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Abstract
Human cytochrome P450 (CYP) enzymes are composed of 57 individual enzymes that perform monooxygenase activities. 
They have diverse physiological roles in metabolizing xenobiotics and producing important endogenous compounds, such 
as steroid hormones and vitamins. At least seven CYP enzymes are involved in steroid biosynthesis. Steroidogenesis primar-
ily occurs in the adrenal glands and gonads, connecting each reaction to substrates and products. Steroids are essential for 
maintaining life and significantly contribute to sexual differentiation and reproductive functions within the body. Disorders 
in steroid biosynthesis can frequently cause serious health problems and lead to the development of diseases, such as prostate 
cancer, breast cancer, and Cushing’s syndrome. In this review, we provide current updated knowledge on the major CYP 
enzymes involved in the biosynthetic process of steroids, with respect to their enzymatic mechanisms and clinical implica-
tions for the development of new drug candidates.
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Introduction

Cytochrome P450 (CYP, P450) enzymes are a superfam-
ily of monooxygenases with heme as the prosthetic group 
[1]. They catalyze the metabolism of diverse xenobiotic 
and endogenous compounds including steroids, vitamins, 
and fatty acids [2]. These enzymes exist in the endoplasmic 
reticulum and mitochondria, and their catalytic activities are 
supported by NAD(P)H and redox partners such as P450 
oxidoreductase (POR), adrenodoxin (ADX) and adrenodoxin 
reductase (ADR) [3]. The human genome contains 57 CYP 
genes, many of which are involved in steroid biosynthesis 
and metabolism [2, 4]. At least seven CYP enzymes are 
involved in steroid biosynthesis; CYP11A1, CYP17A1, 
CYP19A1, CYP11B1, CYP11B2, CYP21A2, and CYP51A1 
(Fig. 1) [2]. Steroidogenesis primarily occurs in the adrenal 
glands and gonads, connecting each reaction to substrates 
and products. Steroids are critical for life and contribute sig-
nificantly to sexual differentiation and reproductive func-
tions within the body [5]. However, abnormal steroid levels 

can also cause diseases such as prostate cancer, breast can-
cer, and Cushing’s syndrome [6–8]. To treat these diseases, 
it is necessary to reduce steroid levels, and drugs targeting 
the key enzymes involved in each steroid biosynthesis step 
have been developed (Table 1). However, several shortcom-
ings are associated with these drugs, particularly their selec-
tivity and cross-inhibition. To date, various attempts have 
been made to address these issues. This review focuses on 
steroidogenic CYPs as potential drug targets for diseases 
treatment. Additionally, the efficacy and adverse effects of 
approved drugs and candidate compounds are explored. 

CYP11A1

CYP11A1 is involved in the initiation step of hormonal ster-
oid biosynthesis from cholesterol (Fig. 1). It is located in the 
mitochondrial membrane and catalyzes the conversion of 
cholesterol to pregnenolone. Cholesterol is first transported 
into the mitochondria by translocator protein and steroido-
genic acute regulatory protein. Subsequently, CYP11A1 
performs two successive hydroxylations on C22 and C20 of 
cholesterol and cleaves the cholesterol side chain between 
C20 and C22 (Fig. 2). The activity of CYP11A1 requires 
two cofactor proteins in the mitochondrial membrane: 
ADX and ADR. Pregnenolone, a product of CYP11A1, is a 
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precursor of all steroid hormones. Inhibiting this catalytic 
step can suppress subsequent steroidogenic reactions and 
induce a deficiency in steroid hormones [9]. There have been 
attempts to leverage steroid levels by co-treatment with a 
physiological dose of essential steroids to treat diseases [10]. 
ODM-208 was chosen as a candidate inhibitor after screen-
ing and utilizing the crystal structure of CYP11A1 bound to 
cholesterol (Fig. 3) [10]. ODM-208 inhibits pregnenolone 
biosynthesis and suppresses downstream of steroid biosyn-
thesis, with  IC50 values in the nanomolar range [10]. It has 
more potent efficacy than the other non-selective inhibitors. 
In patients with castration-resistant prostate cancer (CRPC) 
co-treated with dexamethasone and fludrocortisone, ODM-
208 exhibited a reduction in the levels of pregnenolone and 
testosterone [10].

