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Abstract
Advanced glycation end products (AGEs) can induce inflammatory signaling pathways through the receptor for AGEs 
(RAGE). Targeting RAGE could be a therapeutic strategy for treating chronic inflammation mediated by the AGE-RAGE 
axis. This study aimed to investigate the effects of Fimbristylis ovata and Artemisia vulgaris extracts on AGE-RAGE sign-
aling and AGE-mediated oxidative stress and inflammation in THP-1 cells. F. ovata and A. vulgaris were extracted by a 
Soxhlet extraction, and antioxidant capacity was evaluated using DPPH and ABTS assays. The human monocytic cell line 
THP-1 was treated with AGE (600 µg/ml) with and without F. ovata and A. vulgaris extracts (100 µg/ml). The mitochondria-
targeting antioxidant MitoQ (2 μg/ml) was used as a positive control. Cell viability, ROS generation, RAGE, AGE-RAGE 
signaling pathway components, and inflammatory cytokine levels were analyzed. F. ovata and A. vulgaris extracts showed 
antioxidative effects in non-cell-based assays. Treatment of THP-1 cells with AGE significantly increased the protein levels 
of RAGE and significantly increased the mRNA expression of cytokines, including TNF-α, IL-1β, and IL-6. AGEs induced 
the generation of ROS and levels of signaling molecules downstream of RAGE, including phosphorylated and total Erk1/2, 
JNK, and p38 MAPK, although not significantly. F. ovata and A. vulgaris extracts significantly decreased the protein levels 
of RAGE and significantly decreased the mRNA levels of cytokines. In conclusion, this study revealed that F. ovata and A. 
vulgaris extracts exert anti-inflammatory effects through the AGE-RAGE axis. However, details on this anti-inflammatory 
effect through AGE-RAGE signaling should be further investigated.
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RAGE  Receptor for AGEs
ROS  Reactive oxygen species
TNF-α  Tumor Necrosis Factor alpha

Introduction

Advanced glycation end products (AGEs) are heterogeneous 
molecules formed by nonenzymatic glycation and protein, 
lipid and nucleic acid oxidation. In biological systems, the 
process of endogenous AGE formation and accumulation 
in various tissues begins under diabetic hyperglycemia and 
oxidative stress conditions. In addition to endogenously 
produced AGEs, AGEs also exist in heat-processed foods 
and cigarette smoke [1–4]. AGE-induced inflammation has 
been recognized as a key mechanism underlying chronic dis-
eases (e.g., atherosclerosis), as AGEs can activate several 
inflammatory signaling pathways by binding to their recep-
tor, receptor for AGEs (RAGE), and regulate the release of 
inflammatory molecules through oxidative stress [5, 6]. A 
large number of studies have reported that the AGE-RAGE 
interaction leads to an increase in oxidative stress and to 
the activation of various cell signaling pathways, including 
mitogen-activated protein kinases (MAPKs), nuclear factor-
kappa B (NF-κB), and phosphoinositide 3-kinase (PI3K)-
Akt, which lead to the expression of inflammation-related 
genes and promote inflammation [7–10].

Increasing evidence has suggested that reactive oxy-
gen species (ROS) affect the biosynthesis of inflammatory 
modulators at the transcriptional level by modulating redox-
sensitive transcription factors, including NF-κB, Nrf2, and 
AP-1 [11]. ROS also play a role in promoting inflamma-
tion through MAPK signaling cascades, including extracel-
lular signal-regulated protein kinase (ERK), p38MAPK, 
and c-Jun N-terminal kinase/stress-activated protein kinase 
(JNK/SAPK), which regulate the activity of downstream 
transcription factors (e.g., NF-κB, ATF-2, and AP-1) and 
lead to the increased production of numerous inflammatory 
mediators, growth factors, and proinflammatory cytokines, 
such as TNF-α, IL-1β, and IL-6 [12, 13].

