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Abstract
Flavonoids are polyphenolic phytochemicals produced in fruits, nuts and vegetables and dietary consumption of these 
structurally diverse compounds is associated with multiple health benefits including increased lifespan, decreased cardio-
vascular problems and low rates of metabolic diseases. Preclinical studies with individual flavonoids demonstrate that these 
compounds exhibit anti-inflammatory and anticancer activities and they enhance the immune system. Their effectiveness 
in both chemoprevention and chemotherapy is associated with their targeting of multiple genes/pathways including nuclear 
receptors, the aryl hydrocarbon receptor (AhR), kinases, receptor tyrosine kinases and G protein-coupled receptors. However, 
despite the remarkable preclinical activities of flavonoids, their clinical applications have been limited and this is due, in part, 
to problems in drug delivery and poor bioavailability and these problems are being addressed. Further improvements that 
will expand clinical applications of flavonoids include mechanism-based precision medicine approaches which will identify 
critical mechanisms of action of individual flavonoids with optimal activities that can be used in combination therapies.
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Introduction

Flavonoids are polyphenolic phytochemicals produced in 
fruits, vegetables and grains and consumption of flavonoid-
rich foods and nutriceuticals has been associated with a wide 
range of health benefits (rev. in [1–8]). Flavonoids contain a 
common phenylchromen-4-one scaffold which can be substi-
tuted with a phenyl ring at C2 or C3 to give the flavone and 
isoflavone backbone structure. Further modifications at C4 
(a ketone group), C2–C3 (saturated or olefinic) plus hydroxy 
or methoxy substituents on the phenylchromen-4-one and 

phenyl rings results in formation of flavanones, flavanols, 
flavonols, flavones, anthocyanidins and isoflavones (Fig. 1). 
In addition, chalcones in which the ether ring of flavonoids 
has been cleaved are also considered to be members of the 
flavonoid family of plant polyphenolics. Flavonoids are 
synthesized from phenylalanine and malonyl—Co A [9, 
10] and over 8000 individual flavonoids have been identi-
fied in plants [7]. Flavonoids are secondary metabolites that 
exhibit multiple functions in plants including their role in 
protecting against various internal and external stressors. 
Consumption of fruits and vegetables has long been associ-
ated with improved overall human health [11–14] and flavo-
noids have been recognized as one of the important classes 
of phytochemicals that enhance health benefits. Moreover, 
there is evidence for widespread use of individual and fla-
vonoid mixtures as nutriceutical for maintaining health and 
for treatment of multiple diseases and aliments.

Effects of flavonoids on non‑cancer and cancer 
endpoints in humans

Flavonoids have been extensively investigated for their 
effects on multiple non-cancer and cancer endpoints and 
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PubMed lists over 123,000 publications dealing with these 
phytochemicals. Although detailed structure–activity and 
mechanistic studies on flavonoids are limited, the effects 
of these compounds have been attributed, in part to their 
activities as antioxidants, antimicrobial and antiviral 
activities, radical trapping agents and as inhibitors of key 
enzymes/factors such as cyclooxygenases, and acetylcho-
linesterase. Many studies report that flavonoids modulate 
expression of multiple genes and gene products that result 
in beneficial effects however, the mechanisms and specific 

polyphenolics associated with individual f lavonoid-
induced responses are not well defined. Among the over 
123,000 citations on flavonoids, there are many primary 
and review articles on the health promoting effects of these 
compounds in several disease models of both prevention 
and intervention/therapeutics. Results of laboratory and 
preclinical studies would predict enormous health benefits 
from these compounds whereas human studies show mod-
est and limited responses and some examples of effects in 
humans that are associated with flavonoid consumption 

Fig. 1  Structure of flavonoids and some individual members of each class
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including aging and selected disease are summarized 
below.

