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Abstract
During the last years, several reports have provided evidence about adverse health effects on personal involved in Antineo-
plastic Drugs (ANPD) handling. ANPD has the ability to bind DNA, thus produce genotoxic damage. In this way, XRCC1 and 
XRCC3 proteins are necessary for efficient DNA repair and polymorphisms in this genes can be associated with an individual 
response to ANPD exposure. Therefore, the aim of this study was to evaluate genetic damage of occupational exposure to 
antineoplastic drugs and the possible effect of XRCC1 and XRCC3 polymorphisms in oncology employees from Bogotá, 
Colombia. Peripheral blood samples were obtained from 80 individuals, among exposed workers and healthy controls. The 
comet assay and Cytokinesis-block micronucleus cytome assay was performed to determinate genetic damage. From every 
sample DNA was isolated and genotyping for XRCC1 (Arg194Trp, Arg280His and Arg399Gln) and XRCC3 (Thr241Met) 
SNPs by PCR–RFLP. The exposed group showed a significant increase of comet assay results and micronucleus frequency, 
compared with unexposed group. It was observed a gender, exposure time and workplace effect on comet assay results. Our 
results showed no significant associations of comet assay results and micronucleus frequency with either genotype, allele, 
nor haplotype of XRCC1 and XRCC3 SNPs. The results suggest that occupational exposure to ANPD may lead to genotoxic 
damage and even be a risk to human health. To our knowledge, this is the first study to assess the genotoxic damage of 
occupational exposure to APND in South America.
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Introduction

Antineoplastic drugs (ANPD) are substances from different 
chemical nature, used preferentially, but not exclusively, in 
the pharmacological treatment of neoplastic disease. The 
ANPD have the ability to inhibit tumor cells growth by dis-
rupting cell division and killing actively growing cells [1]. 
These drugs can interact with nucleic acids from cell, inhib-
iting DNA synthesis or causing DNA damage [2]. Its poten-
tial for human health risk in occupationally exposed workers 
has been reported in various studies across the world [3–5].

Associations between polymorphisms of DNA repair 
genes and genotoxicity in exposed populations to ANPD 
and others xenobiotics, have been reported in previous stud-
ies [6–9]. The base excision repair (BER) and homologous 
recombination (HR) pathways are responsible for handling 
many different forms of DNA damage [7, 10] and essentials 
to maintain chromosome stability and prevent chromosomal 
fragmentation, translocations and deletions [9, 11]. In this 
way, it is well known that the X-ray repair cross comple-
menting 1 (XRCC1) and 3 (XRCC3) proteins are necessary 
for efficient DNA repair by BER and HR pathways, respec-
tively. Single nucleotide polymorphisms (SNPs) in XRCC1 
and XRCC3 genes may have a functional effect, leading to 
genetic instability and increasing the susceptibility to cancer 
and other diseases [12–14].

Biomarkers of chromosome and DNA damage in periph-
eral blood lymphocytes (PBL), like micronuclei (MN) fre-
quency and comet assay, are very helpful to identify the 
effects of xenobiotics on cells from occupational expo-
sure workers. The cytokinesis-block micronucleus cytome 
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(CBMN) assay is a method for measuring MN in human 
cells, indicating chromosome breaks or failures with the 
mitotic spindle during cell division, regarding to clastogenic 
or aneugenic effects, respectively [10, 14, 15]. The comet 
assay is sensitive and efficient to assess DNA damage in 
individual cells. It detects single strand breaks and alkali-
labile sites and have increased its use in human biomonitor-
ing studies during the past few decades [16–18].

In the present study, we evaluate the genotoxic effect of 
occupational exposure to antineoplastic drugs and the pos-
sible influence of XRCC1 and XRCC3 polymorphisms on 
individual response to exogenous insults.

Materials and methods

Subjects

The study included 40 regular employees involved in han-
dling of ANPD from oncology units of Colombian hospitals, 
and 40 healthy controls without ANPD or X-rays exposition 
nor serious illness. Each participant completed a question-
naire about personal health, sociodemographic characteris-
tics and ANPD exposition. Exposed and control group was 
matched by age and gender. Smokers and alcohol drinkers 
(more than 200 mL daily) were excluded from this study.

