with 80 nM miRNA mimics using the Neon™ 
transfection system (Invitrogen, Carlsbad, CA, USA) and 
cultured in antibiotic-free RPMI medium with 10% FBS for 
48 h.

RNA isolation, reverse transcription, and RT‑PCR

After transfection, mRNAs and miRNAs were extracted 
using the Hybrid-RTM miRNA kit (GeneALL, Seoul, Korea). 
Total RNA (1000 ng) was transcribed at 37℃ for 1 h in 
a 25-μl reaction volume containing RNase buffer, 10 mM 
dNTPs, RNase inhibitor, M-MLV reverse transcriptase, and 
100 pmol of oligo-dT primers. The cDNA products were 
amplified using the Rotor-Gene SYB RⓇ PCR kit (Qiagen, 
Hilden, Germany). Each reaction contained 10 μl of 2 × SYB 
R
Ⓡ Green PCR Master Mix, 2 μl of each oligonucleotide 

primer, and 2 μl of cDNA in a final volume of 20 μl. The 
amplification conditions were as follows: one cycle of 
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95 °C for 2 min, followed by 35 cycles of denaturation at 
95 °C for 10 s, annealing at 58 °C for 15 s, and extension at 
72 °C for 30 s. MiRNA (400 ng) was transcribed at 37 °C 
for 1 h in a 20-μl reaction volume containing 5 × miScript 
HiSpec Buffer, 10 × miScript Nucleics Mix, and miScript 
Reverse Transcriptase Mix (Qiagen, Seoul, Korea). The 
cDNA products were amplified using target-specific miS-
cript Primer Assays and the miScript SYBR Green PCR kit 
with a final volume of 20 μl. The amplification conditions 
were as follows: one cycle of 95 °C for 15 min, followed 
by 40 cycles of denaturation at 94 °C for 15 s, annealing at 
each Tm 52–62 °C for 30 s, and extension at 70 °C for 30 s. 
The primer sequences used in this experiment are listed in 
Table 1.

Western blotting

Cells were harvested and solubilized in ice-cold lysis buffer 
containing 50 mM Tris–HCl (pH 8.0), 0.1% sodium dodecyl 
sulfate (SDS), 1% Triton X-100, 0.5% sodium deoxycholate, 
2 mM EDTA, 10 mM NaF, 150 mM NaCl, and 1 mM phe-
nylmethylsulfonyl fluoride. The protein concentration was 
measured using BCA protein assay reagents. The extracted 
proteins (40 μg) were heated at 99 °C for 5 min, loaded onto 
10%–15% SDS–polyacrylamide gel, and then electrochemi-
cally transferred onto polyvinylidene difluoride membranes. 
After being transferred, nonspecific binding to membranes 
was blocked with skimmed milk (5%) in Tris-buffered 
saline containing 0.1% Tween-20 (TBS-T) for 1 h at 4 °C. 
After overnight incubation with specific primary antibod-
ies (1:1000 dilution), the membranes were washed thrice 
with TBS-T for 10 min each. Subsequently, the membranes 
were incubated overnight with secondary antibodies (1:5000 
dilution) at 4 °C. Protein bands were visualized using the 
ECL method. The band intensity on the western blots was 
quantified and analyzed using ChemiDoc XRS (Bio-Rad, 
Hercules, CA, USA) and normalized to that of β-actin.

Confocal microscopy

The cells after transfection of control or mimics for miR-
34a and miR-605-5p were seeded on poly-D-lysine-coated 

coverslips. After incubation at 48 h, the cells were fixed 
with 4% (w/v) formaldehyde in PBS for 30 min at 25 °C. 
After washing with PBS, the cells were blocked for 40 min 
in PBS containing 5% goat serum and 0.2% Triton X-100. 
After overnight incubation with a 1:200 dilution of the pri-
mary antibodies, the cells were washed and stained with a 
1:200 dilution of the secondary antibodies. After an addi-
tional wash process, the coverslips were mounted onto glass 
slides with 3 μL of UltraCruz™ Mounting Medium con-
taining 4′,6-diamidino-2-phenylindole. Fluorescence signals 
were analyzed using an LSM800 Confocal Laser Scanning 
Microscope (Carl Zeiss, Jena, Germany).

