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Abstract
Purpose of Review Planning collision-free paths for multiple robots is important for real-world multi-robot systems and has 
been studied as an optimization problem on graphs, called multi-agent path finding (MAPF). This review surveys different 
categories of classic and state-of-the-art MAPF algorithms and different research attempts to tackle the challenges of gen-
eralizing MAPF techniques to real-world scenarios.
Recent Findings Solving MAPF problems optimally is computationally challenging. Recent advances have resulted in 
MAPF algorithms that can compute collision-free paths for hundreds of robots and thousands of navigation tasks in seconds 
of runtime. Many variants of MAPF have been formalized to adapt MAPF techniques to different real-world requirements, 
such as considerations of robot kinematics, online optimization for real-time systems, and the integration of task assignment 
and path planning.
Summary Algorithmic techniques for MAPF problems have addressed important aspects of several multi-robot applications, 
including automated warehouse fulfillment and sortation, automated train scheduling, and navigation of non-holonomic robots 
and quadcopters. This showcases their potential for real-world applications of large-scale multi-robot systems.
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Introduction

In many real-world multi-robot systems, robots have to plan 
collision-free paths to different locations to execute different 
tasks. Today, thousands of warehouse robots already navigate 
fully autonomously to relocate inventory pods in automated 
fulfillment centers [1, 2] or deliver parcels in sortation centers 
[3]. In the coming years, autonomous aircraft-towing vehicles 
will tow aircraft from the runways to the terminal gates (and 
vice versa) at airports. Other examples include autonomous 
intersection management [4], forklift robot fleets [5, 6], game 
characters in video games [7], object-transportation robots 
[8], patrolling robots [9], service robots [10, 11], swarms of 
differential-drive robots and quadcopters [12–14], robots in 
formations [15], and other multi-robot systems [16].

Solving the path planning problem optimally for multiple 
robots is computationally challenging, especially for a large 
number of robots. However, the above real-world applica-
tions require computing high-quality collision-free paths for 
a large number of robots in a short computation time since 
shorter paths result in higher throughput or lower operating 
costs (since fewer robots are required to achieve the same 
throughput) of the systems.

Multi‑Agent Path Finding

Many recent works in the artificial intelligence, robotics, 
and operations research communities have modeled the 
path planning problem for multiple robots as a combinato-
rial optimization problem on graphs, called multi-agent path 
finding (MAPF) [17, 18••]. MAPF has also been studied 
under the name of multi-robot path planning on graphs [19]. 
A MAPF problem instance consists of a connected undi-
rected graph and a set of robots. The vertices of the given 
graph correspond to locations and the edges correspond to 
connections between locations that the robots can move 
along. Each robot occupies one vertex at each discrete time 

This article belongs to the Topical Collection on Group Robotics

 * Hang Ma 
 hangma@sfu.ca

1 School of Computing Science, Simon Fraser University, 
8888 University Drive, Burnaby V5A 1B5, BC, Canada

http://orcid.org/0000-0002-0602-0999
http://crossmark.crossref.org/dialog/?doi=10.1007/s43154-022-00083-8&domain=pdf


78 Current Robotics Reports (2022) 3:77–84

1 3

step and is given a start vertex and a goal vertex. Between 
two consecutive time steps, each robot takes an action to 
either move to an adjacent vertex or wait at its current ver-
tex. Two robots collide if they move to the same vertex or 
traverse the same edge in opposite directions at the same 
time. The problem of MAPF is to find collision-free paths 
for the robots from their start vertices to their goal vertices. 
The objective is to minimize either the makespan, defined as 
the maximum of the arrival times of all robots at their goal 
vertices, or the flowtime, defined as the sum of the arrival 
times of all robots at their goal vertices.

Finding a solution to any MAPF problem instance or 
deciding its unsolvability can be done in polynomial time 
[20]. However, it is NP-hard (namely, unlikely that a pol-
ynomial-time algorithm exists) to find a solution with the 
minimum makespan [21] or the minimum flowtime [22•] 
to a MAPF problem instance, even if the given graph is a 
planar graph [23] or a 2D 4-neighbor grid [24]. In addition, 
it is NP-hard to compute an approximate solution within any 
constant factor less than 4/3 to a MAPF problem instance 
[25].