All procedures of this study were approved by the 
Research Ethics Committee of all institutions involved in 
this study. Written informed consent was obtained from all 
participating employee and healthy control before sampling. 
Three samples of peripheral blood (approximately 15 mL) 
was collected from exposed and control subjects. One sam-
ple was used for CBMN, other for comet assay and the other 
for DNA isolation.

Cytokinesis block micronucleus test (CBMN)

Briefly, a peripheral blood sample was cultured in RPMI-
1640 medium (Sigma-Aldrich, St. Louis, MO, USA) at 
37 °C and 5%  CO2 for 72 h. After this period, the culture 
medium was discarded and cells were rinsed with PBS and 
incubated with fresh culture medium containing 5 µg/mL 
Cytochalasin B (Sigma-Aldrich, St. Louis, MO, USA) and 
incubated for another 24 h. Cells were harvested, treated 
with cold hypotonic solution (KCl 0.075 M), and centrifuged 
(1500×g for 7 min) then, cells were fixed in cold methanol 
and acetic acid (3:1) solution. The slides were stained with 
10% Giemsa solution (pH 7.4) for 10–15 min. Micronuclei 
in binucleated cells (MNBNCs) and nuclear division index 
(NDI) were analyzed as previously described [14]. MN fre-
quencies were determined in 1000 binucleated cells (BNCs).

Comet assay

The comet assay was performed under pH alkaline condi-
tions as previously described [17]. Firstly, lymphocytes were 
isolated from blood sample collected and assayed for viabil-
ity using trypan blue dye exclusion. A sample of 2 × 105 
cells mixed with low melting point agarose was placed on 
glass microscope slide, with a base layer of normal melting 
point agarose, and left it on ice for 10 min. The slides were 
immersed in lyses solution (NaCl 2.5 M, EDTA 0.1 M, Tris 
10 mM, 10% DMSO and 1% Triton X 100) pH 10, overnight 
at 4 °C. Then, slides were placed into horizontal electropho-
resis box with fresh buffer (EDTA 200 Mm, NaOH 10 N, 
pH > 13) to allow the DNA unwinding. Electrophoresis 
was conducted for 30 min at 4 °C and 25 V/300 mA. After 
that, the slides were washed with neutralization buffer (Tris 
0.4 M, pH 7.5) for 15 min, dried at room temperature and 
stained with SYBER-Green (Thermo Fisher, Waltham, MO, 
USA). Subsequently, image analysis was performed using a 
fluorescence microscope (Nikon, Tokyo, Japan), equipped 
with the imaging system Comet Assay IVTM Software 
(Perceptive Instruments, St Francis House, UK). A total of 
100 comets were scored for each slide. DNA damage was 
measured as percentage of migrated DNA in the comet tail 
(Tail Intensity).

Genotyping

From all exposed subjects and healthy control, genomic 
DNA was isolated from blood samples collected by salting-
out method, using Wizard Genomic DNA Purification Kit 
(Promega, Madison, WI, USA) and stored frozen at − 80 °C.

To analyze the XRCC1 (Arg194Trp, Arg280His and Arg-
399Gln) and XRCC3 (Thr241Met) SNPs, approximately 
100 ng of genomic DNA was amplified in a total volume 
of 25 µL, consisting of 10 pmol for each primer, 2 mM of 
 MgCl2, 0.2 mM of dNTPs and 1 U of Platinum Taq Poly-
merase in 1X buffer (Invitrogen, Carlsbad, CA, USA). PCR 
conditions for each SNP were previously reported [19, 20]. 
The PCR product was digested overnight at 37 °C with spe-
cific restriction endonuclease (Fermentas, Waltham, MA, 
USA). Finally, DNA fragments was visualized by agarose 
gel electrophoresis.