Aging and cardiovascular disease

Biological aging is a complex process that results in the 
temporal deterioration of cells due to the net accumulation 
of damage in multiple cell types and is due, in part, to age-
dependent decreases in cell repair and maintenance path-
ways, enhanced stress, DNA damage, mitochondrial injury 
and inflammation [15]. The major diseases where age is a 
prominent risk factor include vascular disease and athero-
sclerosis, joint degeneration, metabolic diseases (obesity and 
diabetes), skin diseases, circulatory disease (hypertension, 
coronary artery disease), eye diseases (macular degenera-
tion) and neurodegenerative diseases (Alzheimer’s, dementia 
and decreased cognitive-functions) [15]. The effects of flavo-
noid or polyphenolic intake on mortality as an age-depend-
ent response has been investigated in several human studies 
[16–22]. A recent report on the Danish Diet Cancer and 
Health Cohort [16] of 56,048 participants showed that die-
tary intakes of approximately 500 mg/day of total flavonoids 
decreased overall mortality and subsequent higher intakes of 
up to 2000 mg/day did not further decrease mortality. The 
authors also reported similar effects on decreased mortal-
ity associated with dietary intakes of individual sub-classes 
of flavonoids including flavonols, flavanols, flavanones, 
flavones and anthocyanins. There was also evidence that 
dietary flavonoids provide some mitigation of alcohol and 
smoking-dependent higher rates of mortality. Interestingly 
there were some differences in the mortality studies in the 
various cohorts. For example, in the prospective Nurses’ 
Health Study II, a comparison between the lowest and high-
est consumers of total flavonoids was significant only in one 
model even though there was lower mortality rate in the high 
consumer group [22]. There was a significant increase in 
mortality of women in the high vs. low grapefruit consum-
ing group whereas selected flavonoid/polyphenol-rich foods 
such as red wine, tea, peppers, blueberries and strawberries 
were associated with decreased mortality. The overall con-
sensus from most studies is that dietary flavonoids signifi-
cantly lower mortality rates and can provide some protec-
tion from factors that contribute to higher rates of mortality. 
Many of the reports on dietary flavonoids and mortality also 
examine the possible association with mortality from car-
diovascular diseases [9, 16–18, 20]. A high intake of dietary 
flavonoids was also associated with decreased cardiovascular 
mortality and in the Danish cohort study this association was 
observed for individual sub-classes of flavonoids.

Diabetes

Diabetes is another aging-related disease which in recent 
years has significantly increased in many countries due to 
diet-induced obesity. A recent meta-analysis of 18 different 
prospective cohort studies on polyphenol exposure and the 
risk of type 2 diabetes [23] reported that by comparison of 
extreme quintiles of intake there was an inverse association 
for flavonoids, flavonols, flavan-3-ols, catechins, anthocya-
nidins and isoflavones. A similar inverse correlation was 
observed for dietary intake of flavonoids and the risk of ges-
tational diabetes mellitus [24]. A recent review summarized 
past and current/ongoing clinical trials on effects of various 
flavonoids/polyphenols on diabetes and diabetic complica-
tions including nephropathy, retinopathy, neuropathy and 
cardiovascular complications [25]. Although there were 
some indications of benefit, effects of the clinically approved 
and recommended use of flavonoid mixtures for treatment of 
diabetes and its complications were minimal despite encour-
aging results from animal models and cell culture studies 
[25, 26]. Nevertheless, meta-analysis of clinical trials (pri-
marily with supplements) showed that flavonols and isofla-
vones decreased body mass index, flavonols also decreased 
waist circumference whereas flavonoids, flavanones and 
anthocyanins were not inversely associated with markers 
of obesity [27]. Another report (single cohort) showed that 
other polyphenolics correlated with decreased body mass 
index [28], however, flavanols were not separated out in this 
study. Overall, the results suggest a possible role for flavo-
noids in ameliorating the effects of diabetes and in diabetes 
prevention but identification of specific sub-classes of flavo-
noids that are most efficacious requires further investigation.