As the protein crystal structure data of CYP11A1 is avail-
able, its analysis can provide clues for the development of 
new drug candidates [11]. The crystal structure of CYP11A1 
revealed that C20 and C22 of cholesterol are positioned just 
above the heme, and that this interaction was facilitated 
by enzyme residues such as W87, L101, F202, and I461 
(Fig. 4A). The two methyl groups on the β face of choles-
terol interact with S352 and a water molecule, forming a 
hydrogen bond with S352. This interaction facilitates the 
positioning of the reactive site of cholesterol closer to heme. 
Additionally, various residues assist in binding cholesterol 
rings to the active site. The 3β hydroxyl of cholesterol forms 
hydrogen bonds with two water molecules, creating an 
extensive hydrogen bonding network with residues such as 
H39, Y61, N210, Q377, and other water molecules (Fig. 4A) 
[11]. Rational design targeting of these key residues could 
potentially aid in the development of novel inhibitors that 
more efficiently modulate the initial step of steroid synthesis.

CYP17A1

CYP17A1 is primarily expressed in adrenal glands and 
gonads. It plays a crucial role in androgen synthesis by cata-
lyzing the sequential 17α-hydroxylation of progesterone and 
pregnenolone, followed by a 17,20-lyase reaction. This reac-
tion ultimately leads to the generation of androstenedione 
and dehydroepiandrosterone (DHEA) (Fig. 1). Androgens 
synthesized by CYP17A1 are essential for the differentia-
tion and maturation of male reproductive organs. In addi-
tion, they are key factors in prostate cancer, promoting the 
survival and growth of prostate cancer cells. Therefore, 
androgen signaling is considered as an important therapeutic 
target for the treatment of prostate cancer [7]. Consequently, 

CYP17A1 has been considered as a drug target for sup-
pressing androgen synthesis. The first drug approved as a 
CYP17A1 inhibitor was abiraterone (Fig. 3). Abiraterone is 
a pregnenolone analog with a pyridyl substituent at the 17th 
carbon atom that inhibits the 17-hydroxylase and 17,20-lyase 
activities of CYP17A1 [12]. CYP17A1 binds abiraterone 
through a type II inhibitory interaction with CYP enzyme 
[13]. Abiraterone binds more tightly to CYP17A1 than pro-
gesterone [13]. Inhibition assays with purified CYP17A1 
and the H295R cell line demonstrated that abiraterone 
inhibits the 17-hydroxylase and 17,20-lyase activities of 
CYP17A1 with  IC50 values in the nanomolar range [14]. 
In clinical trial, the serum levels of testosterone, DHEA, 
and androstenedione decreased significantly after treatment 
with abiraterone, and patients exhibited > 50% reduction 
in prostate-specific antigen [15]. In the crystal structure of 
CYP17A1 with abiraterone, structural folding characteristics 
of the CYP enzyme are evident, with the abiraterone struc-
ture showing tight interactions with residues in the active 
site of CYP17A1 through a hydrogen bond network, along 
with water molecules (Fig. 4B) [13]. These tight interac-
tions result in the significant inhibition of CYP17A1 enzyme 
activity. However, there are some concerns with the use of 
abiraterone in relation to the steroid biosynthesis pathway; 
abiraterone inhibits not only the 17,20-lyase reaction but 
also the 17-hydroxylase reaction, leading to interference in 
cortisol production (Fig. 1) [16]. When treated with abira-
terone, cortisol levels decrease and adrenocorticotropic hor-
mone (ACTH) secretion increases [17]. Side effects such as 
hypertension and hypokalemia may occur due to increased 
mineralocorticoid activity. Co-administration of an appro-
priate dose of prednisone as a glucocorticoid replacement 
can reduce ACTH levels and mitigate adverse effects caused 
by mineralocorticoids [15, 17, 18]. Targeting the active site 
may be challenging because of the shared active site of both 
hydroxylase and lyase reactions. Therefore, it is necessary 
to target auxiliary proteins that interact with CYP17A1. 
Cytochrome b5 (b5) is a small hemeprotein that performs 
various functions in the body [19, 20]. In particular, the b5 
protein shows selective enhancement in the lyase reaction 
of CYP17A1 (not in 17-hydroxylation), with the lyase reac-
tion being mainly dependent on the presence of b5 [21–24]. 
The b5 increases the coupling efficiency of NADPH con-
sumption, suggesting that this is one of the reasons for the 
activation of the lyase reaction by b5 protein [25]. It has 
been suggested that b5 operates as an allosteric regulator of 
CYP17A1 [21, 26–28], functioning without directly trans-
ferring electrons [28]. Previous studies have shown that 
R347 and R358 of CYP17A1 play critical roles in binding 
to b5 [19, 21, 22]. An in vivo study showed that the loss of 
b5 function results in lyase deficiency, leading to a decrease 
in androgen levels [29]. Therefore, compounds targeting 
R347 and R358 of CYP17A1 to inhibit binding to b5 could 