Statistical analysis

Statistical analysis was carried out with SPSS software ver-
sion 22 for Windows (Chicago, IL, USA). Chi-square and 
Fisher’s exact, Pearson’s χ2 and t student tests were used to 
evaluate the difference in distributions for demographic vari-
ables, as well as allele and genotypes frequencies of XRCC1 
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and XRCC3 polymorphisms between exposed and control 
groups. The observed genotypes were computed and tested 
for Hardy–Weinberg equilibrium using Pearson’s χ2 test. The 
distributions of MN frequency and TI results were tested 
for normality by Shapiro–Wilk test; therefore, nonparamet-
ric Mann-Whitnhey U test and Kruskal–Wallis H test was 
performed to evaluated the significant difference between 
exposed and control groups, and subgroups, respectively. P 
values < 0.05 were considered statistically significant and all 
statistical tests were 2-sided.

Results

Population characteristics

General characteristics of exposed an unexposed (control 
group) subjects are summarized in Table 1. No significant 
differences were found related to age and gender in the two 
groups. We divided the both groups according to age mean 
(31.42 years old) as subjects < 32 and ≥ 32 years old. Similar 
distribution was observed between the groups (p = 0.501).

For the exposed group, occupational exposure time mean 
was 41.1 months; we divided the exposed group accord-
ing this mean, 24 individuals with less than 42 months and 
16 individuals with 42 or more months. Others parameters 
about occupational exposure (workplace and exposure hours 
per day to APND) were explored and presented in Table 1. 

The exposed group was composed of pharmacist and nurses, 
principally, from pharmacy (65%) and drug administration 
(30%) departments, respectively. Regarding ANPD used 
within oncology centers; Bleomycin, Carboplatin, Cyclo-
phophamide, Cisplatin, Doxorubicin, Fluorouracil and Pacli-
taxel, were the most frequent APND handled. All this ANPD 
are classified as extremely toxic by The National Institute for 
Occupational Safety and Health (NIOSH).

DNA and chromosome damage

Table 2 reports TI mean and MN frequencies, in peripheral 
blood lymphocytes of exposed and control subjects. The 
statistical analysis showed a significant difference in both, 
DNA and chromosome damage between exposed and control 
group. The DNA damage, expressed by TI mean, was sig-
nificant increase in personal exposed to ANPD as compared 
to control subjects (Fig. 1a, p < 0.0001). Indeed, to identify 
the principal factors involved in this results, we stratified the 
study group by age, gender and some occupational expo-
sure parameters. Related to gender, we found a significant 
increase of DNA damage in females when compared to 
males in exposed individuals (Fig. 1b, p = 0.030). Occupa-
tional exposure parameters, like exposure time per day and 
workplace showed an effect on the DNA damage results. 
We observed a significant increase in TI mean of personal 
exposed to ANPD by ≥ 4 h per day (Fig. 1c, p = 0.011). In 
this way, exposed individuals from drug administration 
department shows a significant increase of TI mean, com-
pared to individual from pharmacy and others departments 
(Fig. 1d, p = 0.034).

Regard to chromosome damage, expressed as MN fre-
quency in 1000 binucleated cells, the results indicated a 
significant increase of MN frequency in personal exposed 
to APND as compared to unexposed individuals (p < 0.001). 
Age, gender and occupational parameters did not show an 
effect on frequency MN in both groups (Table 2). Addi-
tionally, we determinate the nuclear division index (NDI). 
No significant intergroup variations were observed for NDI 
(data not shown).

XRCC1 and XRCC3 polymorphisms

The XRCC1 Arg194Trp (rs1799782), Arg280His (rs25489) 
and Arg399Gln (rs25487) and XRCC3 Thr241Met 
(rs861539) SNPs were evaluated in exposed and control 
group, as shown in Table 3. The genotype frequency was 
computed for all four SNPs and tested for Hardy–Weinberg 
equilibrium, providing no evidence of population stratifica-
tion. The genotypes distribution of the four SNPs was simi-
lar between exposed and control subjects (Table 3, p > 0.05).

