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Abstract
Purpose of Review Current real-world interaction between humans and robots is extremely limited. We present challenges
that, if addressed, will enable humans and robots to collaborate fluently.

Recent Findings Humans and robots have unique advantages best leveraged in Human-Robot Teams. However, human and
robot collaboration is challenging, and creating algorithmic advances to support teaming requires careful consideration. Prior
research on Human-Robot Interaction, Multi-Agent Robotics, and Human-Centered Artificial Intelligence is often limited
in scope or application due to unique challenges in combining humans and robots into teams. Identifying the key challenges
that apply to a broad range of Human-Robot Teaming applications allows for a focused and collaborative development of a
future toward a world where humans and robots can work together in every layer of society.

Summary In order to realize the potential of Human-Robot Teaming while avoiding potential societal harm, several
key challenges must be addressed: (1) Communication, (2) Modeling Human Behavior, (3) Long-Term Interaction, (4)
Scalability, (5) Safety, (6) Privacy, (7) Ethics, (8) Metrics and Benchmarking, (9) Human Social and Psychological
Wellbeing.

Keywords Human-Robot Teaming

Introduction

Robotics research has made incredible strides in recent
years, providing benefits across a wide variety of applica-
tions, such as manufacturing, search-and-rescue, and health-
care. However, we lack seamless human-robot team inter-
actions similar to those that appeared in science fiction
decades ago, with robots such as R2-D2 or C-3PO working
with Luke in Star Wars or Rosey helping her family in The
Jetsons. Today, most industries utilizing robots keep them
in caged setups or human-free environments to avoid acci-
dents. The few appearances of human collaborative robots
(i.e., “cobots”) are in manufacturing [1–3], healthcare [4, 5],
search and rescue [6], and military [7]. However, even such
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“collaboration” is highly predefined and substantially con-
straining (e.g., robots will stop or slow down when humans
are in the vicinity), limiting the impact of such technologies
[8]. These systems maintain high levels of autonomy [9–11]
and can perform rigid, predefined behaviors, being able to
assist humans, but not effectively team with humans.

Teaming has been incredibly significant in human
history, allowing humans to build at incredible speed
and scale, and ultimately spearheading technological
development and cultural growth. As the field of robotics
has reached a level of maturity, we are now at a critical
point where we can enhance the collaboration between
humans and robots, namely human-robot teaming (HRT),
which can bring us into a new technological age. HRT will
be crucial in increasing efficiency in production lines [8],
reducing workload for healthcare professionals by creating
healthcare robot aides [4], and saving lives through rapid
and coordinated disaster response. However, HRT also
brings certain risks, such as human manipulation of models
for personal gain, misapplication of robots outside of their
trained context leading to harm to humans or damage
of property or privacy violations. Effective HRTs require
robots and humans to understand and support each other,
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Fig. 1 An overview of the Human-Robot Teaming challenges covered in this paper

develop and maintain shared mental models, generate and
dynamically adapt long-term collaboration plans, all while
ensuring the safety and privacy of humans and jointly
considering the ethical implications of the robot’s actions on
different users.

In this paper, we carefully define nine grand challenges to
guide the research community toward successful HRT while
avoiding potential pitfalls. The challenges are the following:
(1) Communication, (2) Modeling Human Behavior, (3)
Long-Term Interactions, (4) Scalability, (5) Safety, (6)
Privacy, (7) Ethics, (8) Metrics and Benchmarking, (9)
Human Social and Psychological Wellbeing (Fig. 1).

Communication

Information sharing is crucial for team cooperation and
achieving shared goals [12–29]. In human-robot collab-
oration, effective communication depends on the robot’s
autonomy level and the human’s supervisory role [18, 30,
31]. In lower levels of automation, communication in HRTs
is necessary for passing task information, while in higher
levels, it increases situational awareness. Building a suc-
cessful HRT requires a sense of partnership where robots
work jointly with humans, not just to follow commands [18].
Such interpretation of an HRT requires social dexterity
and understanding from both the human and the robot,
where they need to reason about their counterparts’ inten-
tions, beliefs, and goals to take appropriate actions at the
right time. Such social dexterity can be achieved through
communication.

There’s extensive literature studying communication in
successful human teams [12, 13, 32–35], but developing
effective communication frameworks for HRT remains an
open challenge. Although some prior works have explored
leveraging communication strategies from human-human
teams for human-robot and robot-robot teams [14, 32,
36, 37], core challenges in communication still need to
be resolved, including communication modality (i.e., how
to communicate), communication frequency (i.e., when to
communicate), and communication content (i.e., what to
communicate) in HRTs.

CommunicationModality

For successful, smooth, and efficient cooperation and
collaboration, HRTs need clear communication that is
maintained throughout interactions to synchronize goals,
task states, and actions [38].