Neurodegeneration

There are several studies showing that consumption of flavo-
noid and polyphenolic foods protects against some signs and 
markers of neurodegeneration including various dementias 
and Alzheimer disease. Both intervention studies with vari-
ous flavonoid-enriched foods [29–33] and evidence from the 
beneficial effects of the Mediterranean diet [34–37] suggest 
a role for these phytochemicals in neurodegenerative disease 
prevention. For example, decreased development of Alzhei-
mer’s dementia was associated with both strawberry and 
total flavonoid intake [38]. In the prospective Framingham 
Offspring Cohort study, individuals with the highest intake 
of flavonols, anthocyanins and flavonoid polymers had the 
lowest risk for Alzheimer disease and related dementias and 
this correlated changes in MRI indicators [39, 40].
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Anti‑inflammatory and immune cell effects

Inflammation plays an important role in many diseases and 
there is considerable evidence from in vitro and animal 
model studies that flavonoids inhibit multiple inflamma-
tory pathways [41–43]. Many of the studies noted above 
are associated with flavonoid/polyphenol-mediated anti-
inflammatory effects and this is confirmed in other reports 
[44–47]. For example, a clinical study with the citrus fla-
vonoid hesperidin (500 mg/d for 3 weeks) decreased levels 
of several circulation markers of inflammation including 
c-reactive protein, serum amyloid A protein and soluble 
E-secretin [45]. Flavonoids and polyphenolics are immu-
nomodulatory compounds and impact multiple immune cell 
types and the effects are highly variable and dependent on 
the compound, animal model and immune component [41, 
43, 45, 48–51]. Reviews on the effects of flavonoids and 
related compounds on immune cell responses demonstrate 
their wide-ranging effects on immune cells and immune cell 
responses which include modulation of β cell and antibody 
production, enhancement of NK cell cytotoxicity, inhibition 
of Th17-dependent differentiation and NLRP3 inflamma-
tion and induction of CD8 + cells. Human intervention stud-
ies on the effects of flavonoid on immune responses give 
mixed results and these compounds are not routinely used 
for immune therapies.

Intestinal inflammation and endometriosis

Several recent reviews summarize studies showing that 
structurally-diverse flavonoids inhibit inflammatory bowel 
disease and related intestinal inflammation in laboratory ani-
mal models [52–55]. Salaritabar and coworkers reviewed 
and summarized effects of individual flavonoids on dextran 
sodium sulfate (DSS) and TNBS-and acetic acid-induced 
inflammation in rodent models of ulcerative colitis and 
Crohn’s disease respectively. In the former model flavo-
noid that inhibit inflammation include quercetin, rutin, 
kaempferol, daidzein, naringenin, hesperidin, anthocyanins 
(cranberry) apigenin, baicalein, luteolin, fisetin, epigallo-
calechin-3-gallate and oligonal. TNBS-induced intestinal 
inflammation is inhibited by many of the same flavonoids 
and also morin, genistein, diosmin, tangeritin, catechiu, 
grape extracts and thearubigin. Rape bee pollen which con-
tains high levels of kaempferol blocked DSS-induced colitis 
in mice and this included inhibition of colon shortening and 
decreased weight, spleen swelling and improved inflamma-
tion [56, 57]. There were also decreases in inflammatory 
cytokines in colon tissue with a notable decrease in IL-1β. 
It was also shown that there were treatment related effects 
on the gut microbial population with enhanced expression of 
Lactobacillus and decreased Allobaculum and Bacteriodes. 
All of these laboratory studies indicate that flavonoids and 

phytochemical extracts enriched in flavonoids would play 
an important role in preventing and treating inflammatory 
diseases of the intestine. There is some evidence that the 
Mediterranean diet which is enriched in flavonoids improves 
inflammatory impacts in patients with Crohn’s disease and 
inflammatory bowel disease [58]. There was also evidence 
for a beneficial effect of dietary isoflavones in a cohort of 
Polish patients with ulcerative colitis in remission [59]. 
Other studies also show the beneficial effects of flavonoids 
[60–63], however, it was concluded “To date, clinical studies 
are scarce and further research with well controlled proce-
dures and higher number of patients is essential to establish 
the potential therapeutic use of flavonoids” [54].