Our results showed no significant associations of TI 
results and MN frequency with either genotypes, alleles, 

Table 1  General characteristics of healthy controls and exposed 
nurses

P values were calculated by aStudent´s t test and bχ2 test

Exposed (n = 40) Controls (n = 40) p value

n % n %

Age (years) 32.05 ± 5.1 30.80 ± 5.5 0.754a

 < 32 20 50.0 24 60.0 0.501b

 ≥ 32 20 50.0 16 40.0
Gender 1.0b

 Male 8 20.0 8 20.0
 Female 32 80.0 32 80.0

Exposure time 
(months)

41.10 ± 23.6

 < 42 24 60.0
 ≥ 42 16 40.0

Exposure by day (hours)
 < 4 11 27.5
 ≥ 4 29 72.5

Department
Drug administration 12 30.0
Pharmacy 26 65.0
Other 2 5.0
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nor haplotypes of XRCC1 and XRCC3 SNPs (Table 3). 
However, we found a non-significant increase of MN fre-
quency in exposed and control subjects associated to XRCC1 
Trp194Trp and XRCC3 Met241Met polymorphisms. The 
TI results showed a non-significant decrease associated to 
XRCC1 Arg194Trp and Arg399Gln in exposed and control 
group. Others genotypes presented similar distribution of TI 
mean and MN frequency in exposed and control group. The 
complete results are presented in Table 3.

Discussion

In our study, it was explored the effect of occupational 
exposure to ANPD, and DNA and chromosome damage 
in a group of individuals handling these drugs. Identify 
exposure effect to specific ANPD is difficult, since exposed 
individuals handling different agents, and usually, their 
administration is in combination. Therefore, we used the 
comet assay and CBMN test (biomarkers of effect) to iden-
tify the genotoxic effect of APND exposure. Comet assay 
and CBMN test are methods to assess genotoxicity activity 
from different agents; since the comet assay is a sensitive 
method to detect DNA damage (single and double strand 
breaks, and alkali labile sites), such damage may have 
originated a short time before sampling; whereas CBMN 
test detect chromosome fragments from DNA breakage 

and chromosome loss, caused by exposure occurred long 
before sampling. Both, comet assay and CBMN test, are 
recommended to assess particular populations chronically 
exposed to genotoxic agents [21].

We observed a significant increase in both, TI results 
and MN frequency, in exposed group as compared to con-
trol group. This results indicate that, even when profes-
sionals with specific trained and compliance with stand-
ards on safe handling of ANPD, exposure and accidental 
contamination still presence in transportation, prepara-
tion and administration processes [22, 23]. Similar to our 
results, different studies from several countries reported 
increase of genetic damage, assess by comet assay and/
or CBMN test in subjects exposed to APND [1, 6, 21, 22, 
24–26]. Contrary to what was observed in this study, nega-
tive results for MN and/or comet assay have also reported 
[1, 27, 28]. These inconsistencies results could manly be 
explained by the variety of ANPD handled, workplace, 
exposure time, and protective clothing and safety measures 
employed.

Several of ANPD used by exposed subjects, has been 
classified as group 1 (Carcinogenic to human) or 2 (Prob-
ably/Possibly carcinogenic to human) by the International 
Agency for Research on Cancer. This compounds are only 
partially selective, and healthy cells may also be damaged 
once the ANPD can bind to DNA and induce genotoxic 
damage for different mechanisms as modification of bases 

Table 2  Micronucleus frequency and tail intensity mean in the study group

‰ Micronucleus frequency in 1000 binucleated cells, SD standard deviation, TI tail intensity, § significant differences intragroup
The p < 0.05 was considered significant and are depicted in bold, p values were calculated by aStudent´s t-test, bMann–Whitney U test, cOne-Way 
ANOVA and dKruskal–Wallis H test

Exposed Control p Exposed Control p

n  ‰ ± SD n  ‰ ± SD n TI ± SD n TI ± SD

Overall 40 5.79 ± 0.833 40 3.31 ± 0.396 < 0.001a 40 4.62 ± 1.477 40 2.41 ± 0.577 < 0.001b

Age in years
 < 32 20 5.69 ± 0.821 24 3.35 ± 0.412 20 4.45 ± 1.317 24 2.46 ± 0.569
 ≥ 32 20 5.89 ± 0.853 16 3.25 ± 0.374 20 4.78 ± 1.638 16 2.34 ± 0.599