A number of natural and synthetic antioxidative com-
pounds have been mentioned as therapeutic strategies for 
the treatment of many pathophysiological conditions and 
oxidative stress-related inflammatory diseases [14]. Phyto-
chemicals, a group of chemicals derived from many kinds 
of fruits and plants, have long been highlighted due to their 
benefits for human health and their pharmacological activi-
ties under several pathological conditions [15]. Numerous 
polyphenolic compounds and extracts of polyphenolic-rich 
plants possess antioxidant, anticancer, and anti-inflamma-
tory properties [14]. An in vitro study has shown that fla-
vonoids have therapeutic effects on complications of diabe-
tes due to their antioxidant effects against oxidative stress 

mediated by AGEs [16]. It has been suggested that active 
flavonoid derivatives in herbs exhibit potent anti-inflam-
matory activity [17]. Traditional Thai herbal therapies may 
be an alternative treatment option for inflammation-related 
diseases, such as type 2 diabetes [18], cardiovascular dis-
eases [19], rheumatoid arthritis [20], chronic inflammatory 
lung disease [21], asthma [22], and Alzheimer’s disease 
[23]. Fimbristylis ovata (Burm.f.) Kern (F. ovata) is a plant 
in the Cyperaceae family [24]. Previous studies reported 
that plants in the Cyperaceae family contain several anti-
oxidant components and have anti-inflammatory properties 
[25–27], antipyretic effects, antinociceptive effects, and 
activity against Aedes mosquito species [28, 29]. F. ovata is 
traditionally used to treat various diseases [30, 31]. In our 
previous study, we have shown that F. ovata has antioxidant 
activity, anti-inflammatory properties, and neuroprotective 
potential. Moreover, chemical analysis of F. ovata extracts 
revealed potential active phytochemical compounds with 
neuroprotective substances [32, 33]. Artemisia vulgaris L. 
var. indica Maxim (A. vulgaris) belongs to the Compositae 
family. There is evidence that A. vulgaris contains several 
polyphenolic compounds [34]. Previous studies reported that 
A. vulgaris has therapeutic properties such as antimalarial, 
antioxidant, anti-inflammatory, and anticancer properties 
[35, 36]. However, no study has examined the antioxidant 
and anti-inflammatory effects of F. ovata and A. vulgaris 
extracts prepared with different conventional methods. 
Therefore, this study aimed to investigate whether F. ovata 
and A. vulgaris extracts can suppress AGE-RAGE signal-
ing activation-induced inflammatory responses and oxida-
tive stress in THP-1 monocytes. Discoveries from this study 
could help us to better understand the mechanisms of each 
extract separated by sequential extraction, which allows 
natural products to be divided according to their polarity in 
extraction solvents. We expect that these results will provide 
insights into the roles of these extracts in inflammatory con-
ditions, particularly those caused by AGEs.

Materials and methods

Preparation of plant extracts

F. ovata and A. vulgaris were identified by Professor Kasin 
Suvatabhandhu Herbarium, Department of Botany, Faculty 
of Science, Chulalongkorn University, Thailand (voucher 
No. 013431 (BCU) and A015134 (BCU), respectively). The 
fresh plants were cleaned with distilled water and then oven-
dried at 45 °C for 5 days. Dried plants were ground to pow-
der and extracted with petroleum ether, dichloromethane, 
and methanol 1:10 (w/v) by a Soxhlet extractor. The extracts 
were filtered, and the solvent was evaporated. Dimethyl sul-
foxide (DMSO) was used to dissolve the plant crude extract 
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to establish the 100 mg/ml stock solution. Stock solutions 
were stored protected from light at − 20 °C.

DPPH assay

Antioxidant capacity was investigated by the 2,2-diphenyl-
1-picrylhydrazyl (DPPH) method based on electron transfer 
between DPPH and the antioxidants in the plant extracts. 
Briefly, a calibration curve of ascorbic acid was prepared. 
Plant extracts (20 µl) were added to DPPH reagent (180 µl) 
in a 96-well plate and then incubated in the dark for 30 min. 
The absorbance at 517 nm was measured using a microplate 
reader (BioTek, VT, USA). The antioxidant activity was 
reported as mg vitamin C equivalent antioxidant capacity 
(VCEAC)/g of dried plant.

