
https://doi.org/10.1007/s43154-021-00060-7

AERIAL ROBOTICS (E FERON, SECTION EDITOR)

Target Tracking and Following from aMultirotor UAV

Mark Petersen1 · Chad Samuelson1 · Randal W. Beard1

Accepted: 21 May 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract
Purpose of Review In this paper, we present a general target tracking and following architecture for multirotor unmanned
aerial vehicles (UAVs), and provide pointers to related work. We restrict our discussions to tracking ground-based objects
using a monocular camera that is not gimballed.

Recent Findings Target tracking is accomplished using a novel visual front end combined with a recently developed multiple
target tracking back end. The target following is accomplished using a novel, nonlinear control algorithm.

Summary We present an end-to-end target tracking and following architecture that uses a visual front end to obtain
measurements and compute the homography, a tracking algorithm called Recursive Random Sample Consensus (R-
RANSAC) to perform track initialization and tracking, a track selection scheme, and a target-following controller. Target
tracking and following is accomplished using a monocular camera, an inertial measurement unit, an on-board computer, a
flight control unit, a sensor to measure altitude, and a multirotor UAV under the assumption that the target is moving on
fairly planar ground with nearly constant velocity.

Keywords Target following · Target tracking · RANSAC · R-RANSAC · Unmanned air vehicle · Autonomous vehicle ·
Unmanned air system

Introduction

There are numerous approaches to target tracking and fol-
lowing which vary in their degree of simplicity of imple-
mentation, computational expense (CPU usage), optimality,
and other measures. We will focus primarily on meth-
ods appropriate for multirotor UAVs carrying a body-fixed
monocular camera.

Any vision-based target-tracking method will need to
extract measurements from the images. Recently, there
has been extensive research in object detection and
identification using deep neural networks such as YOLO
[1], R-CNN [2], and others [3]. These methods achieve high
accuracy, but are computationally expensive. We discuss
other methods in “Visual Front End.”

This article belongs to the Topical Collection on Aerial Robotics

� Randal W. Beard
beard@byu.edu

1 Electrical and Computer Engineering Department, Brigham
Young University, 450 Engineering Building, Provo, UT
84602, USA

For a good review of target-tracking algorithms, we
refer the reader to [4]. There exist optimal methods
such as the multiple hypothesis tracking (MHT) [5]
and the probabilistic multi-hypothesis tracker (PMHT)
[6]; however, they are difficult to implement and not
feasible to do in real time [7]. A variant of the
MHT is the track-oriented MHT (TO-MHT) [8] which
can be done in real time. There are other simple,
computationally efficient techniques such as the global
nearest neighbor filter (GNNF) [9] and joint probabilistic
data association filter (JPDAF) [10]; however, they cannot
initialize tracks. A track consists of a state estimate
(position, velocity, etc) and error covariance of the target. A
recently developed non-optimal, target-tracking algorithm
is Recursive Random Sample Consensus (R-RANSAC)
which efficiently initializes and manages tracks [11–15].
We discuss this algorithm in more detail in “R-RANSAC
Multiple Target Tracker.”

In order to follow the detected and tracked targets, a
control approach known as image-based visual servoing
(IBVS) is commonly implemented [16]. IBVS in its
most basic form is implemented using the proportional-
integral-derivative controller (PID) [17] which is simple to
implement and responsive, but causes increased error and

/ Published online: 2 July 2021

Current Robotics Reports (2021) 2:285–295

http://crossmark.crossref.org/dialog/?doi=10.1007/s43154-021-00060-7&domain=pdf
http://orcid.org/0000-0002-2548-5329
mailto: beard@byu.edu


overshoot due to UAV rotations [18]. The IBVS-Sphere
(IBVS-Sph) effectively combats this problem by mapping
the image plane to a virtual spherical image plane around
the camera; however, this and similar spherical mapping
techniques become unstable as the target moves beneath
the UAV [18]. An optimal solution is to map a virtual
image plane parallel to the ground directly above the
detected targets. This reduces error due to UAV pose and
discrepancies caused by spherical mapping. A few examples
of this approach, such as the desired robust integral of
the sign of error (DCRISE), are [19, 20]. The algorithm
described in this paper takes advantage of this mapping of
a parallel virtual image plane and will be discussed in more
detail in “Target-Following Controller.”