Researchers have studied various forms of communica-
tion in HRT, such as two-way dialogue [39], natural lan-
guage [40], multi-modal (i.e., including gesture, gaze, etc.)
communication [18, 41], and visual messages [18]. How-
ever, these approaches can increase mental workload [42]
and pose challenges to situational awareness (see the
“Communication Frequency” section) [30, 43]. To address
these issues, investigating discrete and sparse communica-
tion channels that preserve human interpretability in shared
information may be a potential solution for high-quality
decision-making [44].

In specific domains (e.g., military, underwater, and road
signs), humans use gestures or visual interfaces to commu-
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nicate; however, these require pre-training and knowledge
of domain-specific message-spaces. For the general public,
natural language appears to be more intuitive [45], but it
poses challenges due to its ambiguity, colloquialisms, and
context-dependent use [46, 47]. Nonverbal communication,
such as hand gestures and visual interfaces (i.e., multi-
modal), together with language, can be effective in human-
robot interaction and coordination [48, 49].

Communication Frequency

To optimize communication frequency, it is important to
consider its impact on workload, situational awareness,
and decision-making. Too many messages can be over-
whelming and reduce situational awareness, resulting in
low-quality decision-making [50–52]. Conversely, too few
messages can lead to low situational awareness, insufficient
knowledge of the world state, and thus, reduced teamwork
effectiveness and performance [53, 54].

Previous research recommends sending messages at
fixed intervals to create a steady stream of anticipatory
information among team members [32, 35]. However, other
studies propose event-triggered communication to enhance
communication efficiency [55–58]. Efficient communica-
tion in HRTs requires an effective balance between the
amount of information conveyed in each message and the
frequency of messages sent and received during a task.

Communication Content

In this section we discuss the communication content,
or what to send, in HRTs. Both humans and robots
need to effectively communicate their world-state, action-
intentions, and objectives to their collaborator [59]. HRTs
can benefit from such information to enable estab-
lishing true human-robot collaboration and shoulder-to-
shoulder teamwork (rather than simply following com-
mands), including self- and world-assessment for mutual
support, communicating back to support joint activity, and
negotiating labor division and task allocation [18].

Sharing state observations has been the central com-
munication technique in prior works [15, 16, 60–65],
while communicating action-decisions allows for strategic
decision-making through theory of mind (ToM) and cog-
nitive hierarchy [17, 66–68]. Recently, sharing experiences
(i.e., state, action, and task reward trajectories) has also
been proposed [69], but with larger teams, such experience-
sharing mechanisms can become exhaustive and pose high
communication and computation overhead (see the “Scal-
ability” section). An effective communication mechanism
should efficiently summarize behaviors and include mes-
sages rich in essential information for decision-making,
while avoiding unnecessary information [59, 70, 71].

Modeling Human Behavior

Teamwork is best achieved when team members understand
one another [72, 73]. Prior works in HRT have shown that
shared mental models among humans and robots positively
correlate with team performance [74–77]. This section
addresses the challenges associated with modeling the goals
and capabilities of human teammates.

Modeling user behavior may involve learning the user’s
objective [78–82], or learning the policy [83–85] to predict
how the user will respond in different situations. Prior works
have explored model-based and data-driven approaches
for modeling human behavior [71, 82, 86–90]. Here, we
highlight critical challenges for robots modeling human
behavior, namely: Complexity and Suboptimality.

Complexity

The ability to decipher another person’s mental state is
named the Theory of Mind (ToM) capability [91]. Robots
with a ToM capability could understand how people
behave. Thus, augmenting robot policies with reasoning
about human behavior can enhance robot assistance and
collaboration with humans. Prior HRT research uses various
techniques to model human behavior across different levels
of reasoning [92]: first-order models infer human goals or
intents solely from human behavior, whereas second-order
models learn how humans make inferences about a robot’s
objectives [93].

Modeling human behavior poses a significant challenge
for robots due to the complex nature of human behaviors.
Several internal and external factors often influence human
behaviors, including trust in robots [87], stress levels [94],
physical capability [95], engagement [96], sleep deprivation
and caffeine or alcohol intake [97]. Current computational
models of human behavior only explore a subset of these
factors at once and often rely on simplistic assumptions
about latent dynamics in human behaviors [87, 96, 98].
Hence, we need additional work exploring multi-faceted
approaches that can incorporate various interaction effects
to model human behavior.

The difficulty in modeling human behavior also increases
with higher orders of robotic reasoning. As robots become
complex, understanding the robot’s objective will become
essential for humans to collaborate effectively. Thus, robots
should consider how users understand the robot’s objec-
tives (second-order models) to choose more predictable
plans [99] or disambiguate their intentions via communica-
tion [100, 101]. The development of second-order models
of human behaviors is still nascent [102], and recent works
assume that humans and robots in HRT share the same goal
or objective [59] which may not be true [103]. Thus, we
need further work exploring how to tie in first-order and

83



Current Robotics Reports (2023) 4:81–100

second-order models of human behavior to enable fluent
collaboration.