Fig. 1  Steroid biosynthesis pathway. FF-MAS (follicular fluid mei-
osis-activating sterol, 14-demethyl-14-dehydrolanosterol), DHEA 
(dehydroepiandrosterone), and DHT (dihydrotestosterone)

◂
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be potential drug candidates for inhibiting the lyase reac-
tion of CYP17A1 without interfering with the active site or 
hydroxylase reaction. Another concern regarding CYP17A1 
inhibitors is their off-target effect that may inhibit several 
other CYP enzymes. Within the steroidogenic CYP fam-
ily, abiraterone inhibits CYP21A2 at higher concentrations 
[30]. When CYP21A2 is inhibited, glucocorticoid and min-
eralocorticoid levels decrease, leading to increased ACTH 
secretion. This, in turn, can result in diseases such as adrenal 
hyperplasia and hyperkalemia [31, 32]. Therefore, various 
attempts have been made to develop new inhibitors with 
higher selectivity for CYP17A1 [32].

CYP19A1

CYP19A1 catalyzes the aromatase reaction to convert 
androstenedione and testosterone into estrone and estradiol, 
respectively, via a sequential reaction (Fig. 5). Estrogens, 

which are the products of the CYP19A1 reaction, are impor-
tant hormones for reproductive development and growth 
in females. However, estrogen can cause breast cancer by 
inducing the division and proliferation of breast tissue [6]. 
Estrogen-dependent breast cancer can be treated by sup-
pressing estrogen synthesis. Therefore, several approaches 
targeting CYP19A1, the key enzyme in estrogen synthesis, 
have been investigated and several clinical drugs have been 
developed. Exemestane, letrozole, and anastrozole are typi-
cal third generation CYP19A1 inhibitors (Fig. 3). They show 
high selectivity and potency in the suppression of CYP19A1 
[33]. Exemestane, a steroidal inhibitor, inhibits CYP19A1 
with  IC50 values in the nanomolar range and high affinity 
[34]. In patients, exemestane caused a significant reduction 
in the levels of estrogen in both plasma and urine, demon-
strating fast absorption [35]. The key factor in these inhibi-
tion reactions is the C6-methylidene group, which represents 
a crucial distinction between exemestane and androstenedi-
one. Exemestane exhibits binding characteristics similar to 

Table 1  Cytochrome P450 enzymes involved in steroid biosynthesis and specific inhibitors

*Developmental stage
a FDA approved in 2011
b FDA approved in 1999
c FDA approved in 1998
d FDA approved in 2000
e FDA approved in 2020
f FDA approved in 2021

CYP enzymes Target disease Specific inhibitor IC50, nM Cell line References

CYP11A1 Prostate cancer Opevesostat* 15 H295R [10]
CYP17A1 Prostate cancer Abirateronea 9.4 (hydroxylase)

1.7 (lyase)
H295R [14]