ABTS assay

Antioxidant activity was analyzed by the reaction between 
the plant extracts and 2,2’-azino-bis (3-ethylbenzthiazoline-
6-sulfonic acid) cation radical (ABTS• +). Briefly, a fresh 
ABTS• + solution was prepared by reacting ABTS reagent 
with potassium persulfate. A calibration curve of ascorbic 
acid was prepared. The plant extracts (20 µl) were added to 
working reagent (180 µl) in a 96-well plate and then incu-
bated in the dark for 45 min. The absorbance at 734 nm 
was measured. The antioxidant activity was reported as mg 
VCEAC/g of dried plant.

Cell culture

The human monocytic cell line THP-1 was grown in RPMI 
1640 supplemented with 10% fetal bovine serum (FBS), 100 
U/ml penicillin and 100 µg/ml streptomycin in a humidified 
incubator with 5%  CO2 at 37 °C.

MTS assay

Cell viability was investigated by a 3-(4,5-dimethylthia-
zol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium (MTS) assay, which measures the mito-
chondrial enzyme activity that reduces MTS to a formazan 
product that is soluble in the tissue culture medium. Briefly, 
THP-1 cells were seeded in a 96-well plate at a density of 
5 ×  105 cells/ml and differentiated into macrophages by 
stimulation with 10 ng/ml phorbol 12-myristate 13-acetate. 
Macrophages were then treated with either plant extracts 
or AGE-BSA for 24 h. Thereafter, MTS was added and 
incubated in a humidified incubator with 5%  CO2 at 37 °C 
for 4 h. The absorbance at 490 nm was measured using a 
microplate reader. Cells without treatment were used as a 
negative control. Cell viability was calculated according to 
the following.

formula: % cell viability = [(absorbance of the treat-
ment group – blank) × 100/(absorbance of the control group 
– blank)].

Determination of intracellular ROS generation

The percentage of cells undergoing oxidative stress based on 
the detection of intracellular superoxide radicals was ana-
lyzed using a Muse® Oxidative Stress kit (Merck, Darm-
stadt, Germany). The reagent is based on dihydroethidium 
(DHE), which is a cell-permeable fluorescent dye. Upon 
entering the cells, DHE and superoxide interact to form red 
fluorescent oxyethidium. The Muse® Cell Analyzer instru-
ment uses microcapillary cytometry for single-cell analysis 
and laser-based fluorescence detection of each cell event. 
Briefly, THP-1 cells were seeded at a density of 5 ×  105 cells/
ml in 12-well plates and differentiated into macrophages 
by stimulation with 10 ng/ml PMA. Cells were exposed to 
500 µM  H2O2 or 600 µg/ml AGE-BSA alone or AGE-BSA 
in combination with 100 µg/ml plant extracts for 1 h. The 
mitochondria-targeted antioxidant mitoquinone mesylate 
(MitoQ, 2 μg/ml) was used with AGE-BSA as the positive 
control. MitoQ was chosen due to its protective effect against 
oxidative damage and inflammatory responses by inhibiting 
the RAGE signaling pathway [37–44]. Thereafter, the cells 
were incubated with working reagent for 30 min and were 
analyzed using the Muse® Cell Analyzer (Merck, Darm-
stadt, Germany).

Quantitative reverse transcription polymerase chain 
reaction (qRT‑PCR)

THP-1 cells were seeded in 6-well plates at a density of 
1 ×  106 cells/ml and differentiated into macrophages by treat-
ment with 10 ng/ml PMA. Then, the cells were exposed to 
1 µg/ml LPS or 600 µg/ml AGE-BSA alone or AGE-BSA 
in combination with 100 µg/ml plant extracts or 2 μg/ml 
MitoQ for 24 h. Total RNA was extracted using TRIzol rea-
gent (Invitrogen, MA, USA) following the manufacturer’s 
instructions. The RNA template was used for cDNA synthe-
sis using the AccuPower® CycleScript RT PreMix Reverse 
Transcription System (Bioneer, Daejeon, Korea) and 
oligo(dT)18 primer. For the amplification reaction, qPCR 
was performed using the Exicycler™ 96 Real-Time Quan-
titative Thermal Block (Bioneer, Daejeon, Korea). mRNA 
expression was analyzed using the SYBR green primer pairs 
listed in Table 1. The specificity of the reaction products was 
assessed by performing melting curve analysis. The expres-
sion of each gene was normalized to the housekeeping gene 
β-actin. The fold change in expression was determined using 
the ΔΔCt method (2-ΔΔCt).
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Western blotting analysis