Suboptimality

Several human modeling works assume that humans
exhibit rational behavior, i.e., they choose actions that
are approximately proportional to their intent or reward
function [104–106]. However, humans deviate from rational
behavior due to certain cognitive biases, time pressure,
or limited processing capabilities. Accounting for such
suboptimality can improve human behavior modeling. Few
recent works explore incorporating such inconsistencies
for human behavior modeling [85, 86, 89, 107, 108].
These approaches mainly address human suboptimality in
simple domains for short time horizons, while ideally,
robots should model humans for longer interactions (see
the “Longer-Term Interactions” section). To overcome this
challenge, we require more sophisticated models of human
decision-making from other disciplines, such as psychology,
cognitive science [109], and behavioral economics [110] for
modeling humans in HRT.

Moreover, modeling suboptimality at the team level
remains under-explored in HRT. Suboptimal behaviors in
HRT can arise not only from individual agent behaviors but
also from the interaction of various entities. For instance,
misunderstanding between humans and robots can lead to
task redundancy [111], and robot suboptimality can lower
human trust and willingness to coordinate with robots,
reducing team efficiency [112, 113]. Hence, we need
models that account for team dynamics when modeling
suboptimality in HRT.

Longer-Term Interactions

Teamwork between humans and robots will not complete
within a single moment but rather develop over time [114–
116] and can last for a variable duration. Furthermore, these
teaming interactions may repeat, resulting in an interaction
that could last weeks, months, or even years, contextually
changing the interaction to a lifelong deployment [117–
119]. Across the various domains that HRT will be
beneficial to, there will be dynamic components of
the environment, requiring a robot to intelligently and
continuously reason over streams of information [120].
Furthermore, as an interaction proceeds, it is important for
the robot to understand a situation by considering both past
and current information as well as predict the future to
create a collaboration plan.

We must enable robots to reason effectively in such
longer-term interactions, adapting their behavior to new
situations and personalizing to ever-learning users.

In the past, robots have been deployed long-term within
applications that require relatively limited interaction and
have been shown to provide benefits across cardiac rehabil-
itation [121], robot therapy for autism [117, 118, 122], and
education [123, 124]. However, as we shift to the rich inter-
actions required in HRT, longer-term collaboration is espe-
cially challenging as it can involve providing robots with
the ability to (1) dynamically learn new concepts and adapt
learned behaviors to accomplish objectives and (2) collab-
orate with a human that may exhibit changes. Furthermore,
evaluating algorithms in these longer-term contexts can
prove difficult as these studies require substantial resources,
and interactions can vary widely across users [125]. Aug-
menting robots with the ability to learn and adapt to new
contexts and behaviors, understand human behavior, and
personalize their actions will enable them to support lifelong
HRT in unstructured and dynamic settings.

Continuous Task Learning and Adaptation

To effectively team with humans in long-term interactions,
robots must be able to learn new behaviors and adapt
current behaviors to new situations [126–129]. There has
been much progress toward the goal of facilitating speedy
task learning [130–132]. Approaches include creating
task-agnostic world or model representations [131–135],
development of models that can support continual learning
[136, 137], and techniques that minimize the forgetting of
previously acquired knowledge by these models [138–140].
Other work has studied the learning of sub-skills to allow
for reasoning over how to adapt a current set of sub-skills in
a new context [141–143].

However, these works have not been extended to
HRT scenarios, a domain where robots may need to
simultaneously team with humans and learn new behaviors,
all while a dynamic scenario is evolving. In HRT, human
teammates will need to teach robots or correct existing
robot behaviors online so that the robot can perform
duties essential to the teaming interaction. Addressing this
challenge will require creating new paradigms to facilitate
human-in-the-loop robot learning [144], and developing
techniques so that (1) human teammates can quickly
teach/correct robot behaviors [145] and (2) robots are able to
update models with minimal exploration (without prolonged
training or excessive environment interaction).

Accounting for a Changing Human Teammate

A unique challenge in HRT is that effective reasoning
over context requires the robot to understand its human
teammate (e.g., a teammate’s intent, latent characteristics,
current state, and future behavior), not only addressing
the state of the world. The fields of Human-Robot

84



Current Robotics Reports (2023) 4:81–100

Interaction and Human-Computer Interaction have utilized
an understanding of human behavior to personalize robot
decision-making (approaches discussed in the “Modeling
Human Behavior” section), resulting in benefits across
education [146, 147], healthcare [118, 148], and domestic
applications [149].