Cell viability assay

MCF-7 cells (5 × 103 cells/well) were plated in 96-well 
microplates and incubated for 96 h at 37 °C. Before seed-
ing, the cells were transfected with miR-34a or miR-605-5p 
mimics (80 nM). After incubation, the cells were treated 
with 10 μL of CCK solution (Dongin biotech) and incubated 
for 1 h at 37 °C. The produced formazan dyes were quanti-
fied by measuring the absorbance at 450 nm using a Tecan 
Sunrise™ microplate reader (Männedorf, Switzerland). All 
experiments were independently performed in triplicate.

Senescence‑associated β‑galactosidase assay

MCF-7 cells (1 × 106 cells/well) were seeded in 6-well 
plates after transfection with miRNA mimics. The cells were 
stained at 37 °C overnight with a staining solution in SA-β-
galactosidase (gal) staining kit (Cell Signaling Technology, 
USA) following the manufacturer’s instructions.

Analysis of MitoPotential function

Transfected cells were seeded at a density of 1 × 105 cells. 
After harvesting with 0.1% trypsin–EDTA, the cell pel-
let was resuspended in the assay buffer of the MitoPoten-
tial kit (Millipore, Germany). The cells were stained with 
MitoPotential working solution for 20 min. After staining, 
the cells were incubated with 7-aminoactinomycin D for 

Table 1   Primer sequences used 
in real-time qPCR

Gene Forward primer (5ʹ-3ʹ) Reverse primer (5ʹ-3ʹ)

MDM2 GAA​TCA​TCG​GAC​TCA​GGT​ACATC​ TCT​GTC​TCA​CTA​ATT​GCT​CTCCT​
MDM4 TGA​TTG​TCG​AAG​AAC​CAT​TTCGG​ TGC​AGG​GAT​CAA​AAA​GTT​TGGAG​
YPEL3 GTG​CGG​ATT​TCA​AAG​CCC​AAG​ CCC​ACG​TTC​ACC​ACT​GAG​TT
YAP1 CGC​TCT​TCA​ACG​CCG​TCA​ AGT​ACT​GGC​CTG​TCG​GGA​GT
Lamin B1 GAA​AAA​GAC​AAC​TCT​CGT​CGCA​ GTA​AGC​ACT​GAT​TTC​CAT​GTCCA​
18S GTA​ACC​CGT​TGA​ACC​CCA​TT CCA​TCC​AAT​CGG​TAG​TAC​G
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5 min. MitoPotential function was measured using MUSE® 
Cell Analyzer (Millipore) following the manufacturer’s 
instructions.

Bioinformatics analysis

A TNM plot analysis (https://​tnmpl​ot.​com/​analy​sis/) was 
performed to elucidate the expression of MDM4, MDM2, 
YAP1, and YPEL3 in breast cancer. Specific miRNAs 
targeting MDM4, MDM2, or YAP1 were found using the 
bioinformatic databases as candidates for further studies; 
miRTarBase (http://​mirta​rbase.​cuhk.​edu.​cn/​php/​index.​php), 
TargetScan (http://​www.​targe​tscan.​org), and miRDB (http://​
www.​mirdb.​org).

Statistical analysis

Statistical analyses were conducted using one-way analysis 
of variance, followed by the Dunnett’s multiple comparison 
and t tests, in Prism version 10.0.0 (GraphPad Software Inc., 
San Diego, CA, USA). Differences were considered statisti-
cally significant at p < 0.05.

Results

Expression of MDM4, MDM2, YAP1, and YPEL3 
in breast cancer samples by tumor, node, metastasis 
(TNM) plot analysis

The expression levels of MDM4, MDM2, YAP1, and 
YPEL3 in human breast tumor samples were investigated 
compared to normal samples using TNM plot analysis. The 
expression levels of MDM4 and MDM2 were higher in the 
tumor samples than in the normal samples (Fig. 1A). YAP1 
expression was also high in the tumor samples, but YPEL3 
levels were relatively lower in the tumor samples than in the 
normal samples (Fig. 1B).