The paper is organized as follows.
In “Architecture,” we present the tracking and following

architecture, followed by the visual front end, R-RANSAC,
and the controller in “Visual Front End,” “R-RANSACMul-
tiple Target Tracker,” and “Target-Following Controller.”
Finally, we discuss our results and conclusions in “Results”
and “Conclusions.”

Architecture

In this paper, we assume that a monocular camera is rigidly
mounted on a multirotor UAS equipped with IMU, on-board
computer, autopilot, and an altitude sensor. The camera
sends images into the visual front-end pipeline. The visual
front end is responsible for extracting point measurements
of targets from the images and computing the homography
and essential matrix, as shown in Fig. 1.

The visual front end produces point measurements that
are processed by the tracking back end, labeled R-RANSAC
in Fig. 1, which produces tracks (position, velocity, plus
error covariances) of targets. Target tracking is done

in the current image frame which requires transforming
measurements and tracks expressed in the previous camera
fame to the current frame.

Since we assume that the target is moving on a fairly
planar ground, we can use the homography matrix to
transform the measurements and tracks to the current image
frame, as shown in Fig. 1.

The multiple target-tracking algorithm R-RANSAC
sends the tracks to the track selector which determines
which track to follow. The selected track is then passed to
the controller which sends commands to the flight control
unit (FCU) that enables target following, as shown in
Fig. 1.

Visual Front End

This section describes the visual front end shown in Fig. 1.
Images from the camera along with the camera’s intrinsic

parameters are given to the visual front end, which is
responsible for producing measurements and calculating
the homography and essential matrix. The visual front end
uses a variety of algorithms to extract features. Some of
the algorithms we have used include image differencing,
color segmentation, YOLO, and apparent feature motion
methods to extract measurements. The image difference
method finds the difference between two images, looks
for disparities of certain shapes and sizes (blobs) which
are caused by moving objects, and takes the center of the
blobs as measurements. When the camera is moving, we use
the homography to transform one image into the frame of
the other image. The color segmentation method looks for
blobs with specific color, size, and shape profile to extract
point measurements. This method of course assumes that
the target of interest is a unique color, and is in general not
very useful except in simple controlled environments.

Fig. 1 Target-tracking and
following architecture

286 Curr Robot Rep (2021) 2:285–295



The method that we use to implement the visual front end
is described in the remainder of this section and is shown
graphically in Fig. 1. In particular, the KLT feature tracker
extracts matching points between consecutive images.
Using the matching points, the homography is computed.
The matching points that are outliers to the homography
are considered moving. Their motion can be caused by a
moving target, noise, or parallax. Motion caused by parallax
is filtered out using the essential matrix.

KLT Feature Tracker

In order to compute the homography matrix, the essential
matrix, and to calculate apparent feature motion, good
features need to be tracked between consecutive frames. A
common and popular method is to use “Good Features to
Track” [21] to select good features from the previous image
and find their corresponding features in the current image
using the Kanade-Lucas-Tomasi (KLT) feature tracker [22,
23]. The combination of the two algorithms yields matching
features. These algorithms can be implemented using
the OpenCV functions goodFeaturesToTrack() and
calcOpticFlowPyrLK() [24].

Estimate Homography

The homography describes the transformation between
image frames and maps static features from one image to
static features in the other image. Thus, if we map the
matched features into the same image frame and compare
the distance from their matched counterpart, we can identify
which features correspond to static objects and moving
object.

The matching features obtained from the KLT Tracker
are used to estimate the homography. The relevant geometry
of the Euclidian homography is shown in Fig. 2.