However, many of these models can only perform well
at reasoning over a set of behaviors well-represented within
a dataset. Common assumptions are that the human will
maintain a static modality throughout an interaction [150],
humans are rational [78, 151], or that humans have an
advanced understanding of the task-at-hand. In a long-term
interaction, such assumptions will be violated at some point,
rendering these models unsuitable for HRT. We need to
provide robots with the flexibility to understand human
teammates in more complex, “in-the-wild” [152] long-term
interactions.

Evaluating Longer-Term Interaction

A long-term teaming interaction may last a variable duration
and may repeat, resulting in an interaction spanning
months or even years. Conducting studies looking into
such repeated interactions within a HRT scenario can prove
difficult as robot systems are not currently robust for such
long-term deployments [153], and interactions can vary
widely over time. Some works have begun to deploy robots
within homes for longer periods [154], but the interaction
between the robot and user is limited and as such, does
not fit our definition of teaming. Thus, it is critically
important to begin conducting HRT studies at longer scales
of interaction so that research questions for future work can
be clearly identified. Furthermore, at these longer scales of
interaction, it is important to pivot from episodic measures
of teaming, such as minimizing workload or maximizing
performance, to longer-term measures that may provide
overarching benefits [115].

Scalability

Modeling a larger number of diverse team members [155],
accounting for changes in constraints or resources [156] and
diverse computation methods [157, 158] are challenging
for scalable HRT. The challenges of scaling humans [159–
161] and multi-robot teams [162, 163] apply to HRTs for
coordination [164–166] and collaboration [167] but do not
account for the added heterogeneity.

Modeling of Large Heterogeneous Teams

In HRT, modeling, training, and sharing information face
challenges due to diverse humans and robots.

When modeling heterogeneous teams, one-size-fits-all
models [168] or multi-modal approaches [169] are used
to account for stochasticity [170], preferences [85] and
capabilities [171, 172].

Training HRT on large scale is hazardous, due
to proximity to humans, and current scalable training
approaches [173] leverage curriculum learning in simula-
tion [174] with fine-tuning on larger scales [175] or through
calibration with online learning [176]. Training methods for
large-scale robot teams [22, 168, 177–180] may become
infeasible in HRT [181] due to the credit assignment prob-
lem [182].

As HRT scales, communication overhead [183] and
limited large-scale communication [184] become relevant,
requiring human [185] or robot [168] supervisors for
efficient coordination.

Future works may include developing stochastic and
type-independent models for coordination and communica-
tion in HRT.

Robustness to Different Conditions

HRTs should be robust enough to handle changes in
constraints, distances, and available resources.

A versatile HRT could handle different constraints (e.g.,
temporal, spatial, motion control) [186–188] but current
training methods to learn new constraints (e.g., curricu-
lum learning [189], zero-shot transfer [190], multi-task
learning [191]) may lead to catastrophic forgetting [192].

Changes in environment scale and distances must be
accounted for [193, 194] as units take time to reach
them [195]. HRT algorithms should consider the scalability
of the map size and different failures that may happen.

Dynamic changes in team composition (e.g., breakdown
of robots, reassignment of humans) and resource availability
can lead to different policies in cooperative planning [196–
199].

Further research is needed to account for the human
stochasticity in scaling problem domains and feasibility of
using methods associated with multi-robot teams in HRTs,
as these domains are both easier and safer to explore than
HRT systems.

Architecture of Solution

Industry 4.0 and IoT have shifted robot decision-making
toward a decentralized model [200, 201], with challenges in
training communication and application.

Team coordination and robots can be centralized while
humans are inherently decentralized [202]. Scaling optimal
central planners is intractable [156, 165, 203], and remote
control of robots may lead to communication problems [27,
194, 204–208].
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Decentralized HRT is possible through cloud robotics
and edge computing [209] and crowdsourcing can be used
for training [210–213]; however, communicating in large
decentralized systems remains an open challenge [214,
215].

Semi-centralized model leverage a central high-level
supervisor and low-level decision-making in sub-teams
[27], becoming robust to communication interruptions des-
pite the sub-optimality [216, 217].

Safety

As human-robot collaboration increases, the chance of
safety hazards also increases, making safety one of the most
important factors of HRT [218]. In industrial settings, where
human workers team with strong robots [1–3], collisions
can result in serious injuries [219], while domestic robots’
proximity to end-users and the broad population they team
with poses special challenges in ensuring safety [147].
However, the issue of safety extends beyond these examples
and is prevalent across all HRT applications, e.g., assistive
driving [220], rescue operations [221], agriculture [222] and
supporting astronauts [223].