Selection of specific miRNAs to modulate MDM4 
and MDM2 expression

MDM4 and MDM2 are crucial negative regulators of p53 
expression. We performed a computational analysis using 
miRDB to investigate which miRNAs modulate MDM4 and 
MDM2 expression to affect p53 levels and their function in 

Fig. 1   Expression of MDM4, 
MDM2, YAP1, and YPEL3 
in human normal and breast 
tumor samples. a TNM plot 
data provided by Kaplan–Meier 
Plotter show the expression of 
MDM4 and MDM2 in normal 
and tumor samples in breast 
cancer. b Kaplan–Meier Plotter 
(TNM plot) shows the expres-
sion of YAP1 and YPEL3 in 
normal and tumor samples in 
breast cancer

https://tnmplot.com/analysis/
http://mirtarbase.cuhk.edu.cn/php/index.php
http://www.targetscan.org
http://www.mirdb.org
http://www.mirdb.org
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human breast cancer cells. Various miRNAs were screened 
based on their target scores to identify the miRNAs that 
significantly regulate the expression of MDM4 and MDM2. 
MiRNAs targeting MDM4, hsa-miR-34a, hsa-miR-4500, 
and hsa-miR-6819, the top three candidates with the high-
est scores both in miRDB and TargetScan, were selected. 
For MDM2, hsa-miR-605-5p, hsa-miR-661, and hsa-miR-
7110-3p were selected (Table 2). To confirm the effects of 
the selected miRNAs, we transfected the cells with mim-
ics of each miRNA. Of the three tested miRNAs, miR-34a 
significantly inhibited MDM4 expression. In addition, miR-
605-5p significantly inhibited MDM2 expression (Fig. 2A). 
The levels of intracellular miRNAs were significantly ele-
vated in the MCF-7 cells transfected with miR-34a or miR-
605-5p (Fig. 2B). MicroRNA inhibitors, single-stranded 
RNA oligonucleotides complemented with mature miRNA 
sequences, prevent the corresponding miRNAs from bind-
ing to their target genes [21]. The binding sequences of 
hsa-miR-34a and MDM4 3ʹ-UTR were verified using the 
TargetScan database (Fig. 3A). MDM4 mRNA expression 
was significantly suppressed in the cells transfected with 
miR-34a (80 nM) for 48 h. Treatment with the miR-34a 
inhibitor recovered the miR-34a-mediated suppression of 
MDM4 expression. Importantly, treatment with the miR-34a 
inhibitor alone strongly increased MDM4 mRNA expression 

(Fig.  3B). Transfection with miR-34a downregulated 
MDM4 protein expression in a concentration-dependent 
manner (Fig. 3C). Similar to those of miR-34a, the bind-
ing sequences of hsa-miR-605-5p and MDM2 3ʹ-UTR were 
also verified (Fig. 3D). qRT-PCR was performed to confirm 
the miR-605-5p-mediated suppression of MDM2 expres-
sion. Treatment with the mir-605-5p inhibitor recovered the 
miR-605-5p-mediated suppression of MDM2 expression 
(Fig. 3E). Transfection with miR-605-5p (0, 40, and 80 nM) 
modulated MDM2 protein expression in a concentration-
dependent manner (Fig. 3F). Overall, these results indicate 
that miR-34a and miR-605-5p are bona fide miRNAs target-
ing MDM4 and MDM2, respectively.