Suppose that pf is a feature point that lies on a plane
defined by the normal (unit) vector n. Let pa

f/a and pb
f/b be

the position of pf relative to frames a and b, expressed in
those frames respectively. Then, as shown in Fig. 2, we have

pb
f/b = Rb

apa
f/a + pb

a/b.

Let da be the distance from the origin of frame a to the
planar scene, and observe that

da = n�pa
f/a =⇒ n�pa

f/a

da

= 1.

Therefore, we get that

pb
f/b =

(
Rb

a + pb
a/b

da

n�
)

pa
f/a . (1)

planar scene

Fig. 2 The geometry for the derivation of the homography matrix
between two camera poses

Let pa
f/a = (pxa, pya, pza)

� and pb
f/b = (pxb, pyb, pzb)

�,
and let εa

f/a = (pxa/pza, pya/pza, 1)� represent the
normalized homogeneous coordinates of pa

f/a projected

onto image plane a, and similarly for εb
f/b. Then, Eq. 1 can

be written as

pzb

pza

εb
f/b =

(
Rb

a + pb
a/b

da

n�
)

εa
f/a . (2)

Defining the scalar γf = pzb/pza , we get

γf εb
f/b = Hb

a εa
f/a, (3)

where

Hb
a

�=
(

Rb
a + pb

a/b

da

n�
)

(4)

is called the Euclidian homography matrix between
frames a and b [25]. Equation 3 demonstrates that
the Euclidian homography matrix Hb

a transforms the
normalized homogeneous pixel location of p in frame a into
a homogeneous pixel location of p in frame b. The scaling
factor γ , which is feature point dependent, is required to put
εb in normalized homogeneous coordinates, where the third
element is unity.

The homography can be calculated using the openCV
function findHomography(), which combines a 4-
point algorithm with a RANSAC [26, 27] process to
find the homography matrix that best fits the data. The
findHomography() function scales the elements of H

so that the (3, 3) element is equal to one. Feature pairs that
do not satisfy (3) are labeled as features that are potentially
moving in the environment.

287Curr Robot Rep (2021) 2:285–295



Estimate Essential Matrix

The homography works well to segment between moving
and non-moving features provided that the scene is planar;
however, that is rarely the case due to trees, lamp posts, and
other objects that stick out of the ground. The objects that do
not lie on the same plane used to describe the homography
will be outliers to the homography and appear as moving
features even if they are static. The essential matrix provides
a strategy to filter out the static features using the epipolar
constraint.

Figure 3 shows the essence of epipolar geometry. Let pf

be the 3D position of a feature point in the world, and let
pa

f/a be the position vector of the feature point relative to

frame Fa expressed in frame Fa , and similarly for pb
f/b.

The relationship between pa
f/a and pb

f/b is given by

pb
f/b = Rb

apa
f/a + pb

a/b. (5)

Defining⎢⎢⎢⎣
⎛
⎝a

b

c

⎞
⎠

⎥⎥⎥⎦ =
⎛
⎝ 0 −c b

c 0 −a

−b a 0

⎞
⎠

as the cross-product operator, then multiplying both sides of
Eq. 5 on the left by �pb

a/b� gives
�pb

a/b�pb
f/b = �pb

a/b�Rb
apa

f/a .

Since �pb
a/b�pb

f/b = pb
a/b × pb

f/b must be orthogonal to

pb
f/b we have that

pb�
f/b�pb

a/b�Rb
apa

f/a = 0. (6)

Dividing (6) by the norm of pb
a/b, and defining

tb
a/b

�= pb
a/b∥∥∥pb
a/b

∥∥∥
gives

pb�
f/b�tb

a/b�Rb
apa

f/a = 0. (7)

The matrix

Eb
a = �tb

a/b�Rb
a (8)

is called the essential matrix and is completely defined by
the relative pose (Rb

a, pb
a/b).

Dividing (7) by the distances to the feature in each frame
gives

εb�
f/b Eb

a εa
f/a = 0, (9)

where εa
f/a and εb

f/b are the normalized homogeneous image
coordinates of the feature in frame a (respectively frame
b). This equation is the epipolar constraint and serves as a
constraint between static point correspondences.