Multiple safety guarantee frameworks are proposed in
prior work. Control Barrier Function [224, 225] encodes
safe and dangerous states and could maintain the system
within safe states. Reachability analysis [226, 227] and
minimally invasive safe control [228] override the policy
to avoid unsafe regions when the agent is on the
safe-unsafe boundary. Researchers also constrain Markov
Decision Process such that certain unsafe states and actions
are banned from visiting [229]. Other safety assurance
methods include regulating the control energy, velocity,
and force [230–232] when humans and robots are in close
proximity.

Safety is a key bottleneck in achieving effective HRT,
as measures such as stopping the robot when humans
are close significantly impact teaming fluency [8] and
more sophisticated safety modules that are compatible with
complex environments and different human partners are
required. Two major challenges on the road to effective
safety for HRT are (1) adaptation and personalization and
(2) human understanding of robotic safety.

Adaptation and Personalization

The International Organization for Standardization (ISO)
has provided safe-robot-behavior guidelines for industry
robots [233, 234] and general human-robot collabora-
tion [235] to stop, reduce speed, or limit the applied
force when humans enter a robot’s safety region. How-
ever, for dynamic and unknown environments, the definition

of the safety region itself must be adapted to account
for the environment and the task, making the enforce-
ment of ISO Standards ambiguous. Most aforementioned
approaches only work with fixed unsafe regions, render-
ing them unsuitable for HRT. Online re-planning methods
for dynamic environments [236, 237] are often imprac-
tical due to high computation requirements. Brown and
Niekum [238] reasons conservatively about unknown space
but requires a high amount of user queries about trajectory
ranking, similar to [239]. One possible direction for safety
in dynamic and unknown environments is to develop inter-
faces and approaches to allow end-users or domain experts
to intuitively specify and adjust the safe/unsafe regions as
needed.

Lasota et al. [240] defines two types of robotic safety:
physical safety and psychological safety. The previous
paragraph focuses on physical safety (human safety and
environmental safety). Psychological safety (i.e., subjective
safety) is equally essential, as a perceived safe system
is key to maximizing team performance. For instance,
an experienced worker may regard working closely with
a robot as safe and productive. In contrast, a new
user who just unboxes a robot may prefer keeping a
distance from the robot [241]. Enabling users to define
preferred safe states and thresholds could also work for
this challenge. Demonstration-based techniques provide
a promising direction to empower end-users to specify
their safety boundaries [242]. The robot could also
create informative queries to ask human teammates about
uncertain states.

Once robots can ensure safety in complex environments
and fit different teammates’ needs, the acceptance of HRT
systems could significantly increase in various risk-averse
applications.

Human Understanding of Robotic Safety

Understanding the robot’s limitations and potential hazards
is crucial for humans making decisions in HRT. For
example, an elderly-care robot may not be equipped with
depth sensing and could fall off stairs. If the human partner
knows the robot’s capability, he/she can decide to deploy
the robot only on the ground floor. Prior work has explored
explaining to humans after a robot fails [207, 243], but few
works have considered the best way to inform humans about
robots’ limits and potential failures and proactively prevent
unsafe cases from happening. Huang et al. [101] is a close
work where an autonomous vehicle informs the user about
its policy such that the human understands possible safety
concerns.

More research on how to best inform the human partner
about the robot’s limits could grant the human more
confidence to collaborate with the robot. As humans acquire

86



Current Robotics Reports (2023) 4:81–100

full safety knowledge of robotic teammates, the HRT will
become safer, more robust, and more seamless.

Privacy

Social robots are expected to become prevalent in
highly privacy-sensitive domains, such as industrial
floors [244], healthcare [5, 245, 246], assistive ther-
apy [247], schools [248, 249], homes [250, 251], and
workplaces [244, 252]. As these robots become prevalent
in day-to-day environments, humans and robots will share
workspaces, participate in conversations, and collaborate
on tasks, while robots actively manage and utilize sensory
information [253, 254]. Such information can include audio
and video recordings, personal information, and even bio-
metric data. However, little is known how robots discern the
sensitivity of the information, which has major implications
for human-robot trust [254]. Mishandling sensitive informa-
tion can lead to great harm in government applications (e.g.,
through leakage of classified information), healthcare (e.g.,
HIPAA), citizen security and wellbeing (e.g., Illinois BIPA,
EU GDPR [255]), and any application involving sensitive
populations (e.g., minors, prisoners). We list two key chal-
lenges in privacy in HRT: (1) Personalization in HRT and
(2) Maintaining Domain-specific Policies.

Personalizaition and Privacy: Opposing Objectives

Effective personalization requires detailed records of user
interactions with the robot and understanding their habits
and lifestyle to uncover user needs, preferences, and
expectations [256, 257]. Downstream, such personalization
can enhance a user’s trust and anthropomorphism within
the HRT [256, 258]. However, the question remains can
we have personal, trustworthy, and reliable robots without
giving away personal data and respecting human’s privacy?