Gender
 Male 8 5.62 ± 0.965 8 3.39 ± 0.301 8 4.38 ± 1.522§ 8 2.55 ± 0.627
 Female 32 5.83 ± 0.808 32 3.29 ± 0.417 32 5.57 ± 0.761 32 2.38 ± 0.57

Exposure time (months) 0.346a 0.557b

 < 42 24 5.69 ± 0.161 24 4.73 ± 1.405
 ≥ 42 16 5.94 ± 0.901 16 4.45 ± 1.61

Working day (hours) 0.731a 0.0112

 < 4 11 5.72 ± 0.845 11 3.62 ± 0.437§

 ≥ 4 29 5.82 ± 0.841 29 4.99 ± 0.246
Department 0.459c 0.034d

Drug administration 12 5.98 ± 0.239 12 5.58 ± 0.301§

Pharmacy 26 5.75 ± 0.166 26 4.19 ± 0.296
Other 2 5.22 ± 0.495 2 4.3 ± 0.08
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(oxidation and/or alkylation), strand breaks and crosslinks, 
that can be detected by Comet assay [1, 22].

In this study, exposed group showed an effect of gender 
on TI results but not MN frequency.

Women exposed had higher levels of DNA damage than 
men exposed. This results could be explained by gender 
effects on DNA repair pathways, since women had less effi-
cient double strand breaks repair and nucleotide excision 
repair pathway [29, 30]. Although, recent studies have iden-
tified no statistically significant gender effect on comet assay 
and CBMN test [22, 25, 31].

No correlation was found between DNA and chromosome 
damage (measure by comet assay and CBMN test, respec-
tively) and months of exposure to ANPD; these findings 
are in agreement with previous investigations [22, 32, 33]. 
However, we found a positive association with working day. 
Individuals exposed by 6 or more hours per day showed an 
increase of TI results, but not MN frequency. Our results 

clear showing the genotoxic potential of ANPD on workers 
exposed, and it is evident that exposed subjects by more 
hours per day presented an increased genetic damage, this 
recent exposure levels can be measured by a sensitive test, 
like comet assay, but not CBMN test.

Here, we found significant increase of DNA dam-
age (TI results) in personnel exposed to ANPD in drug 
administration department, as compared with personnel 
exposed in pharmacy and others departments. A plausible 
explanation for this results can be related with protective 
measures applied; once ANPD preparation is done under 
strict control and safer conditions; gloves, masks, safety 
glasses and closed gowns is required for preparation into 
pharmacy department. On the other hand, the use of gloves 
is the unique protective measure applied by personnel of 
drug administration department, which could be associated 
with highest levels of exposure to APND. In accordance 
with this results, some studies demonstrated in different 

Fig. 1  Comet assay results (tail intensity) on lymphocytes of exposed and unexposed subjects (a), exposed subjects stratified by gender (b), 
exposure time per day (c) and workplace (d)
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professionals that protective measures applied on ANPD 
handling can significantly reduce genotoxic risk of this 
agents [2, 26, 34].

Specific DNA repair pathway, among them BER and 
HR, are activated after exposure to genotoxic agents, since 
DNA damage was generated. The responses to DNA dam-
age induced by this exposure can be influenced by polymor-
phisms in DNA repair genes. We explored the association 
between DNA damage and polymorphisms in critical genes 
of DNA repair pathways, thus we performed an analysis of 
genetic damage and polymorphisms in XRCC1 and XRCC3 
genes, involved in BER and HR pathways, respectively.

Similar genotypes frequencies of XRCC1 Arg194Trp, 
XRCC1 Arg280His, XRCC1 Arg399Gln and XRCC3 
Thr241Met SNPs was found between control and exposed 
group. Our analysis showed non-significant associations 
between either genotypes of XRCC1 and XRCC3 SNPs, 
and genetic damage. Nevertheless, our results suggest that 
XRCC1 Arg194Trp and XRCC3 Thr241Met SNPs can 
increase MN frequency.

In concordance with our findings, few studies observed 
no association between genetic damage and XRCC1/XRCC3 
polymorphisms [7, 8, 35]. In contrast, many works had 
demonstrated the XRCC1/XRCC3 polymorphisms effect 

in genetic damage by occupational exposure to genotoxic 
agents [6, 9, 10, 13, 36].