Several studies have also reported the effects of different 
classes of flavonoids as inhibitor of endometriosis which 
afflicts over 5.5 million women in the United States and 176 
million worldwide. Flavonoids that inhibit pro-endometriotic 
pathways/genes include epigallocalechin-3-gallate, luteolin, 
glycosylated flavonoids from Melilotus offinalis, quercetin 
3,6-dihydroxyflavone and chrysin [64–74]. For example, 
epigallocatechin-3-gallate (ECGC) exhibits antifibrotic 
properties in mouse models, established endometriotic 
cells and patient derived cells and this includes decreased 
invasion and inhibition of multiple fibrotic genes including 
α-smooth muscle actin [74]. One study reported that a cock-
tail of agents which included quercetin reduced some of the 
symptoms and serum markers of endometriosis (PGE2 and 
CA-125) [75], however, clinical applications of flavonoids 
for treatment of endometriosis are minimal despite promis-
ing preclinical laboratory studies.

Cancer

A pubmed search of flavonoids and cancer listed over 
22,000 papers demonstrating the high level of interest and 
preclinical studies on the anticancer activities of these 
phytochemicals. Flavonoids have been widely character-
ized as anticancer agents via their inhibition of multiple 
pro-oncogenic pathways and genes in cancer cells and also 
to a lesser extent, their induction of tumor suppressor-like 
responses and genes [2, 4, 6, 12–14, 76–80]. Based on this 
abundance of data, results of clinical trials on the chemo-
preventive and chemotherapeutic effects of flavonoids are 
underwhelming. A recent update on flavonoids as cancer 
chemopreventive agents summarized results of case control 
and prospective studies which correlated flavonoid intake 
with risks for breast, lung, prostate, gastric, pancreatic head 
and neck, and colorectal cancers. Although there was some 
evidence showing that intake of total or specific flavonoids 
was associated with decreased risks for some cancers, these 
observations were not observed in all studies [14]. A large 
prospective study did not observe an association between 
flavonoid intake and colorectal cancer risk; and this was 
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also observed in one case control study but in two other 
case–control reports, there was an inverse association 
between flavonoid intake and risks for colorectal cancer 
[81–84]. Despite the extensive data on the anticancer activi-
ties of flavonoids, their applications for cancer therapy are 
limited and this is related, in part, to the low bioavailability 
of these compounds. Therapeutic trials on the effects of gen-
istein on prostate and colorectal cancer are underway and 
isoflavones in combination with other agents had no effect 
on advanced pancreatic cancer but may have impacted PSA 
levels in prostate cancer patients [77, 80, 85–88].

Human studies show some benefits of flavonoids on mor-
tality and other diseases based primarily on long term con-
sumption of foods enriched in these compounds. However, 
despite the broad range of effects of flavonoids on multiple 
disease related pathways in preclinical studies, the therapeu-
tic effects and ongoing clinical applications of flavonoids 
are not extensive. This may be due, in part, to poor bio-
availability of these compounds which should improve with 
development of improved delivery systems [87]. Future 
therapeutic benefits from flavonoids may also require a more 
mechanistic and precision medicine approaches where spe-
cifically targeted pathways/genes have been identified and 
structure–activity studies have focused on using flavonoids 
which exhibit optimal response-specific activities. The fol-
lowing section will identify and briefly discuss several spe-
cific flavonoid targets that are responsible for many of the 
flavonoid-induced therapeutic responses. With few excep-
tions, the individual flavonoids that optimally modulate spe-
cific intracellular targets have not been identified.

Mechanisms of action of flavonoids

One of the important underlying mechanisms of action of 
dietary flavonoids and related polyphenols is associated with 
their inhibition of oxidative stress and related downstream 
responses including inflammatory diseases. Flavonoids scav-
enge free radicals and their subsequent damage by forming 
relatively stable phenoxy radicals and also by metal chela-
tion [15, 88]. In addition, flavonoids interact with multiple 
gene products to inhibit their specific actions and thereby 
directly modulate a limited response or for kinase inhibition, 
the interaction could impact multiple downstream pathways.