CYP19A1 Breast cancer Exemestaneb 900 MCF-7 [51]
Letrozolec 0.35 MCF-7 [52]
Anastrozoled 3.62 MCF-7 [52]

CYP11B1 Cushing’s disease Osilodrostate 34.7 HAC15 [53]
Levoketoconazolef 300 HAC15 [54]

CYP11B2 Secondary Hypertension Baxdrostat*  Lorundrostat*
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those of androstenedione, a CYP19A1 substrate. The ster-
oid nucleus is surrounded by hydrophobic residues, and the 
3- and 17-keto oxygen atoms interact with 115R, 374 M, 
and 309D via hydrogen bonding. Several conformational 
changes in the access channel of CYP19A1 and additional 
hydrophobic interactions allow exemestane to bind to 
CYP19A1. These new interactions result in a higher affin-
ity and more suitable structure for the CYP19A1 active site 
(Fig. 4C) [34]. Unlike exemestane, letrozole and anastrozole 
are non-steroidal inhibitors of CYP19A1. These inhibitors 
also decrease estrogen levels [36, 37]. The crystal structures 
of CYP19A1 with letrozole and anastrozole are not yet avail-
able. However, based on docking analysis, it has been specu-
lated that the formation of a coordinate bond between the 

triazole structure of the two inhibitors and the heme iron of 
CYP19A1 contributes to their high-affinity inhibition [38]. 
One of the adverse effects of CYP19A1 inhibitors is related 
to bones. In premenopausal women, the ovaries are the main 
glands responsible for estrogen secretion. In postmenopausal 
women, these glands no longer function in estrogen syn-
thesis; instead, several peripheral tissues produce estrogens, 
which function as paracrine and intracrine regulators, but 
not as endocrine regulators [39]. In particular, CYP19A1 
is expressed in bone tissues, such as osteoblasts and can 
produce estrogen, which is responsible for the maintenance 
of bone formation [40, 41]. Therefore, exemestane-induced 
inhibition can cause estrogen reduction in the bone, thereby 
increasing bone resorption. In a clinical study, exemestane 

Fig. 3  Chemical structures of 
specific steroidogenic CYP 
inhibitors. CYP11A1 inhibitor, 
opevesostat; CYP17A1 inhibi-
tor, abiraterone; CYP19A1 
inhibitors, exemestane, letro-
zole, and anastrozole; CYP11B1 
inhibitors, osilodrostat, and 
levoketoconazole; CYP11B2, 
baxdrostat and lorundrostat
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significantly reduced bone mineral density (BMD) and cor-
tical thickness in various body parts [42]. Decreased BMD 
was also observed following treatment with letrozole, and 
anastrozole [43, 44].

CYP11B1 and CYP11B2

The main activity of CYP11B1 in the adrenal cortex is the 
conversion of 11-deoxycortisol to cortisol and 11-deoxy-
corticosterone to corticosterone (Fig. 1). Excessive levels 
of cortisol, induced by various stimuli such as ACTH, 
can cause Cushing’s syndrome and a crucial factor in the 
treatment of Cushing’s syndrome is a reduction in cortisol 
levels [8]. Several candidate drug targeting CYP11B1 have 
been developed. Recently, osilodrostat and levoketocona-
zole have been approved as CYP11B1 inhibitors for the 
treatment of Cushing’s syndrome (Fig. 3). In a clinical 
study, these agents showed a significant reduction in the 
mean urinary free cortisol below upper limit of normal in 
patients with Cushing’s disease [45, 46]. Owing to the high 
similarity in amino acid sequences between CYP11B1 and 

CYP11B2, the simultaneous inhibition of CYP11B2 can 
be a serious issue because CYP11B2 is involved in the 
synthesis of aldosterone. In practice, osilodrostat has been 
reported to potently inhibit both CYP11B1 and CYP11B2 
in several cell lines [47].