THP-1 cells were seeded at a density of 1 ×  106 cells/ml 
in 6-well plates and differentiated into macrophages by 
treatment with 10 ng/ml PMA. The cells were exposed 
to 1 µg/ml LPS or 600 µg/ml AGE-BSA alone or AGE-
BSA in combination with 100 µg/ml plant extracts or 2 μg/
ml MitoQ for 1 h or 24 h. Proteins were isolated from 
THP-1 cells using lysis buffer with phosphatase inhibi-
tor. The protein concentration was measured by the Brad-
ford protein assay (Bio-Rad, CA, USA). Proteins (15 µg) 
were separated by 10% SDS-PAGE and transferred to 
PVDF membranes. Unspecific protein-binding sites were 
blocked by incubating the membrane with TBS-T contain-
ing 5% nonfat dry milk for 1 h. The membranes were then 
incubated with primary antibodies (Table 2) overnight 
at 4 °C, followed by secondary antibodies (peroxidase-
conjugated goat anti-mouse or anti-rabbit IgG, Cell Sign-
aling Technology, MA, USA). The blots were incubated 
in ECL Select Western blotting Detection Reagent (GE 
Healthcare, IL, USA) and then visualized using high-per-
formance chemiluminescence (GE Healthcare, IL, USA). 
The intensities of the protein bands were quantitated using 
ImageJ software (National Institute of Health, MD, USA), 
and β-actin was used as the housekeeping protein.

Statistical analysis

The results of 3 repeats are presented as the mean ± standard 
error of the mean (SEM) and were analyzed using one-way 
ANOVA with post hoc Bonferroni tests (Prism 7, Graph-
Pad, CA, USA). A p value < 0.05 was considered statistically 
significant.

Results

Antioxidant capacity of F. ovata extracts

The results in Table 3 show that the antioxidant capacities of 
the dichloromethane and methanol extracts of F. ovata were 
similar and higher than that of the petroleum ether extract, 
as evidenced by both the ABTS and DPPH assays (p < 0.05).

Antioxidant capacity of A. vulgaris extracts

The results in Table 4 show that the antioxidant capacities 
of the dichloromethane and methanol extracts of A. vulgaris 
were significantly higher than that of the petroleum ether 
extract, as determined by the ABTS assay (p < 0.05). In the 
DPPH assay, the methanol extract of A. vulgaris showed the 

Table 1  Human Syber Green 
primers for qRT-PCR

Gene Sequence Annealing 
temperature 
(°C)

Product size
(bp)

TNF-α Forward primer 5ʹ TCT CGA ACC CCG AGT GAC AA 3ʹ
Reverse primer 5ʹ TGA AGA GGA CCT GGG AGT AG 3ʹ

55 181

IL-1β Forward primer 5ʹ ACC AAA CCT CTT CGA GGC AC 3ʹ
Reverse primer 5ʹ CAT GGC CAC AAC AAC TGA CG 3ʹ

56 300

IL-6 Forward primer 5ʹ GAA GAG AGC CCT CAG GCT GGA CTG  3ʹ
Reverse primer 5ʹ TGA ACT CCT TCT CCA CAA GCGC 3ʹ

64 627

RAGE Forward primer 5’ GTG GGG ACA TGT GTG TCA GAG GGA A 3’
Reverse primer 5’ TGA GGA GAG GGC TGG GCA GGG ACT  3’

64 383

β-actin Forward primer 5’ ACG GGT CAC CCA CAC TGT GC 3’
Reverse primer 5’ CTA GAA GCA TTT GCG GTG GAC GAT G 3’