On one hand, recent advances in MAPF solving have 
resulted in powerful MAPF algorithms that can compute 
collision-free paths for a large number of robots in a short 
runtime, despite the complexity of solving MAPF optimally. 
These advances have resulted in a number of achievements, 
including a MAPF software [26] that recently won the Flat-
land Challenge [27], a train-scheduling competition at Neu-
rIPS 2020 (one of the top machine learning conferences). 
The MAPF solver has been demonstrated to be capable of 
computing high-quality paths (namely with small makespan 
or flowtime) for up to 3000 robots in minutes of runtime 
on a simulator. On the other hand, there are key challenges 
[28] that must be addressed in order to apply MAPF algo-
rithms to real-world applications of multi-robot systems, 
which requires techniques beyond MAPF solving. The fol-
lowing sections of this review survey latest advances that 
enhance MAPF solving and extensions to MAPF solving 
that tackle the research challenges in generalizing it to real-
world scenarios.

MAPF Algorithms

Recent MAPF algorithms can be categorized into reduction-
based, rule-based, and search-based algorithms. In the fol-
lowing, we survey their methodologies and highlight their 
properties in terms of completeness (complete for all MAPF 
problem instances, complete for MAPF problem instances 
on graphs with special properties, or incomplete) and opti-
mality (optimal, bounded-suboptimal, or suboptimal with 
respect to different objectives). A MAPF algorithm is com-
plete for a class of MAPF problem instances if it guarantees 

to return a solution for any solvable MAPF problem instance 
in the class or correctly decide that the given MAPF problem 
instance in the class is unsolvable in finite time.

Reduction‑Based MAPF Algorithms  Reduction-based MAPF 
algorithms reduce MAPF to other well-studied combinato-
rial problems, such as Boolean Satisfiability [29], Integer 
Linear Programming [30], and Answer Set Programming 
[31, 32]. They are complete for all MAPF problem instances. 
They solve MAPF with the makespan objective optimally 
but can be modified to solve MAPF with other objectives 
optimally [30, 32, 33], bounded suboptimally (with the guar-
antee that the resulting solution is within a user-provided 
suboptimality factor from the optimal solution) [34], and 
suboptimally [35–37]. They perform well for MAPF prob-
lem instances on small-sized graphs with densely placed 
robots. For example, a state-of-the-art Integer Linear Pro-
gramming–based MAPF solver can compute a solution with 
the minimum makespan for a MAPF problem instance on a 
24 × 18 2D 4-neighbor grid with 60 robots in less than 15 s 
of runtime [37].

Rule‑Based MAPF algorithms  Rule-based algorithms solve 
MAPF using a set of primitive operations that specify the 
actions of the robots in different situations. They often guar-
antee completeness for only a restricted class of MAPF prob-
lem instances. Rule-based algorithms are often very efficient 
by simply following the predefined primitive operations but 
provide no guarantee on the solution quality (optimality). 
Push and Swap [38] and its extension [39] can compute a 
solution for 100 agents in less than 10 s of runtime but pro-
vide no completeness guarantee theoretically. One of their 
descendants, Push and Rotate [40], is complete for MAPF 
problem instances on graphs with at least two vertices 
that are unoccupied by robots. TASS [41] is complete for 
MAPF problem instances on “solvable” trees based on prior 
work on solving multi-robot motion planning on trees [42]. 
BIBOX [43] is complete for MAPF problem instances on 
bi-connected graphs with at least two vertices unoccupied by 
robots. Its descendant [44] works for strongly bi-connected 
directed graphs with at least two vertices unoccupied by 
robots. SAG [45] is complete for MAPF problem instances 
on grid-like “well-connected” graphs, runs in polynomial 
time, and provides a constant-factor approximation guaran-
tee for minimizing the makespan on such graphs.

Search‑Based MAPF Algorithms  Search-based MAPF algo-
rithms [46] solve MAPF with heuristic search techniques. 
The main computational challenge of optimally solving 
MAPF with a search algorithm is that the number of possi-
ble states of a MAPF problem instance grows exponentially 
in the number of robots.
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• A*-based MAPF algorithms [47–49] plan paths with 
joint states but try to reduce the size of the state space 
they need to explore. They are complete for all MAPF 
problem instances and can be used for either makespan 
minimization or flowtime minimization.