CYP11B2 plays a key role in aldosterone synthesis 
from corticosterone (Fig. 1). Elevated levels of aldoster-
one, resulting from excessive activation of CYP11B2, are 
a representative cause of secondary hypertension. There-
fore, CYP11B2 is considered a potential drug target for the 
treatment of hypertension. There are currently no approved 
drugs that selectively target CYP11B2; however, several 
agents for this purpose are currently under development. 
To this end, baxdrostat (Fig.  3), a candidate drug for 
CYP11B2 inhibition, showed 100 times higher selectiv-
ity for CYP11B2 than for CYP11B1 in in vitro tests [48]. 
Additionally, it significantly decreased aldosterone levels 
and demonstrated a dose-dependent reduction in systolic 
blood pressure without affecting cortisol levels [49]. 
Lorundrostat (Fig. 3), another candidate drug, exhibited 
similar effects [50].

R239

Y201
N202

E305

G301

A302

R115

M374

T310

S478

V370

C6 D309

CBA

N210

H39

Y61

Q377
S352

L101

W87

I461F202

Fig. 4  Structural views of inhibitor binding in the active sites of steroidogenic CYP enzymes. a Binding of cholesterol to CYP11A1, b binding 
of abiraterone to CYP17A1, c binding of exemestane to CYP19A1

Fig. 5  Sequential enzyme reac-
tions to produce estrogens by 
CYP19A

O

CH3

CH3
O

O

CH3
O

OH

O

CH3
O

O

OH

CH3
O

O

CH3

CH3
OH

O

CH3
OH

OH

O

CH3
OH

O

OH

CH3
OH

Androstenedione

19-Oxotestosterone

19-Oxoandrostenedione

19-OH testosteroneTestosterone

enortsEenoidenetsordnaHO-91

Estradiol

CYP19A1 CYP19A1 CYP19A1

CYP19A1CYP19A1 CYP19A1



331Toxicol Res. (2024) 40:325–333 

Conclusion

Several inhibitors of steroidogenic CYPs have been 
approved as clinical drugs and have demonstrated signifi-
cant suppression of steroid biosynthesis. However, there 
remain unmet needs for the treatment of diseases involv-
ing steroid biosynthesis. A third-generation inhibitor of 
CYP19A1 showed a simultaneous decline in BMD in 
postmenopausal women with a decrease in estrogen levels. 
Abiraterone also showed high efficacy in the reduction of 
androgens by inhibiting CYP17A1; however, co-treatment 
with prednisone was required to replace glucocorticoids. 
In addition, osilodrostat and abiraterone inhibit off-tar-
get CYPs, leading to a deficiency in glucocorticoids and 
mineralocorticoids.

Numerous candidate agents are currently under devel-
opment with the aim of improved efficacy. However, 
several challenges remain in the development of drugs 
targeting CYPs. First, each steroidogenic reaction is inter-
connected with its substrates and products, indicating that 
the inhibition of a particular CYP can lead to unexpected 
effects. Consequently, some CYP inhibitors may require 
co-administration with other drugs to mitigate their side 
effects. Another concern is the similarity between various 
CYPs, which may inadvertently lead to the inhibition of 
unintended CYPs. Achieving high selectivity for the target 
CYP is crucial for addressing this issue. Crystal structure 
data plays a pivotal role in the development of drugs with 
enhanced selectivity.

The crystal structures of several steroidogenic enzymes, 
including CYP11A1, CYP17A1, CYP19A1, CYP11B1, 
and CYP11B2, have been determined. By comparing the 
binding of enzyme with substrates or other inhibitors 
using these crystal structure, new drugs can be designed, 
and modifications to increase selectivity can be explored. 
Additionally, a new strategy for CYP inhibition beyond 
competitive enzyme inhibition is necessary. Targeting 
the proteinaceous cofactors of CYPs, such as b5, ADR, 
and POR, could offer promising avenues for inhibition. 
Identifying the residues responsible for binding between 
CYP and its cofactor could aid in the development of new 
drugs with heightened selectivity. By addressing these 
challenges and compensating for the related defects, CYP 
inhibitors with high efficacy and selectivity can be devel-
oped to treat various diseases caused by abnormal steroid 
levels.
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