MiR‑34a and miR‑605‑5p positively regulate YPEL3 
in MCF‑7 cells

YPEL3 is a promising cellular senescence factor expressed 
via the action of p53 [22]. To elucidate whether the selected 
miRNAs can induce YPEL3 expression to promote cellu-
lar senescence, we treated the cells with miRNAs (miR-34a 
or miR-605-5p) for 48 h and performed qRT-PCR. YPEL3 
mRNA expression significantly increased (~ 2.5 fold) in 
the cells transfected with miR-34a (80 nM) for 48 h. How-
ever, treatment with the mir-34a inhibitor strongly inhibited 
YPEL3 induction by miR-34a. Notably, treatment with the 
miR-34a inhibitor alone significantly suppressed YPEL3 
mRNA expression (Fig. 4A). The expression of lamin B1 
is downregulated by inducing cell senescence, and the loss 
of lamin B1 is a senescence-associated biomarker [23–25]. 
Treatment with miR-34a downregulated lamin B1 mRNA 
expression (Fig. 4B). YPEL3 mRNA expression were upreg-
ulated in the cells transfected with miR-605-5p (80 nM) for 
48 h (~ 1.5 fold). Treatment with the mir-605-5p inhibitor 
strongly prevented YPEL3 induction by miR-605-5p. More-
over, treatment with the miR-605-5p inhibitor alone sig-
nificantly suppressed YPEL3 mRNA expression (Fig. 4C). 
Lamin B1 mRNA expression was also suppressed by miR-
605-5p (Fig. 4D).

MiR‑34a and miR‑605‑5p induce YPEL3 expression 
by suppressing YAP1 expression

Considering that YAP1 downregulation significantly 
enhances YPEL3 expression in MCF-7 cells [26], we deter-
mined the levels of YAP1 expression to identify the mecha-
nisms by which these miRNAs upregulate YPEL3 expres-
sion. The YAP1/Hippo signaling pathway is a key regulator 
of organ size and tissue homeostasis, and its dysregulated 
expression is associated with cancer pathogenesis. YAP1 is 
a transcriptional coactivator of TEAD-mediated transcrip-
tion and a well-established oncogene; its increased activ-
ity has been reported in human cancers [27]. Based on the 

Table 2   Selection of microRNAs targeting MDM4 and MDM2 by 
miRNA target prediction databases

Candidate miRNAs which target MDM4 and MDM2 were predicted 
by miRDB, miRTarBase, and TargetScan. For MDM4, three high-
scoring miRNAs candidates, miR-34a, miR-4500 and miR-6819 were 
selected respectively. For MDM2, miR-605-5p, miR-661, and miR-
7110-3p were selected.

Gene miRNA Target score

MDM2 hsa-miR-605-5p miRDB 80
TargetScan 92
miRTarBase Yes

hsa-miR-661 miRDB –
TargetScan 81
miRTarBase Yes

hsa-miR-7110-3p miRDB 93
TargetScan 82
miRTarBase Yes

MDM4 hsa-miR-34a miRDB 100
TargetScan 98
miRTarBase Yes

hsa-miR-4500 miRDB 95
TargetScan 98
miRTarBase Yes

hsa-miR-6819 miRDB 85
TargetScan 92
miRTarBase Yes
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miRNA database, YAP1 was identified as the target gene 
of miR-34a and miR-605. To investigate whether miRNAs 
regulate YAP1 expression, we transfected MCF-7 cells with 
miR-34a and miR-605-5p (80 nM). YAP1 mRNA expression 
was suppressed by miR-34a. Transfection with the miR-34a 
inhibitor induced YAP1 mRNA expression (Fig. 5A). Addi-
tionally, YAP1 mRNA expression was suppressed by miR-
605-5p. YAP1 mRNA expression was promoted in the cells 
transfected with the miR-605-5p inhibitor (80 nM) for 48 h 
(Fig. 5B). Western blotting analysis showed that miR-34a 
induces YPEL3 protein expression. However, the protein 
levels of YAP1 and lamin B1 were decreased by miR-34a. 
The effect of the miR-34a inhibitor was determined to con-
firm the induction of YPEL3 expression by miR-34a. Trans-
fection with the miR-34a inhibitor downregulated YPEL3 
protein expression and upregulated YAP1 and lamin B1 pro-
tein expression (Fig. 5C). In addition, miR-605-5p enhanced 
YPEL3 protein expression and negatively regulated YAP1 

and lamin B1 expression. Treatment with the miR-605-5p 
inhibitor exerted the opposite effect (Fig.  5D). Confo-
cal micrographs showed that miR-34a and miR-605-5p 
downregulated YAP1 and lamin B1 protein expression and 
upregulated YPEL3 protein expression (Fig. 5E). These 
observations indicate that miRNAs, such as miR-34a and 
miR-605-5p, downregulate the expression of YAP1, which 
is a crucial cellular inhibitor of the Hippo pathway, lead-
ing to the upregulation of YPEL3 expression to promote 
cellular senescence and apoptosis. Moreover, miR-34a and 
miR-605-5p may function as tumor-suppressive miRNAs in 
MCF-7 cells by reducing YAP1 expression.