• Decoupled MAPF algorithms [50–52] plan paths for 
robots one at a time according to a predefined or a dynamic 
total ordering on the robots. Path planning for each robot 
uses an A* search in vertex and time dimensions that 
treats already planned paths of other robots as moving 
obstacles. Decoupled MAPF algorithms are often 
efficient but provide no optimality or even completeness 
guarantee. PIBT [53] develops a scheme to decide a partial 
ordering on the robots dynamically but only guarantees 
that all robots reach their goal vertices at least once (but 
possibly not at the same time) in finite time on biconnected 
graphs. MAPF-LNS [54] is another recent decoupled 
MAPF algorithm that uses Large Neighborhood Search 
[55], a local search algorithm, to improve a suboptimal 
MAPF solution by repeatedly replanning paths for a 
subset of robots. It is one of the core elements of the 
MAPF software [26] that won the Flatland Challenge. Its 
descendant MAPF-LNS2 [56] uses Large Neighborhood 
Search to improve a MAPF plan (paths of all robots) with 
collisions by repeatedly replanning paths for a subset of 
robots to reduce the number of collisions, until a collision-
free MAPF plan (a MAPF solution) is obtained.

• Hierarchical MAPF algorithms plan paths for robots 
individually on the low level and dynamically couple the 
resulting single-robot paths with a tree search on the high 
level. They are complete for all MAPF problem instances. 
Increasing Cost Tree Search [57] minimizes the flowtime. 
It performs a best-first tree search of all combinations of 
the arrival times of robots on the high level and checks 
whether collision-free paths exist for a combination of 
arrival times on the low level. Conflict-Based Search 
(CBS) [58••] is arguably the most popular optimal 
MAPF algorithm. It minimizes either the makespan or 
the flowtime. CBS first finds individually time-optimal 
paths for all robots (ignoring collisions). On the high 
level, it then performs a best-first search on a binary 
constraint tree. Each branching resolves one collision in 
the computed paths by imposing constraints on individual 
robots that forbid them from occupying a vertex or 
traversing an edge at a given time step. On the low level, 
CBS uses an A* search in vertex and time dimensions 
to replan for a robot that obeys the constraints. Many 
improvements to CBS have been proposed in recent years: 
Meta-Agent CBS [58••] dynamically groups multiple 
robots into a meta-agent on the high level and uses an A* 
search to plan paths for these robots with their joint states 
on the low level. ICBS [59] always first resolves collisions 
that result in child search nodes whose costs are larger 

than that of the current node, thus affording the high-
level search of CBS pruning opportunities. CBSH [60] 
and its improvement [61] use an admissible heuristic to 
improve the high-level best-first search of CBS. Disjoint-
Splitting CBS [62] expands each node in a way such that 
any solution is admitted by the subtree under only one 
but not both of its child nodes, thus reducing duplicate 
search effort of the high-level search of CBS. IDCBS 
[63] replaces the high-level best-first search of CBS with 
iterative-deepening depth-first searches. Symmetry-
Breaking CBS [64–66•] and Mutex-Propagation CBS 
[67] add multiple constraints to a child node at a time to 
break symmetry in the high-level search of CBS. The best 
Symmetry-Breaking CBS variant has empirically been 
shown to compute optimal solutions for MAPF problem 
instances on a 256 × 257 2D 4-neighbor grid with 100 
robots in seconds of runtime [66•]. ECBS [68] and its 
improvements [69, 70] perform a bounded-suboptimal 
search on the constraint tree, making CBS bounded-
suboptimal. Recent research [71] has also developed an 
anytime version of the bounded-suboptimal search on the 
constraint tree for CBS. Another line of recent research 
also uses machine learning to learn a good branching 
policy for the high-level search of CBS for both the 
optimal [72] and bounded-suboptimal [73] settings.