Some end-users simply rely on privacy policies and
terms and conditions developed and released with a robot
by the manufacturing companies, while more recently,
researchers have developed privacy controllers for human-
robot interactions to improve privacy awareness and trust-
worthiness [254]. Creating transparency via Explainable AI
(further discussed in the “Transparency to Minimize Over-
reliance” section) techniques can also help build privacy
awareness and support a trustworthy, private relationship in
HRT.

Following Domain-Specific Regulations

Robots interacting with humans will capture, store, and
transmit information to improve their ability to reason
effectively. However, this information can also be misused

or mishandled. There has been a string of litigation to avoid
such misuse, striving to improve the overall quality of life
across citizens of the world. For example, in America, the
Family Educational Rights and Privacy Act (FERPA) and
the Health Insurance Portability and Accountability Act
(HIPAA) have been passed to protect the transference of
sensitive information that can be easily misused. However,
such policies are not applied to robots, and such misuses
have already occurred both for virtual agents such as Alexa
[259], and robots such as the iRobot Roomba [260].

Collecting data across users can improve the accuracy
of data-based techniques, but requires sending private
information to a centralized server, which may violate laws
or user-specific criteria. Federated techniques attempt to
address this issue by only sending back gradient information
to centralized servers, keeping the benefits of crowd sourcing
data while maintaining privacy [261, 262]. Other work
in differential privacy [263, 264] and Homomorphic
encryption [265] add noise or encrypt the data to protect
individual user information directly from data. However,
even with these techniques, users are not given the
ability to control the information sent to the centralized
server.

It is important for a robot to understand its context
(e.g., whether it is working with a child in an educational
setting or in a hospital), and use that context to control the
transference of information following current litigation and
user-specified preferences. Furthermore, where possible,
data should be encrypted or anonymized, and transparent
procedures should be in place for data collection, use, and
storage to minimize data leakage and misuse.

Ethics

The challenges associated with ethical decision-making
in HRT include identifying the responsibilities of system
designers, incorporating transparency to improve robot
trustworthiness, and the importance of designing robots that
promote diversity, equity, and inclusion.

Ethical DecisionMaking and Responsible of
Decisions

Ethical Decision Making plays a crucial role in HRT as
robots may need to make quick, life-altering decisions [266,
267]. The uncertainty in the information available to robots
and the designing algorithmic frameworks that account for
ethical issues pose decision-making in HRT [268, 269].

Challenges in this area go beyond the well-known
“Trolley Problem” [270, 271] which does not assume
any uncertainty of actions. With robots being involved in
emergency services, such as the redistribution of critical
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medical supplies during COVID-19 or triage care, it is the
ethical responsibility of HRT researchers to consider the
accountability of each actor [272–276].

The lack of clarity regarding the ethical and legal
responsibilities of actors in HRT, as well as the possibility
that robots can become autonomous moral agents, further
complicates matters [277–279]. In such cases, it becomes
challenging to decide who is responsible for a failure when
robots and humans work together [280, 281].

Transparency toMinimize Overreliance

Successful HRT depends on humans trust and will-
ingness to collaborate. However, adopting a solely user-
centric approach for building trust in AI and robots risk cre-
ating “dark patterns,” i.e., it may lead to improving user trust
without ensuring the system is trustworthy [282]. Devel-
oping trustworthy robots that empower humans to make
informed decisions is crucial. Explainable AI (xAI) aims to
address the trustworthiness gap, but developing appropriate
explanations that cater to different stakeholders’ expertise
and functional roles remains a challenge [282, 283].

Despite these challenges, there exists positive evidence
highlighting the critical role of transparency in AI decision-
making in establishing human trust in human-AI systems
[284]. Recently, Paleja et al. demonstrated the effective-
ness of user-readable decision trees in increasing situa-
tional awareness [150]. However, such increased situational
awareness comes at the cost of significant cognitive load,
making it impractical for rapid decision-making. Addition-
ally, Miller describes the pitfalls of operationalizing xAI
without incorporating relational information about the oper-
ator, task, and environment, counter-indicating a one-size-
fits-all approach to xAI [285].

Miller describes a lifecycle approach to transparency
and trust, building upon prior work in human-human teams
[286]. The study found that high-performing teams with
a high level of priori and posteriori transparency (i.e.,
displaced transparency) can obtain a high level of trust
with very little in-the-moment transparency. This displaced
transparency facilitates trust across each of the three tiers
defined by [287], namely affective, analogic, and analytic.
This research indicates the need for AI development
approaches that facilitate explainability, which is accessible
to a wide variety of stakeholders while mitigating unfair bias
and ensuring the safety and privacy of various individuals
involved.