MiR‑34a and miR‑605‑5p induce cellular senescence 
and apoptosis by upregulating YPEL3 expression

To confirm whether miR-34a and miR-605-5p act as tumor 
suppressors in MCF-7 cells, we examined their effects on 

Fig. 2   Suppression of MDM4 and MDM2 mRNA expression by 
miRNAs in MCF-7 cells. Real-time qPCR was performed to deter-
mine MDM4 and MDM2 mRNA expression or miRNAs expression 
using MCF-7 cells following transfection of mimics for miR-34a 

or miR-605-5p. Data represent the mean ± SD (n = 3) (*p < 0.05). 
a mRNA expression levels for MDM4 and MDM2, and b miRNA 
expression levels for miR-34a or miR-605-5p
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cell proliferation. Cell viability was measured every 24 h for 
4 days. Treatment with miR-34a or miR-605-5p decreased 
the rate of cell growth (Fig. 6A). Doxorubicin is currently 
considered one of the most potent therapeutic agents for 
breast cancer. It inhibits topoisomerase II and blocks DNA 
and RNA synthesis, resulting in apoptosis [28]. Doxoru-
bicin-induced DNA damage eventually affects the function 

of p53, commonly known as a p53 activator, to enhance 
apoptosis [29]. Treatment with miR-34a slightly increased 
the number of β-galactosidase-positive cells. However, 
the number of β-galactosidase-positive cells significantly 
increased after treatment with miR-34a or miR-605-5p and 
doxorubicin. These results implied that miR-34a or miR-
605-5p inhibited cell proliferation by inducing cellular 

Fig. 3   MiR-34a downregulates MDM4 mRNA and protein levels and 
miR-605-5p reduces MDM2 mRNA and protein levels. a Putative 
binding sites of miR-34a at the 3ʹ-UTR of MDM4 mRNA. Sequences 
of MDM4 and miR-34a bind complementarily in red-marked regions. 
b MiR-34a (80 nM) was transfected in MCF-7 cells in the presence or 
absence of miR-34a inhibitor. Data represent the mean ± SD (n = 3) 
(*p < 0.05). c MCF-7 cells were transfected with miR-34a (40 nM or 
80 nM) and harvested for western blot. β-actin was used as loading 
control. Data represent the mean ± SD (n = 3) (*p < 0.05). d It indi-

cates that the putative binding sites of miR-605-5p at the 3ʹ-UTR of 
MDM2. Sequences of MDM2 and miR-605-5p bind complementa-
rily in red-marked regions. e MiR-605-5p (80  nM) was transfected 
in MCF-7 cells in the presence or absence of miR-605-5p inhibitor. 
Data represent the mean ± SD (n = 3) (*p < 0.05). f MCF-7 cells were 
transfected with miR-605-5p (40  nM or 80  nM) and harvested for 
western blot. β-actin was used as loading control. Data represent the 
mean ± SD (n = 3) (*p < 0.05)
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senescence (Fig. 6B). MiR-34a and miR-605-5p significantly 
induce YPEL3 expression. Therefore, these data suggest that 
the induction of YPEL3 expression by miRNAs through the 
suppression of YAP1, MDM4, and MDM2 expression may 
inhibit cell proliferation. Cell senescence and early stages 
of apoptosis are strongly associated with mitochondrial dys-
function [30, 31]. Additionally, mitochondrial dysfunction 
caused by miRNAs is associated with cell senescence and 
the early stages of apoptosis. Transmembrane translocation, 
which is produced by the mitochondria, is related to the 
early stages of apoptosis, and depolarization of the internal 
mitochondrial membrane potential (∆Ψm) is an indicator of 