58 656

Table 2  List of antibodies for 
Western blotting analysis

Primary antibody Dilution factor Manufacture

Phospho-Erk1/2 1:4,000 Cell signaling technology, MA, USA
Erk1/2 1:4,000 Cell signaling technology, MA, USA
Phospho-JNK 1:2,000 Cell signaling technology, MA, USA
JNK 1:2,000 Cell signaling technology, MA, USA
Phospho-p38 MAPK 1:4,000 Cell signaling technology, MA, USA
p38 MAPK 1:4,000 Cell signaling technology, MA, USA
NF-κB 1:2,000 Cell signaling technology, MA, USA
RAGE 1:1,000 Merck, Darmstadt, Germany
β-actin 1:10,000 Cell signaling technology, MA, USA
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highest antioxidant capacity (p < 0.05 vs. dichloromethane 
and petroleum ether extracts), followed by the dichlorometh-
ane extract (p < 0.05 vs. petroleum ether), and the petro-
leum ether extract showed the lowest antioxidant capacity 
(Table 4).

Effect of F. ovata and A. vulgaris extracts, AGE‑BSA, 
and BSA on cell viability

Upon incubation with various concentrations (0.78–100 µg/
ml) of F. ovata and A. vulgaris extracts for 24 h, no sig-
nificant change in the viability of THP-1 cells was observed 
(Fig. 1 a-b). Upon incubation with various concentrations of 
AGE-BSA and BSA (25–600 µg/ml) for 24 h, there was no 
significant change in cell viability (Fig. 1c).

Effect of F. ovata and A. vulgaris extracts 
on AGE‑induced intracellular superoxide radical 
production

Treatment with  H2O2 and AGE-BSA for 1  h increased 
intracellular superoxide radical production by 30% (Fig. 2). 
Treatment with 100 µg/ml petroleum ether, dichlorometh-
ane and methanol extracts of A. vulgaris marginally reduced 
superoxide radical production compared with the AGE-BSA 
treatment. The positive control MitoQ at a concentration of 
2 μg/ml did not affect the viability of THP-1 cells (Supple-
mentary Fig. S1). Treatment with MitoQ decreased superox-
ide radical production to the untreated level (Fig. 2).

Effect of F. ovata and A. vulgaris extracts 
on AGE‑induced RAGE expression

Compared with the control condition, LPS treatment for 24 h 
increased RAGE protein expression by 50% without statis-
tical significance (Fig. 3), and treatment with AGE-BSA 
for 24 h significantly increased RAGE protein expression 
(p < 0.05 vs. untreated; Fig. 3). In addition, treatment with 
the dichloromethane extracts of F. ovata and A. vulgaris and 
the methanol extract of A. vulgaris significantly attenuated 
RAGE protein expression compared with treatment with 
AGE-BSA (p < 0.05; Fig. 3). However, the petroleum ether 
extracts of F. ovata and A. vulgaris and the methanol extract 
of F. ovata did not affect RAGE protein levels. Treatment 
with MitoQ decreased RAGE protein expression compared 
with AGE-BSA treatment (p < 0.05; Fig. 3).

Table 3  Antioxidant capacity of F. ovata extracts determined by 
ABTS and DPPH assays

The results are expressed as the mean ± SE, n = 3
*p < 0.05 vs. petroleum ether extract

F. ovata. extracts ABTS (mg VCEAC/g) DPPH (mg VCEAC/g)

Petroleum ether 10.8 ± 0.4 11.87 ± 0.2
Dichloromethane 67.5 ± 2.6* 47.8 ± 2.8*
Methanol 62.9 ± 1.0* 47.1 ± 1.2*

Table 4  Antioxidant capacity of A. vulgaris extracts determined by 
ABTS and DPPH assays

The results are expressed as the mean ± SE, n = 3
*p < 0.05 vs. petroleum ether extract
# p < 0.05 vs. dichloromethane extract

A. vulgaris extracts ABTS (mg VCEAC/g) DPPH (mg VCEAC/g)

Petroleum Ether 18.0 ± 3.6 15.4 ± 0.1
Dichloromethane 90.7 ± 0.5* 40.5 ± 1.1*
Methanol 99.2 ± 0.2* 88.4 ± 0.1*#