 i. Flavonoids as kinase inhibitors.
   Although flavonoids directly bind many proteins 

and modulate their activities, their interactions with 
multiple kinases and subsequent effects on down-
stream kinases-dependent signaling have been exten-
sively investigated (rev. in [89–94]). Genistein was 
among the first flavonoids identified as a receptor 
tyrosine kinase (RTK) inhibitor [94] and inhibited 
autophosphorylation of the epidermal growth fac-

tor receptor (EGFR) and it acts as a non-competitive 
inhibitor of histone H2B [95]. Subsequent studies 
show the genistein and many other flavonoids inhibit 
a diverse spectrum of kinases by direct interactions 
with these proteins and a few structure–activity studies 
have identified flavonoids with optimal activities. Hou 
and Kumamoto [91] summarized the binding of fla-
vonoids to multiple kinases showing both similarities 
and differences with respect to their interactions with 
one or more sites in multiple kinases. For example, 
myricetin binds the ATP pocket of Akt1, MKK4, Fyn, 
P13Kγ, p38MAPK and JNK3; myricetin also binds 
MEK1 and JAK1. A recent study confirmed interac-
tions of myricetin with the ATP binding sites of both 
p38MAPK and JNK3 in modeling studies. However, 
results of flavonoid-kinase docking studies show that 
among a series of flavonoids that bind the ATP sites 
of JNK3 (acacetin, velutin, chrysoeriol, luteolin and 
myricetin), the β ring of myricetin is oriented in the 
binding site in the opposite direction compared to the 
other flavonoids [93]. The structure-dependent bind-
ing of 16 flavonoids to 3 acidophilic Ser/Thr protein 
kinases, namely golgi apparatus casein kinase (G-CK), 
CK1 and CK2 has also been reported [96]. G-CK inhi-
bition by flavonoids (≤ 40 µM) was minimal and some 
structure-dependent inhibitory effects of flavonoids on 
CK1 activity were observed. In contrast, at least six 
flavonoids inhibited CK2 with  IC50 values ≤ 1 µM and 
the presence of both 7- and 4΄-hydroxyl groups was 
a common structural feature of the active flavonoids 
which appear to occupy the ATP binding pocket. This 
is observed as an underlying mechanism of flavonoids 
for inhibiting multiple tyrosine kinases. However, 
despite the extensive evidence showing that flavonoids 
inhibit multiple tyrosine kinases, the clinical applica-
tions of these compounds as targeted kinase inhibitors 
are minimal.

 ii. Flavonoid effects on membrane-bound receptors.
   Several studies demonstrate that flavonoids modu-

late expression or activity of multiple RTKs includ-
ing EGFRs, cMET, insulin-like growth factor receptor 
(IGFR), vascular endothelial growth factor receptors 
(VEGFRs) and platelet-derived growth factor recep-
tors [92, 97–106]. Many publications show that flavo-
noids inhibit the function of RTKs and block down-
stream signaling pathways, however, there is limited 
data on the mechanisms of flavonoid-RTK interac-
tions. There is evidence that flavonoids mimic ATP 
and interact with ATP binding sites of RTKs [92] and 
this is also observed for kinases. Structure–activity 
studies among several flavonoids identified hespere-
tin and naringenin as HER2 tyrosine kinase inhibitors 
through interactions which prevented ATP binding 
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[99]. In contrast, apigenin modulated HER2/HER3-
P13K interactions resulting in enhanced degradation 
of HER2 in breast cancer cells [99]. Catechins and 
particularly epigallocatechin -3-gallate (ECGC) are 
also highly effective RTK inhibitors and at least some 
of their activities are due to occupation of ATP bind-
ing sites. Thus, like kinases, RTK activities can be 
modified by flavonoids, however, the design of opti-
mal flavonoids for kinase specific inhibition and clini-
cal applications is minimal.

 iii. Flavonoid effects on G-protein coupled receptor.
   G-protein—coupled receptors (GPCR) are seven 

transmembrane receptors and there are over 800 
GPCRs that play diverse roles in vision, taste, smell, 
behavior, immune responses and the nervous system. 
Table 1 summarizes some of the GPCRs that are mod-
ulated by flavonoids [107–137] and demonstrates that 
these phytochemicals can potentially influence the 
large class of cell membrane receptors. Development 
of optimal flavonoid ligands for activating/inhibiting 
GPCR should be an important area of development 
since it is estimated that GPCRs are targets for approx-
imately 50% of all drugs that are currently being used 
[138]. As illustrated in Table 1, several flavonoids 
interact with GPR30. Hormonal signaling tradition-
ally involves hormone-dependent activation of nuclear 