SNPs in XRCC1 and XRCC3 genes explored in this work 
were previously associated with colorectal cancer [37], 
thyroid cancer [3, 38], cervical cancer [4] and Alzheimer’s 
disease [4]; demonstrating the relevant role of XRCC1 and 
XRCC3 genes within DNA repair system. However, we 
found no correlation with genetic damage in our work. Our 
results seem to suggest that in the case of an occupational 
exposure to massive harmful agent, the influence of the 
genetic susceptibility could be difficult to be estimated as 
previously hypothesized by others studies [33, 39].

In conclusion, our results showed that exposed group to 
APND had higher TI results and MN frequencies respect to 
control group, provided even more proof of occupational 
exposure to ANPD represent a serious risk for personnel 
that handling these agents. XRCC1 Arg194Trp, XRCC1 
Arg280His, XRCC1 Arg399Gln and XRCC3 Thr241Met 
polymorphisms were no associated with genetic damage in 
Colombian population exposed to ANPD. We found high 
levels of DNA damage associated with personnel exposed by 
6 or more hours per day and poor safety measures. Unfortu-
nately, we cannot compare our results with others since there 
are no similar studies performed in Colombian population. 

Table 3  Micronucleus 
frequency and tail intensity 
mean distribution according to 
genotype frequency for XRCC1 
and XRCC3 polymorphisms, in 
the study population

‰ Micronucleus frequency in 1000 binucleated cells, SD standard deviation, TI tail intensity
The p values were calculated by aOne-Way ANOVA and bKruskal–Wallis H test

Micronucleus frequency Tail intensity

Exposed (n = 40) Controls 
(n = 40)

Exposed (n = 40) Controls (n = 40)

n  ‰ ± SD n  ‰ ± SD n TI ± SD n TI ± SD

XRCC1 194
 C/C 16 5.64 ± 0.9 11 3.23 ± 0.44 16 4.74 ± 1.65 11 2.54 ± 0.61
 C/T 23 5.84 ± 0.77 27 3.33 ± 0.39 23 4.55 ± 1.40 27 2.41 ± 0.57
 T/T 1 5.94 ± 0.0 2 3.43 ± 0.08 1 4.11 ± 0.0 2 1.81 ± 0.06
 p value 0.32 0.703 0.821 0.299
XRCC1 280
 G/G 14 5.87 ± 0.79 15 3.22 ± 0.32 14 4.57 ± 1.57 15 2.44 ± 0.63
 G/A 22 5.72 ± 0.86 19 3.36 ± 0.43 22 4.73 ± 1.42 19 2.39 ± 0.53
 A/A 4 5.89 ± 1.05 6 3.34 ± 0.47 4 4.14 ± 0.18 6 2.42 ± 0.68
 p value 0.833 0.585 0.815 0.944
XRCC1 399
 G/G 15 5.89 ± 0.76 15 3.45 ± 0.38 15 4.85 ± 1.24 15 2.44 ± 0.58
 G/A 21 5.71 ± 0.86 22 3.22 ± 0.38 21 4.46 ± 1.67 22 2.45 ± 0.6
 A/A 4 5.81 ± 1.12 3 3.22 ± 0.54 4 4.53 ± 1.44 3 1.98 ± 0.16
 p value 0.818 0.239 0.738 0.539
XRCC3 241
 C/C 26 5.69 ± 0.84 28 3.25 ± 0.38 26 4.89 ± 1.47 28 2.36 ± 0.59
 C/T 7 5.84 ± 0.98 5 3.43 ± 0.46 7 3.86 ± 1.41 5 2.62 ± 0.49
 T/T 7 6.12 ± 0.67 7 3.45 ± 0.42 7 4.33 ± 1.43 7 2.47 ± 0.61
 p value 0.488 0.400 0.246 0.572



35Toxicol Res. (2020) 36:29–36 

1 3

We recommend using comet assay and CBMN test to human 
biomonitoring of exposed populations to xenobiotics.
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