Fig. 1  Cell viability of THP-1 cells. Cells were exposed to F. ovata 
(a) extracts, A. vulgaris (b) extracts, AGE-BSA or BSA (c) for 
24 h. Cell viability was analyzed by the MTS assay. The results are 
expressed as the mean ± SE, n = 3
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Effect of F. ovata and A. vulgaris extracts on MAPK 
signaling

Upon treatment with LPS and AGE-BSA for 1 h, the lev-
els of phospho-Erk1/2 (Fig. 4a), total Erk1/2 (Fig. 4b), and 
phospho-JNK (Fig. 5a) were increased by 50%, although 
without statistical significance. The total JNK levels were 
increased marginally by LPS treatment and by 50% in the 
AGE-BSA treatment (Fig. 5b). Compared with the control 

condition, both the LPS and AGE-BSA treatments increased 
phospho-p38 MAPK levels by 70% but only marginally 
increased p38 MAPK levels without statistical significance 
(Fig. 6a, b). There was no change in the Erk1/2, JNK, and 
p38 MAPK protein levels between the AGE-BSA group 
and the plant extract groups (Figs. 4, 5, 6). MitoQ treatment 
marginally reduced phosphorylated and total Erk1/2, JNK, 
and p38 MAPK levels, although without statistical signifi-
cance when compared with AGE-BSA treatment (Figs. 4, 

Fig. 2  Intracellular superoxide 
radical production in THP-1 
cells. Cells were exposed to 
AGE-BSA alone or AGE-BSA 
in combination with plant 
extracts for 1 h.  H2O2 was 
used as a negative control, 
and MitoQ was used as a 
positive control. The results are 
expressed as the mean ± SE, 
n = 3

Fig. 3  Protein expression of 
RAGE in THP-1 cells. Cells 
were exposed to AGE-BSA 
alone or AGE-BSA in combi-
nation with plant extracts or 
MitoQ for 24 h. MitoQ was 
used as a positive control. The 
results are expressed as the 
mean ± SE, n = 3. *p < 0.05 
AGE-BSA vs. untreated, 
#p < 0.05, MitoQ and plant 
extracts vs. AGE-BSA
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5, 6). There was no change in phospho-Erk1/2/total Erk1/2, 
phospho-JNK/total JNK, or phospho-p38 MAPK/total p38 
MAPK between all groups.  

Effect of F. ovata and A. vulgaris extracts on NF‑κB 
expression

The protein levels of the transcription factor NF-κB were 
increased by 40% and 60% by LPS and AGE-BSA treat-
ments, respectively, compared with the control condition 
(Fig. 7). There was no difference in NF-κB levels between 
the AGE-BSA group and the plant extract groups, whereas 
MitoQ normalized NF-κB to the control level.

Effect of F. ovata and A. vulgaris extracts 
on AGE‑induced inflammatory cytokine expression

Our data revealed that LPS and AGE-BSA significantly 
induced TNF-α, IL-1β, and IL-6 mRNA expression (p < 0.05 
vs. untreated; Fig. 8a–c). Treatment with all extracts of F. 

ovata and A. vulgaris normalized TNF-α mRNA expression 
to the control level (p < 0.05 vs. AGE-BSA; Fig. 8a). IL-1β 
mRNA expression was significantly decreased (p < 0.05 vs. 
AGE-BSA; Fig. 8b) by treatment with the methanol extract 
of F. ovata and all extracts of A. vulgaris compared with 
treatment with AGE-BSA. Moreover, all the extracts of F. 
ovata and the petroleum ether extract of A. vulgaris normal-
ized IL-6 mRNA expression to the control level (p < 0.05 vs. 
AGE-BSA; Fig. 8c). MitoQ treatment significantly inhibited 
TNF-α, IL-1β, and IL-6 mRNA expression compared with 
AGE-BSA treatment (p < 0.05; Fig. 8a–c).