hormone receptors, however, induction of estrogen 
(ER) signaling has also been linked to activation of 
kinases pathways and phosphorylation of the ER. It 
was shown that extra nuclear ER activity was due 
to the membrane bound GPR30 which subsequently 
activates downstream kinases. Geinstein was initially 
identified as a GPR30 ligand and structure–activity 
in PC12 cells have identified several flavonoids that 
activate this receptor and optimization of flavonoid 
targeting GPR30 and other membrane receptors could 
be important for diverse clinical applications.

 iv. Flavonoids and the Aryl Hydrocarbon Receptor 
(AhR).

   The AhR is a basic-helix-loop-helix transcription 
factor that forms an active nuclear heterodimer with 
the AhR nuclear translocator (Arnt) protein to activate 
gene expression [139]. The AhR was initially discov-
ered as the intracellular receptor that mediates the 
biochemical and toxic effects induced by 2,3,7,8-tet-
rachlorodinezo-p-dioxin (TCDD) and structurally-
related halogenated aromatics [139, 140]. However, 
subsequent studies demonstrate that the AhR plays 
an important role in maintaining cellular homeostasis 
and in pathophysiology and this receptor also binds 
structurally diverse compounds including health pro-
moting phytochemicals such as indole-3-carbinol and 

Table 1  Flavonoid interactions/
modulation of G-protein 
coupled receptors

Receptor Flavonoid References

EP1 (prostaglandin receptor) EGCG (antagonist) [107]
5-HT1A Acacetin [108]
Parathyroid hormone receptor 1 Quercetin (ant) [109]
Thromboxane receptors Multiple [110, 111]
P2Y12 Luteolin conjugate [111]
Cannabinoid receptors (CB) Calechins, quercetin and anthocyanadins [112–114]
Glucogen-like peptide—1 receptor Flavonoids

myrcetin
[115]

Opiod receptor Methoxyflavones
ECGC 

[116–118]

Muscarinic acetylcholine receptor Multiple flavonoids [119]
Opsin Multiple flavonoids [120]
Calcium semsing receptor Ligustroflavone [121]
CXCR4 Hesperidin (ant) [122]
Free fatty acid receptor 1 (FFA1, GPR40) Delphinidin [123]
Muscarinic receptor Polymethoxyflavones [124]
Bitter taste receptors—TAS2R39 6-Methoxyflavones

multiple
[125]
[126]

TAS2R39/14 Isoflavones [127]
TAS2R39/46 Tangeretin, nobiletin and related compounds [128, 129]
GPER (GPR30) Baicalein (ant)

Genistein, daidzein
ECGC, prunetin
Icarin, genistein

[130, 135]
[131], [132]
[133, 134]
[135, 137]
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flavonoids [140]. Extensive structure–activity stud-
ies demonstrate that different classes of flavonoids 
exhibit AhR activity as evidenced by their induc-
tion of AhR responsive CYP1A1 gene expression in 
cell lines and animal models [141]. However, recent 
studies on flavones and isoflavones demonstrate that 
the AhR activity of these compounds is compound-, 
response- and cell-context dependent [142, 143]. For 
example; Results illustrated in Fig. 2 show the differ-
ences between isomeric isoflavones and flavones as 
activators of AhR-responsive CYP1A1, CYP1B1 and 
UGT1A1 in Caco2 colon cancer cells. The 4΄,5,7-tri-
methoxy-isoflavone and 4΄,5,7-trimethoxyflavone; the 
latter compound was inactive as an inducer whereas 
the magnitude of the isoflavone-induced response 
was similar to that observed for TCDD in Caco2 
cells. There are clearly major differences in the AhR 
activity of “isomeric” flavones and isoflavones even 
though the only structural difference involves the site 
of attachment of the phenyl ring at C1 or C2. The AhR 
activity of these compounds was also investigated in 
mouse hepatocytes (YAMC cells) and although TCDD 
was active, minimal activity was observed for flavo-
noids [142, 143].