Diversity, Equity and Inclusion

Diversity, equity, and inclusion (DEI) promote fairness and
equal opportunity leading to a more creative workforce
that enhances innovation and problem-solving. DEI in HRT

should lead to robots that support and enhance diversity
rather than perpetuate existing inequalities.

Widespread adoption of automation with human charac-
teristics impact how people perceive other people. Design
choices of voice personal assistants (VPA) such as Siri,
Alexa, and Cortana [288] which utilize a default female
voice can strengthen gender stereotypes [289]. When
designing robots that will interact with all members of the
society, designers must ensure the body types, voices, and
appearances of these robots do not reinforce negative stereo-
types. The effect of widespread usages of these automated
systems needs to be further explored.

Prior works in HRT have shown that the acceptance
of robots depend on many factors, including previous
experience or familiarity with robots and technologies,
robot predictability, robot policy’s transparency, and the
human’s sense of control and trust [290–292]. Moreover,
research in psychology has shown that people with different
cultural backgrounds and personalities have different
preferences over proxemics with others [293].

As such, robot designers should include a personalization
module in the system, or cater to a specific target population
and tailor the hardware and software design for the desired
population, but care must be taken to avoid inherent biases
and harmful grouping of people.

Metrics and Benchmarking

As the field of HRT continues to expand, measuring
interaction quality and success is becoming increasingly
important [294–297]. It is critical to develop reliable
metrics to assess the performance of teams and the human
experience within these teams [298, 299]. Metrics help
to quantify and evaluate (1) performance of the team
and (2) the human experience of being within the team.
Performance metrics can include task metrics such as time
to complete tasks, operation time, concurrent activity, and
accuracy, as well as physiological measures like heart rate
and skin conductance to estimate the current state of the
interaction.

It is equally crucial to measure the human experience
within HRTs, such as safety [300, 301], trust [302],
workload [303, 304], and acceptance [305]. Measuring
these factors over long periods of time and scaling them with
multiple humans and robots present significant challenges
(“Longer-Term Interactions”, “Scalability” sections). This
section specifically focuses on challenges in measuring
human factors, correlating metrics with team performance,
and benchmarking. Overcoming these challenges and
improving the metrics will facilitate the development of
more effective HRT that can tackle increasingly complex
tasks, contributing to the progress and evolution of the field.
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SelectingMetrics

The human-robot interaction community has combined
methodologies from psychology, automation, and human
factors [301] to quantitatively assess the usability, user
experience, and accessibility of the team [306].

Robots, especially those that are social, may influence
the group dynamics when they are active participants and
may impact people in the group differently [307]. Applying
metrics used for individual interactions to group settings
does not capture the social dynamics and can miss the
group-level dynamics analyzed in social psychology [308].

Measuring SharedMental Models and Situational
Awareness

Researchers use human-only shared mental model methods
for measuring shared mental models in human-robot
teams. These include similarity [309], perceived mutual
understanding [310], and situational awareness. However,
a robotic teammate cannot easily express its belief of
human teammates or the world [311]. Situational awareness
metrics (SAGAT and SART [312]) can be used to directly
compare mental models between robots and humans [313].
However, these measures again can only measure the
human’s perception of the robot and cannot be used
to equivalently measure the robot’s level of situational
awareness of humans.

Developing ways to measure shared mental models
between humans and robots can lead to a better understand-
ing of team fluency and creating a standardized method-
ology can help researchers compare results from various
task domains. Recent trends in explainable AI (xAI) have
explored the issue of black box models and aim to cre-
ate systems where we can more easily measure the belief
overlap between humans and robots [314].

Benchmarking

Benchmarking HRTs allows for researchers to quantita-
tively compare novel approaches with previous approaches.
Great advances in reinforcement learning [315], computer
vision [316], and natural language processing [317] have
utilized competitions and benchmarks to advance the state
of the art. However, similar competitions and benchmarks
are scarce in evaluating HRTs due to the diversity of tasks
and the nature of setting up physical experimental testbeds.
Robotics competitions serve as an intermediary way to mea-
sure performance metrics but commonly do not measure
safety or human factor aspects of teaming [318].

Recently, simulated cooperative human-agent teams
have been used to evaluate the performance of artificial
collaborative agents, such as Overcooked [319, 320],

Minecraft [321], and Roblox [322]. However, it is not clear
that algorithms and methods conducted within a simulated
environment (Wizard of Oz studies [323, 324]) transfer
to those in the real world. Additionally, while physical
constraints may be present in simulated environments,
aspects such as perceived safety, communication, and
physical workload may not transfer between simulated and
real environments.

Creating common benchmarks beyond limited assembly
tasks [325, 326] has the potential for accelerating the
progress in designing effective human-robot teams.