The epipoles ēa and ēb shown in Fig. 3 are the
intersection of the line connecting Fa and Fb with
each image plane. The epipolar lines �a and �b are the
intersection of the plane (Fa,Fb, Pf ) with the image
planes. The epipolar constraint with the pixel εa

f/a is
satisfied by any pixel on the epipolar line �b. In other words,
if Pf is a static feature or its motion is along the epipolar
line then its point correspondence εa

f/a and εb
f/b will satisfy

the epipolar constraint [28].
The essential matrix can be calculated using the openCV

function findEssentialMat() which uses the five-
point Nister algorithm [29] coupled with a RANSAC
process.

Moving/Non-moving Segmentation

This section describes the “Moving/non-moving Segmenta-
tion” block shown in Fig. 1. The purpose of this block is to
segment the tracked feature pairs into those that are station-
ary in the environment, and those that are moving relative
to the environment. As shown in Fig. 1, the inputs to the
“Moving/non-moving Segmentation” block at time k are the

Fig. 3 Epipolar geometry world posi�on of feature point

288 Curr Robot Rep (2021) 2:285–295



homography Hk
k−1, the essential matrix Ek

k−1, and the set of

matching feature points Mk = {(εk
i , εk−1

i ) between image
Ik−1 and image Ik .

When the camera is mounted on a moving UAV
observing a scene where most of the objects in the scene
are not moving, the homography computed from planar
matching features will correspond to the motion of the UAV.
As previously stated, moving objects or static objects not
coplanar with the features used to compute the homography
will appear to have motion when their corresponding
features from the previous image are mapped to the current
image. Therefore, given the set of matching feature points
Mk , we can segment Mk into two disjoint sets Min

k for
inliers andMout

k for outliers where, for some small η1 > 0

Min
k =

{
(εk

i , εk−1
i ) ∈ Mk |

∥∥∥γiε
k
i − Hk

k−1ε
k−1
i

∥∥∥ ≤ η1

}
Mout

k =
{
(εk

i , εk−1
i ) ∈ Mk |

∥∥∥γiε
k
i − Hk

k−1ε
k−1
i

∥∥∥ > η1

}
.

Therefore, Min
k are all matching feature pairs that

are explained by the homography Hk
k−1, and therefore

correspond to ego-motion of the UAV, and Mout
k are

all matching feature pairs that are not explained by the
homography Hk

k−1, and therefore potentially correspond to
moving objects in the environment.

Figure 4 illustrates the application of this homography
segmentation scheme, where feature outliers Mout

k have
been retained.

The homography matrix provides good moving/non-
moving segmentation either if the motion of the UAV
is purely rotational, or if the surrounding environment
is planar. A planar environment may be an adequate
assumption for a high-flying fixed-wing vehicle moving
over mostly-flat terrain. However, it is not a good
assumption for multirotor UAV moving in complex 3D
environments, where non-planar, stationary features will
appear to be moving due to parallax. In that case, the
potentially moving features Mout

k need to be further
processed to discard features from the 3D scene that are not
moving.

Fig. 5 Motion detection using the essential matrix. Matching pairs
in Mout

k are shown in blue and red, where the red features are in

Mmoving
k

Our approach uses the epipolar constraint given in
Eq. 9 that is satisfied by stationary 3D points. Therefore,
potentially moving 3D points are given by

Mmoving
k =

{
(εk

i , εk−1
i ) ∈ Mout

k |
∣∣∣εk�

i Ek
k−1ε

k−1
i

∣∣∣ > η2

}
for some small η2 > 0.

Figure 5 illustrates the moving/non-moving segmenta-
tion scheme using video from a multirotor flying in close
proximity to 3D terrain. The blue feature points corre-
spond to features on 3D objects, which due to parallax are
not discarded by the homography threshold and are there-
fore elements of Mout

k . However, these points satisfy the
epipolar constraint and therefore are not flagged as mov-
ing features. The red dots in Fig. 5 correspond to Mmoving

k

and are actually moving in the scene. One drawback to this
approach is that features that are moving along the epipo-
lar lines (i.e., moving in the same direction as the camera)
will be filtered out. However, this can be mitigated by con-
trolling the camera so that its motion is not aligned with the
target’s motion.