Discussion

In this study, we assessed the antioxidant and anti-inflam-
matory capacity of F. ovata and A. vulgaris extracts. Dif-
ferent extraction methods were examined. The results from 
our study showed that the dichloromethane and methanol 
extracts of F. ovata had the same high antioxidant activity, 

Fig. 4  Phospho-Erk1/2 (a), total Erk1/2 (b), and phospho-Erk1/2/
total Erk1/2 (c) protein levels in THP-1 cells. Cells were exposed to 
AGE-BSA alone or AGE-BSA in combination with plant extracts 

or MitoQ for 1 h. The results are expressed as the mean ± SE, n = 3. 
*p < 0.05 AGE-BSA vs. untreated
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while the methanol extract of A. vulgaris had the highest 
antioxidant activity. All extracts of F. ovata and A. vulgaris 
showed potent anti-inflammatory effects, which were asso-
ciated with the inhibition of AGE-induced RAGE expres-
sion. The radical-scavenging capacity of plant extracts was 
dependent on solvent polarity, which is related to the polar 
nature of the active compounds in each plant. Among the 
major classes of phytochemicals, phenolic compounds are 
the most extensively studied, especially their health ben-
efits due to potential protection against oxidative damage 
[45]. Polar solvents are efficiently used to recover phenolic 
compounds from plants [46]. Our results indicated that the 
natural antioxidants in F. ovata and A. vulgaris may mainly 
be preserved in the polar solvent extracts. Notably, there 
were some differences in the radical-scavenging capacity of 
the plant extracts detected by the DPPH and ABTS assays. 
The ABTS assay is superior to the DPPH assay and reveals 
antioxidant activity in a more sensitive manner since it has 
faster reaction kinetics. The ABTS assay is also useful for 

assessing the antioxidant capacity of samples extracted with 
acidic solvents and of samples containing hydrophilic, lipo-
philic, and pigment compounds [47, 48]. However, while 
none of the F. ovata and A. vulgaris extracts showed marked 
antioxidant activity in cells, the ROS production induced by 
AGE was inhibited by the known mitochondria-targeting 
antioxidant MitoQ. This may be due to the dose of F. ovata 
and A. vulgaris extracts used in this study. The inconsistency 
between our findings of antioxidative effects of plant extracts 
evaluated using non-cell-based assays and ROS generation 
in THP-1 cells may be due to the principle of oxidative stress 
kit in this study which is based on the detection of only 
superoxide radical production in cells. The production of 
other radicals, such as hydroxyl radicals, peroxyl radicals, 
and alkoxyl radicals, should be further investigated.

The AGE-RAGE interaction leads to an increase in oxi-
dative stress and to the activation of various cell signaling 
pathways, including MAPKs, PI3K-Akt, and NF-κB, which 
causes the expression of a variety of inflammation-related 

Fig. 5  Phospho-JNK (a), total JNK (b), and phospho-JNK/total JNK 
(c) protein levels in THP-1 cells. Cells were exposed to AGE-BSA 
alone or AGE-BSA in combination with plant extracts or MitoQ 

for 1 h. The results are expressed as the mean ± SE, n = 3. *p < 0.05 
AGE-BSA vs. untreated
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Fig. 6  Phospho-p38 MAPK (a), total p38 MAPK (b), and phospho-
p38 MAPK/total p38 MAPK (c) protein levels in THP-1 cells. Cells 
were exposed to AGE-BSA alone or AGE-BSA in combination with 

plant extracts for 1  h. MitoQ was used as a positive control. The 
results are expressed as the mean ± SE, n = 3. *p < 0.05 AGE-BSA vs. 
untreated

Fig. 7  NF-κB protein levels in 
THP-1 cells. Cells were exposed 
to AGE-BSA alone or AGE-
BSA in combination with plant 
extracts for 1 h. MitoQ was used 
as a positive control. The results 
are expressed as the mean ± SE, 
n = 3
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genes and promotes inflammation [7, 8]. Increasing evidence 
suggests that the AGE-RAGE axis is a therapeutic target for 
chronic inflammation-related conditions. AGE inhibitors can 
prevent oxidative stress and have protective effects against 
inflammation [49]. In addition, clinical research revealed 
that sRAGE, acting as a RAGE competitor, could suppress 
vascular inflammation [50]. Moreover, knockout of the 
RAGE gene resulted in reduced atherosclerosis and vascu-
lar inflammation [51]. Therefore, targeting RAGE could be 

a therapeutic strategy for the treatment of conditions caused 
by AGE-RAGE axis-mediated oxidative stress and chronic 
inflammation.