mitochondrial dysfunction [32]. In the present study, treat-
ment with miR-34a or miR-605-5p increased the number of 
depolarized live cells by 10%–12% compared with the con-
trol cells. However, no significant difference in the number 
of depolarized dead cells was found (Fig. 6C). This result 
suggests that miR-34a and miR-605-5p promote the early 
stages of apoptosis or cellular senescence by altering the 
mitochondrial membrane potential. To determine whether 
these miRNAs cause mitochondrial apoptosis, we measured 
the levels of pro-apoptotic Bax, Bak, and p16INK4a and anti-
apoptotic Bcl-2. Treatment with miR-34a or miR-605-5p 
increased the levels of Bax and Bak but decreased the level 

Fig. 4   MiR-34a and miR-605-5p positively regulate YPEL3 expres-
sion in MCF-7 cells. a MiR-34a (80 nM) was transfected into MCF-7 
cells in the presence or absence of miR-34a inhibitor (80  nM) and 
incubated for 48  h. Real-time qPCR was conducted to measure the 
mRNA expression of YPEL3. Data represent the mean ± SD (n = 3) 
(*p < 0.05). b MiR-34a was transfected into MCF-7 cells and incu-
bated for 48  h. Real-time qPCR was conducted to measure the 
mRNA expression of lamin B1. Data represent the mean ± SD (n = 3) 

(*p < 0.05). c MiR-605-5p (80 nM) was transfected into MCF-7 cells 
in the presence or absence of miR-605-5p inhibitor (80 nM) and incu-
bated for 48 h. Real-time qPCR was conducted to measure the mRNA 
expression of YPEL3. d MiR-605-5p was transfected into MCF-7 
cells and incubated for 48 h. Real-time qPCR was conducted to meas-
ure the mRNA expression of lamin B1. Data represent the mean ± SD 
(n = 3) (*p < 0.05)
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of Bcl-2. However, it increased the level of p16INK4a, a cyc-
lin-dependent kinase 4/6 inhibitor, indicating that these miR-
NAs may induce G1/S cell cycle arrest (Fig. 6D) [33, 34].

Discussion

The roles of miRNAs in various cancer cells have become 
increasingly crucial and are still being studied. The notable 
effects of miR-34a on lung squamous cell carcinoma have 
been studied through suppressing cancer cell proliferation 
[35]. Previous studies have shown that miR-34a is involved 

in regulating cancer-related mechanisms and causes DNA 
damage by inhibiting the mRNA expression of target genes, 
thus acting as an essential mediator of tumor suppression 
[36, 37]. Many studies have also been conducted on miRNAs 
that antagonize various oncogenic processes, including the 
proliferation, migration, and invasion of tumor cells [38].

YPEL3 is a cellular aging factor that has not been studied 
sufficiently. Cellular senescence can be explained by the lim-
ited division capacity of normal cells, and it is increased by 
DNA damage through the loss of telomeres owing to contin-
uous DNA replication. YPEL3 expression induced by DNA 
damage may be related to p53 level because p53-binding 

Fig. 5   MiR-34a and miR-605-5p induce YPEL3 expression through 
YAP1 suppression. a Real-time qPCR was performed to measure the 
expression of YAP1 with a miR-34a or miR-34a inhibitor (80  nM). 
Data represent the mean ± SD (n = 3) (*p < 0.05). b Real-time qPCR 
was performed to measure the expression of YAP1 with miR-605-5p 
or miR-605-5p inhibitor (80  nM). Data represent the mean ± SD 
(n = 3) (*p < 0.05). c Cells were transfected with miR-34a or miR-
34a inhibitor for 48 h. Total protein (40 µg) was subjected to west-
ern blot analysis with antibodies against YAP1, YPEL3, and lamin 

B1. β-actin was used as a loading control. d Cells were transfected 
with a miR-605-5p or miR-605-5p inhibitor for 48  h. Total protein 
(40  µg) was subjected western blot analysis with antibodies against 
YAP1, YPEL3, and lamin B1. β-actin was used as a loading control. 
Data represent the mean ± SD (n = 3) (*p < 0.05). e Confocal analy-
sis was performed to detect YAP1, YPEL3, and lamin B1 expres-
sion after transfection with miR-34a and miR-605-5p. 4′,6-Diamid-
ino-2-phenylindole was used for nuclear staining. Microscopy scale 
bar = 20 μm
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DNA response elements are located near the human YPEL3 
promoter [22]. YPEL3 activates cellular senescence down-
stream of p53. Induction of YPEL3 reduces cell survival 
associated with increased cellular senescence by causing 
cell death. In the present study, we identified miRNAs that 
regulate YPEL3.