   These results suggest that flavonoids are selective 
AhR modulators (SAhRMs) that exhibit both AhR 
agonist or antagonist [140]. There are several exam-
ples of flavonoid-induced health promoting activi-
ties that are AhR-responsive and many of these are 
associated with the gastrointestinal tract and immune 

system where the AhR plays a key role. In models of 
intestinal inflammation anthocyanidins, cardamonin 
and alpinetin are protective and these responses are 
due, in part, to the AhR and enhanced T-regulatory 
cell functions by naringenin, baicalin and baicalein 
were AhR-dependent [144–149]. Although there is 
extensive evidence for a role of AhR in cancer, clinical 
applications of AhR-active flavonoids are not ongoing.

Flavonoids and the estrogen receptor (ESR1/ERα 
and ESR2/ERβ)

There is extensive evidence that flavones/isoflavones and 
other flavonoids bind and activate/inactivate both ERα and 
ERβ [150–153]. Kuiper and coworkers examined binding 
of structurally diverse flavonoids to both ERα and ERβ, and 
the most active compounds were the isoflavones genistein 
and daidzein which preferentially bound ERβ compared 
to ERα [153]. With the exception of apigenin and kaemp-
ferol, most other flavonoids did not directly bind ERα and 
ERβ, however, among multiple studies, the estrogenic or 
antiestrogenic activities of flavonoids was highly variable 
[150–153]. The estrogenic activity of flavonoids and its 
impact on human health and particularly estrogen-related 
conditions have been extensively investigated with respect 
to their potential adverse vs. health promoting effects [153, 
154]. Correlations between exposure to estrogenic flavo-
noids and enhanced disease are minimal, however, there is 

Fig. 2  Summary of induction of AhR responsive CYP1A1, CYP1B1 and UGT1A1 gene expression (mRNA levels) in Caco2 cells by isomeric 
flavones and isoflavones with the same substitution patterns (142, 143)
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an extensive literature on the contributions of dietary iso-
flavones to improved health outcomes. Studies show that 
isoflavone consumption protects against metabolic diseases, 
enhances cognitive function, decreases risk of coronary heart 
disease and is associated with decreased risks from ovarian 
and breast cancers [155–161]. Most of these studies cor-
related health benefits with total isoflavone intake and there 
were also correlations with individual isoflavones daidzein 
and genistein; however, some decreased cancer risks also 
correlated with the intake of other flavonoids [160]. These 
results demonstrate that among all the flavonoid-mediated 
pathways, interactions with ER and possible GPR30 lead 
to some of the health benefits associated with intake of this 
class of phytochemicals.

Flavonoids and their interactions with other nuclear 
receptors

The nuclear receptor (NR) superfamily contains 48 mem-
bers which include steroid hormone or endocrine receptors 
(including ERα and ERβ), heterodimeric receptors, adopted 
orphan receptors, enigmatic orphans and orphan receptors 
[162]. NRs play a key role in maintaining cellular homeo-
stasis and pathophysiology and the complex roles and inter-
actions of endogenous and exogenous ligands can impact 
human health. As indicated above, flavonoids (including 
isoflavones) bind and modulate ERα- and ERβ-mediated 
gene expression and downstream responses and most stud-
ies indicate that dietary flavonoids enhance health. Although 
most NRs bind low molecular weight compounds such as 
flavonoids, the activity of these compounds as ligands for 
NRs and their potential impacts on laboratory animal models 
and human health have not been extensively investigated. 
An in vitro screening assay for flavonoid-induced activa-
tion of NR-dependent reported genes confirmed interactions 
with ERα/ERβ but none of the 27 flavonoids exhibited glu-
cocorticoid receptor or thyroid hormone receptor activity 
[163]. Apigenin activated progesterone receptor-mediated 
gene expression and blocked genistein induced estrogenic 
responses in the uterus thus demonstrating flavonoids with 
opposing activities [164]. Similar results were obtained with 
kaempferol which binds progesterone receptor A(PRA) and 
also inhibits genistein-induced estrogenic response in the 
rodent uterus [165]. Several studies showed that flavonoids 
exhibited both agonist and antagonist activities as ligands for 
peroxisome proliferator-activated receptor γ (PPARγ) [73, 
166–171]. Genistein and daidzein exhibited PPARγ agonist 
pro-adipogenic activities in several cell lines [73] whereas 
apigetrin inhibited adipogenesis in 3T3-L1 cells and down-
regulated PPARγ [169]. Flavonoids also exhibited PPARγ 
agonist activities in cancer cells and mouse hepatocytes 
[172–174]. The liver X receptors (LXRα and LXRβ) are 
important for cholesterol metabolism and several flavonoids 