In this study, AGEs induced the expression of RAGE, 
signaling molecules downstream of RAGE, including 
Erk1/2, JNK, p38 MAPK, and NF-κB, and inflammation-
related genes, including TNF-α, IL-1β, and IL-6. Most F. 
ovata and A. vulgaris extracts suppressed RAGE expres-
sion and inflammatory cytokine production, except for the 
petroleum ether extracts. This anti-inflammatory effect was 
independent of their antioxidant capacity, at least at these 
experimental doses. The role of F. ovata and A. vulgaris 
extracts in the inhibition of AGEs is, at least, mediated by 
attenuating the increase in RAGE but without impacting 
Erk1/2, JNK, p38 MAPK, and NF-κB.

It has also been reported that AGE-mediated stimulation 
of Toll-like receptor-4 (TLR-4) signaling could induce the 
inflammatory cytokines IL-1β and IL-6 in THP-1 cells [52, 
53]. RAGE and TLRs share common ligands and signaling 
pathways, suggesting a cooperative interaction in immune 
response stimulation. Incorporation of the RAGE signal into 
the TLR pathways markedly amplifies inflammatory sign-
aling [54]. In this study, F. ovata and A. vulgaris extracts 
exerted a suppressive effect on RAGE and inflammatory 
cytokine levels but did not affect Erk1/2, JNK, p38 MAPK, 
or NF-κB; thus, AGE-mediated stimulation of TLRs should 
also be considered in our results. The effects of F. ovata and 
A. vulgaris extracts on the incorporation of RAGE and TLRs 
should be further investigated.

The PI3K/Akt [55, 56], protein kinase C [57], and JAK/
STAT pathways [58] are among the known signaling cas-
cades that can be activated by RAGE. Additional studies 
are needed to discover the alternative pathway that medi-
ates the anti-inflammatory effects of F. ovata and A. vul-
garis extracts. It would be interesting to further clarify 
the effect of F. ovata and A. vulgaris extracts on signaling 
cascades, including the PI3K/Akt, protein kinase C, and 
JAK/STAT pathways.

In addition to the transcription factor NF-κB, the 
AGE-RAGE axis could activate several proinflammatory 
transcription factors, including cAMP-response-element-
binding protein (CREB) [59, 60], early growth response-1 
(EGR-1) [61], and activator protein-1 (AP-1) [62]. We did 
not precisely determine the mechanisms of AGE-induced 
proinflammatory transcription factors; therefore, these 
issues should also be considered. In this study, AGEs 
induced the protein levels of NF-κB. However, F. ovata 
and A. vulgaris extracts did not affect NF-κB levels. There-
fore, the effects of F. ovata and A. vulgaris extracts on 
NF-κB activities, such as the active form of NF-κB, Ikap-
paB-alpha degradation, and NF-κB nuclear translocation, 
need to be further investigated.

Fig. 8  TNF-α (a), IL-1β (b), and IL-6 (c) mRNA expression in 
THP-1 cells. Cells were exposed to AGE-BSA alone or AGE-BSA in 
combination with plant extracts or MitoQ for 24  h. The results are 
expressed as the mean ± SE, n = 3. *p < 0.05 AGE-BSA vs. untreated, 
#p < 0.05 MitoQ and plant extracts vs. AGE-BSA
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In summary, F. ovata and A. vulgaris extracts have an 
inhibitory effect on AGE-mediated RAGE overexpression 
and inflammatory responses and showed antioxidative 
effects in non-cell-based assays. Therefore, F. ovata and A. 
vulgaris might be useful as alternative options to prevent 
AGE-RAGE signaling-mediated inflammatory conditions. 
Future studies are needed to elucidate the active com-
pounds in various extracts and to confirm the effect of F. 
ovata and A. vulgaris extracts on more AGE-RAGE cascade 
components.
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