Several studies have demonstrated that YPEL3 is regu-
lated by p53. Recently, a previous study newly showed that 
YPEL3 is inhibited by YAP1 [26]. Therefore, we inves-
tigated the relationship between miRNAs and YAP1. In 
addition, YAP1 is a target gene of miR-34a and is down-
regulated by miR-34a in vitro [39]. The Hippo pathway 
transduces multiple extracellular and intracellular signals 
and regulates cell proliferation, survival, apoptosis, and 

differentiation [40]. As a transcription factor-associated 
protein, YAP1 acts as a downstream effector in the Hippo 
pathway. Through this mechanism, YAP1 acts as an onco-
gene during cardiac development and regeneration [41]. 
Thus, YAP1 plays a key role in tumor formation, and sev-
eral studies have been conducted to suppress its expres-
sion. In the present study, we confirmed that miR-34a 
and miR-605-5p act as tumor suppressors and upregulate 
YPEL3 expression by inhibiting YAP1 expression.

The mechanism by which YAP1 suppresses YPEL3 
expression is fascinating because YAP/TAZ are known 
transcriptional coactivators that promote TEAD-medi-
ated gene expression. Various target genes such as Cyr61, 
Myc, and CTGF are strongly activated by the nuclear 

Fig. 6   MiR-34a and miR-605-5p induce cell senescence and apop-
tosis in human breast cancer cells through YAP1 suppression and 
upregulation of YPEL3. a MCF-7 cells were transfected with miR-
34a or miR-605-5p mimics (80  nM) and incubated for 4  days. Cell 
viability was measured at 450  nm using a microplate reader on the 
indicated days. Cell cultures were conducted in triplicate (*p < 0.05). 
b Senescence-associated β-galactosidase activity. Cellular senescence 
was measured by using a SA-β-gal kit after transfection with miR-34a 

or miR-605-5p (80  nM) in the presence or absence of doxorubicin 
(10 µM). Number of β-gal-positive cells was counted. Data represent 
the mean ± SD (n = 3) (*p < 0.05). c Cells were transfected with miR-
34a or miR-605-5p mimics (80  nM) and incubated for 48  h. Cells 
were stained with 7-aminoactinomycin D. d Cells were prepared after 
transfection with miR-34a or miR-605-5p (80 nM) and then subjected 
to western blot with the relevant antibodies. β-actin was used as a 
loading control. Data represent the mean ± SD (n = 3) (*p < 0.05)
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translocation of YAP1. However, the genes inhibited by 
YAP1 are difficult to identify. A recent study has shown 
that nuclear TAZ binds to PPARγ and represses the expres-
sion of PPARγ and its target genes [42]. Determining the 
possible involvement of PPARγ in YPEL3 expression is 
necessary to understand the role of YAP1 in regulating 
YPEL3 gene expression.

Collectively, the results of the present study indicate 
that the miRNAs-YAP1/YPEL3 cascade can be activated 
to protect cancer promotion. We report for the first time 
that miR-34a and miR-605-5p function as tumor suppres-
sors by upregulating YPEL3 and downregulating YAP1 
expression. Thus, miR-34a and miR-605-5p induce cellular 
senescence and apoptosis in human breast cancer cells by 
regulating the YAP1/Hippo pathway. Notably, we discovered 
novel miRNAs that target MDM4 and MDM2; this study 
enhances our understanding of the YAP1/Hippo pathway 
and the functions of miRNAs as novel therapeutic targets in 
breast cancer (Fig. 7). However, the molecular mechanisms 
underlying cellular senescence and apoptosis warrant further 
investigation.
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