Human Social and Psychological Wellbeing

Discussions in the previous sections focus on the perfor-
mance of HRTs. However, considering the scale and the
ubiquity of future HRT applications, we must consider
social and psychological implications of HRT, as HRT aims
to alleviate the physical and mental burden of humans [327].
In this section, we highlight the challenges in ensuring
humans’ social and psychological wellbeing in HRTs —
Robot Sociability and Human Replacement by Robots.
Tackling these challenges will go a long way in HRT’s road
to achieving a net positive for society.

Sociability of Robots

HRT can be applied to many applications that require under-
standing social cues and conventions. For example, a robot
receptionist meeting customers can be modeled as an ad-
hoc HRT: the robot greets the visitor, asks about their visit,
and leads the way, during which the facial expression, eye
contact, and appearance of the robot all contribute to the
success of the HRT [328]. The requirement of sociability of
robots is further amplified in multi-robot multi-human team
settings where the robots must be capable of understanding the
human social dynamics to contribute effectively to the team
[329]. Despite the importance of sociability, most prior work
focuses on the social navigation of robots, an over-simpli-
fied version of the rich, complex human social behav-
iors [330–334]. More research is needed on empowering
robots to understand human social behaviors and equipping
robots with the strategies for various social occasions.

Further, robots must adhere to social norms while
collaborating in HRT. When robots need assistance from
human teammates, they must assess when, whom, and
how to seek help [88, 335, 336]. Inappropriate interruption
causes negative impacts on task performance, user’s social
perception of the robot, and the willingness to collaborate
henceforth [337]. Hence, there is a growing need to develop
robots that reason about social and contextual cues in real
time when collaborating with humans.
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Robot Replacement of Human

One of the most profound social impacts that HRT may
cause is human job replacements by robots [338, 339].
Robot teammates offer multiple benefits, including higher
durability, stronger physical capabilities, and arguably
better robustness. However, replacing human-only teams
with HRT could have significant social impacts on both
humans replaced by robots and humans who team up with
robots after the replacement.

It is hypothesized that when robots start taking over
high-risk, physical-demanding, repetitive, or tedious jobs,
it also creates more flexibility for humans to conduct
creative and novel jobs, worrying less about physical
limitations. However, more work is needed to verify the
hypothesis; blindly adopting HRT may result in significant
psychological, ethical, and social concerns [340–342].

Further, humans teaming with robots after replacement
will require additional training since humans need to
understand the robot’s limits as mentioned in the
“Safety” section. Mariah et al. [339] showed that humans
prefer human partners over robot teammates due to lower
perceived team fluency and rapport established. Therefore,
it is essential to explore the psychological and social conse-
quences HRT may bring before the large-scale deployment
of HRT.

Conclusion

As technology progresses, effective human-robot collabo-
ration is becoming more feasible. xAI can improve shared
mental models, enhance implicit “communication”, safety,
and ethical decision-making. Short-term advancements in
personalized algorithms can aid in modeling human behav-
ior, increasing long-term interaction, and improving robot
acceptance. Establishing benchmarks and metrics will help
assess HRT factors. Longer-term challenges include scaling
to larger teams, preserving privacy, and accounting for robot
sociability.

HRT has the potential to benefit a multitude of fields
and applications. In manufacturing, collaborative robots can
work closely with humans, improving production lines’
efficiency, productivity, and safety. In healthcare, assistive
robots can aid professionals and patient/elderly care,
reducing the burden on healthcare workers and allowing for
better patient care. Assistive driving systems can create a
safer and more ergonomic driving experience for humans.
HRT can help us achieve a new level of efficiency and
productivity, allowing us to tackle some of the most pressing
issues facing our world today.

To realize this vision of HRT, addressing the challenges in
this paper will pave the way for a new era of human-robot

collaboration, in which robots and humans work together
seamlessly to accomplish tasks that were once impossible.
We hope this paper will inspire further research and
development in this exciting field, and we look forward to the
day when human-robot teaming is a reality in all our lives.
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Designing a socially assistive robot for long-term in-home use
for children with autism spectrum disorders. In: 2019 28th
IEEE international conference on robot and human interactive
communication (RO-MAN), p 1–7; 2019.

118. Scassellati B, Boccanfuso L, Huang C-M, Mademtzi M, Qin
M, Salomons N, Ventola P, Shic F. Improving social skills
in children with asd using a long-term, in-home social robot.
Science Robotics 3. 2018.

119. Wiwatcharakoses C, Berrar DP. Soinn+, a self-organizing
incremental neural network for unsupervised learning from noisy
data streams. Expert Syst Appl 143. 2020.

120. Dautenhahn K. Robots we like to live with?! - a developmental
perspective on a personalized, life-long robot companion.
In: RO-MAN 2004. 13th IEEE international workshop on
robot and human interactive communication (IEEE Catalog
No.04TH8759), p 17–22; 2004.
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