• Hybrid MAPF algorithms combine several of the above 
search-based MAPF techniques or combine search-based 
MAPF techniques with reduction-based or rule-based 
MAPF techniques. SMT-CBS [74] replicates the high-
level search of CBS with Satisfiability Modulo Theories, 
which is then solved by a Boolean Satisfiability solver, 
and minimizes either the makespan or the flowtime. 
Lazy CBS [75] replaces the high-level search of CBS 
with a Constraint Programming solver and minimizes the 
flowtime. BCP [76, 77] combines Branch-and-Cut-and-
Price techniques for Mixed Integer Programming with 
symmetry-breaking techniques for MAPF and minimizes 
the flowtime. Priority-Based Search [78•] is a recent 
hierarchically decoupled that performs a depth-first 
search on a binary priority tree to explore all possible 
orderings on the robots. It is complete for only “well-
formed” MAPF problem instances and has empirically 
been shown to compute close-to-optimal solutions for 
MAPF problem instances on a 481 × 530 2D 4-neighbor 
grid with 600 robots in half a minute of runtime. Some 
algorithms combine both primitive operations (rule-
based MAPF techniques) and search. MAPP  [79] 
explore different ways of combining paths of individual 
robots and is complete for MAPF problem instances on 
“slidable” graphs [79]. There is also a MAPF algorithm 
that uses a combination of A* searches on a graph 
abstraction, primitive operations, and reductions to 
Constraint Satisfaction Problems [80].
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Recent research [81, 82] has used machine learning to select 
a MAPF algorithm among multiple candidate MAPF algo-
rithms for a given MAPF problem instance.

MAPF Extensions and Related Problems

Recent studies have also generalized the standard definition 
of MAPF to different real-world scenarios.

MAPF with Deadlines  MAPF with Deadlines [83, 84] aims 
to maximize the number of robots that reach their goal ver-
tices within a given deadline. Its applications include robots 
that need to evacuate before a disaster and robots that need 
to finish tasks before a deadline.

MAPF with Delay Probabilities and Robust MAPF  MAPF 
with Delay Probabilities (MAPF-DP) [85] generalizes 
MAPF to the case where the uncertainty of robot motion 
has to be considered during planning to ensure a collision-
free execution of the plan. In MAPF-DP, the uncertainty 
of each robot is characterized by a given delay probability 
with which the robot stays in its current vertex whenever it 
intends to traverse an outgoing edge of its current vertex. 
The problem of MAPF-DP is to find a plan that consists of a 
path for each robot and a plan-execution policy that controls 
with GO or STOP commands how each robot proceeds along 
its path such that no collisions occur during plan execution. 
MAPF-DP has also been studied under the name MAPF with 
Uncertainty [86], where the paths are planned in the belief 
space of the robots and the execution of the resulting plan 
is not guaranteed to be collision-free. K-Robust MAPF [87] 
extends CBS to enforce K time steps for which a vertex must 
be unoccupied after it has been occupied by a robot during 
planning, which reduces the possibility of collisions during 
plan execution without using plan-execution policies. Recent 
research [88] has generalized Symmetry-Breaking CBS 
[66•] to the K-Robust MAPF setting. Probabilistic Robust 
MAPF [89] bounds the probability that any collision occurs 
during plan execution.

MAPF with Continuous Time or Kinematic Con‑
straints  MAPF with Continuous Time [90] extends CBS to 
planning paths on weighted graphs where the edge weights 
characterize the nonuniform traversal times of the edges. 
Other research [91, 92] has also studied MAPF on weighted 
graphs. MAPF for Large Agents [93] allows a robot to 
occupy more than one vertex at one time step according to 
its given shape and volume. Two robots collide if both of 
them occupy some vertex at the same time step. The result-
ing CBS-based algorithm has been applied to planning col-
lision-free trajectories for quadcopters that take into account 
their ellipsoid shapes and downwash effects. MAPF-POST 

[94•, 95] is a polynomial-time algorithm that post-processes 
a MAPF solution to create a plan-execution schedule that 
works on non-holonomic robots, takes their kinematic con-
straints, such as the maximum and minimum translational 
and rotational velocity limits, into account, and provides a 
guaranteed safety distance between them, which avoids time-
intensive replanning in many cases.

Reinforcement Learning for Distributed MAPF  PRIMAL 
[96•] and its descendant [97] model MAPF as a multi-
agent reinforcement learning task, where all robots follow 
the same learned single-agent policy to decide their actions 
at each time step based on their local observations. Recent 
research [98–100] uses a graph neural network to allow 
robots to communicate and also precomputed shortest path 
distances [99] or an online shortest path computation [97, 
101] to assist training. We note that classic optimization-
based collision-avoidance approaches [102–104] use a simi-
lar distributed MAPF setting but can be applied to robots 
moving in continuous space.