modulate LXR-dependent transactivation [175–177]. Struc-
ture–activity studies in Hela cells shows that quercetin (LXR 
α/β) and apigenin (LXRβ) are agonists whereas galangin and 
naringenin are antagonists [175]. The farnesoid X recep-
tor (FXR) regulates the biosynthesis and circulation of bile 
acids and is a potential drug target for treating metabolic 
diseases. Several flavonoids act as FXR ligands and these 
include quercetin, EGCG, schaftoside and prenylflavonoids 
[178–182]. PXR and CAR are key receptors involved in the 
induction of drug metabolizing enzymes and flavonoids 
such as hydroxylated flavones, isorhamnetin, genistein, 
EGCG and alpinetin activate these receptors (primarily 
PXR) [183–187]. There is evidence of specificity among 
flavonoids for their differential activation of rat vs. human 
PXR [183, 187] and inhibition of inflammatory bowel dis-
ease in rodents by isorhamnetin was PXR-dependent [184, 
187]. These studies demonstrate that NRs are prime targets 
of flavonoids and optimization of drug-target interactions 
should identify specific NR-interacting flavonoids that have 
potential clinical applications.

Mechanism‑based applications 
of flavonoids—summary

There is strong evidence from human studies that flavonoids 
contribute to disease prevention and their overall antioxidant 
properties contribute to these health benefits. However, it 
is also evident from mechanistic studies that individual fla-
vonoids and their mixtures modulate activity or expression 
of multiple genes and downstream responses. For exam-
ple, Fig. 3 illustrates some of the responses reported for 

Fig. 3  Genistein inhibits/activates multiple pathways including 
nuclear receptors, kinases, receptor tyrosine kinases and G-protein 
coupled receptors (89, 91–94, 110, 111, 126, 135, 150)
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genistein, a major isoflavonoids component of soy-based 
foods which has been associated with many health benefits. 
Like many other flavonoids genistein interacts directly with 
multiple tyrosine kinases, G-protein coupled receptors and 
intracellular receptors. Thus, a clinical application of gen-
istein which targets a single gene/pathway is complicated 
by its diverse activities and potential off-target effects. 
Moreover, many other flavonoids exhibit a similar pattern 
of effects on multiple pathways. There are also many exam-
ples of multiple flavonoids targeting a single pathway and 
Fig. 4 illustrates how DSS, TNBS and acetic acid-induced 
intestinal inflammation is inhibited by several flavonoids act-
ing through different pathways. It is possible that some of 
these responses for which a specific pathway has not been 
identified, act through a gene/pathway which has not yet 
been identified. The successful development of flavonoids 
for clinical applications will require a more mechanistic pre-
cision medicine approach which could include the following;

1. Development of improved overall and tissue-specific 
delivery methods to enhance the overall bioavailability 
of flavonoids.

2. Response-specific mechanisms for inflammatory and 
age-related diseases need to be identified and utilized 
for chemoprevention and chemotherapy.

3. After identifying mechanism-based intracellular targets 
required for specific flavonoid-mediating responses, 
structure activity studies need to be carried out to iden-
tify the most active (optimal) flavonoid.

4. Chemopreventive and chemotherapeutic applications of 
flavonoids need to be maximized using combinations of 
active flavonoids.

Completion of the above will greatly facilitate turning 
the diverse and highly promising actions of flavonoids in 
multiple models of disease prevention into clinical applica-
tions which can be used alone and in drug combinations for 
treating non-cancer and cancer endpoints.
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