MAPF with Target Assignment  Anonymous MAPF, also 
known as Permutation-Invariant MAPF or Unlabeled MAPF, 
does not assume predefined goal vertices for the robots and 
aims to find a one-to-one mapping from the given goal ver-
tices to the robots and collision-free paths for the robots 
to their assigned goal vertices. Minimizing the makespan 
for Anonymous MAPF is polynomial-time solvable using a 
max-flow algorithm [105]. CBS-TA [106] searches all possi-
ble assignments of goal vertices to robots and minimizes the 
flowtime for Anonymous MAPF. Combined Target Assign-
ment and Path Finding (TAPF) [107] partitions the robots 
into teams where the problem of each team is an Anonymous 
MAPF problem. CBM [107] combines the high-level search 
of CBS and a low-level min-cost max-flow algorithm to min-
imize the makespan for TAPF. Recent research [108, 109] 
has studied generalized TAPF problems where each robot 
needs to get assigned multiple goal vertices. MG-MAPF 
[110] assumes that each robot is preassigned multiple unor-
dered goal vertices and aims to compute collision-free paths 
for the robots to visit all goal vertices. MG-TAPF [111] aims 
to find a one-to-one mapping from the given tasks that each 
consists of a sequence of ordered goal vertices and collision-
free paths for the robots that visit the goal vertices of their 
assigned tasks in the specified order.

Online MAPF and Multi‑Agent Pickup and Delivery  Online 
MAPF [112, 113] assumes that each robot is assigned a new 
goal vertex by a black box once it reaches its current goal 
vertex. Recent research has conducted a theoretical study 
[113] on the competitiveness of online MAPF algorithms 
(namely the performance gap between online and opti-
mal offline MAPF algorithms). RHCR [114] generalizes 
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(offline) MAPF algorithms to online MAPF by repeatedly 
replanning paths for the robots. One version of RHCR that 
uses Priority-Based Search [78•] has been shown to com-
pute paths for 1000 robots on a 37 × 77 4-neighbor grid in 
less than half a minute of runtime. Multi-Agent Pickup and 
Delivery (MAPD) [115•] is a combined multi-robot task-
allocation and path-planning problem. MAPD has first been 
studied in an online setting where robots have to constantly 
get assigned a stream of incoming tasks that are added to 
the system at unknown release times and plan collision-
free paths to the pickup and delivery vertices of the tasks. 
Online MAPD algorithms [115•] repeatedly apply task-
assignment and MAPF algorithms to (re-)assign tasks to 
and (re-)plan paths for robots whenever a new task arrives 
or a robot becomes available for executing tasks. Recent 
research [116] has developed an online MAPD algorithm 
that considers kinematic constraints of robots directly dur-
ing planning and shown experimentally that the algorithm 
can compute solutions for MAPD problem instances with 
250 robots and 2000 tasks within a total runtime of 10 s. 
Offline MAPD [117] considers tasks that are known a priori. 
Recent research [3] has also considered an online TAPF/
MAPD variant that aims to minimize the idle time of sort-
ing stations—that is, when there are no warehouse robots 
servicing the sorting stations—in an automated sortation 
center. The resulting algorithm has been shown to compute 
solutions for 350 robots within 2 s of runtime on an indus-
trial robot simulator.

Conclusions

Planning collision-free paths for multiple robots is a fun-
damental building block for many real-world applications 
of multi-robot systems. It has been studied as a graph-opti-
mization problem under the name of MAPF by researchers 
from the artificial intelligence, robotics, and operations 
research communities. As the efficiency of MAPF algo-
rithms improves, they will become increasingly viable for 
real-time path-planning operations of multi-robot systems. 
Current research has also addressed several challenges to 
adapt MAPF techniques to the requirements of real-world 
multi-robot systems. Future research directions include 
developing deeper theoretical understandings for MAPF 
variants such as Distributed MAPF and MAPD and com-
bining MAPF techniques with considerations of complex 
real-world settings such as general temporal constraints 
and dependencies of tasks and high-order dynamic con-
straints of robots. Readers are referred to the MAPF infor-
mation page [118] for a listing of MAPF researchers and 
links to their publications and software, tutorials, a mail-
ing list, and other resources.
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