R-RANSACMultiple Target Tracker

Recursive Random Sample Consensus (R-RANSAC) is a
modular multiple target tracking (MTT) paradigm originally

Fig. 4 Motion detection using
the homography matrix.
Matching features are shown in
red and blue. The setMin

k is
shown in blue, and the setMout

k

is shown in red

289Curr Robot Rep (2021) 2:285–295



developed in [11–15] and extended by various others [30–
37]. The novel aspects of R-RANSAC include feature
(measurement) and track propagation, track initialization,
and track management. R-RANSAC tracks objects in the
current camera frame. Since the camera frame moves as
the UAV moves, features and tracks need to be transformed
to the current camera frame. As new measurements are
received, tracks are initialized, updated, and managed.

TransformMeasurements and Tracks

This section describes the “Transform measurements and
tracks to current camera frame” block shown in Fig. 1 which
transform all measurements and tracks from the previous
image frame to the current image frame.

We have shown how uncalibrated pixels are transformed
between frames by the homography matrix as

γf εb
f/b = Hb

a εa
f/b.

The visual multiple target tracking algorithm produces pixel
velocities, pixel accelerations, and 2×2 covariance matrices
associated with each of these quantities. In this section, we
show how to transform pixel velocities, accelerations, and
covariances using the homography matrix.

Throughout this section, we will use the following
notation. The homography matrix will be decomposed into
block elements as

Hb
a

�=
(

H1 h2

h�
3 h4

)
,

and the homogeneous image coordinates are decomposed as

ε
�= (

ε̂� 1
)�

.
Given the relationship

γf

(
ε̂b
f/b

1

)
=

(
H1 h2

h�
3 h4

)(
ε̂a
f/a

1

)
,

⇐⇒
(

γf ε̂b
f/b

γf

)
=

(
H1ε̂

a + h2

h�
3 ε̂a

f/a + h4

)
,

which implies that

ε̂b
f/b = H1ε̂

a
f/a + h2

h�
3 ε̂a

f/a + h4
and γf = h�

3 ε̂a
f/a + h4.

Defining the function

g(ε̂, H)
�= H1ε̂ + h2

h�
3 ε̂ + h4

, (10)

we have that 2D pixels are transformed between frames as
ε̂b
f/b = g(ε̂a

f/a, H
b
a ). Therefore, the 2D pixel velocity is

transformed as

˙̂εb
f/b = ∂g

∂ε̂

∣∣∣
ε̂=ε̂a

f/a

˙̂εa
f/a = G(ε̂a

f/a, H
b
a ) ˙̂εa

f/a, (11)

where

G(ε̂, H) = (h�
3 ε̂ + h4)H1 − (H1ε̂ + h2)h

�
3

(h�
3 ε̂ + h4)2

. (12)

The next lemma shows how position and velocity
covariances are transformed between images.

Theorem 1 Suppose that Hb
a is the homography matrix

between frames a and b and that ε̂a
f/a and ˙̂εa

f/a are random
vectors representing pixel location and velocity of feature
f in frame a with mean μ̂

a
f/a , and

˙̂μa
f/a , respectively, and

covariances �a
p and �a

v respectively. Suppose that ε̂a
f/a is

transformed according to ε̂b
f/a = g(ε̂a

f/a, H
b
a ) where g is

defined in Eq. 10, then the mean and covariance of ε̂b
f/b and˙̂εb

f/b are given by

μ̂
b = g(μ̂

a
, Hb

a )

˙̂μb = G(μ̂
a
, Hb

a ) ˙̂μa

�b
p = G(μ̂

a
, Hb

a )�a
pG�(μ̂

a
, Hb

a )

�b
v = G(μ̂

a
, Hb

a )�a
vG�(μ̂

a
, Hb

a )

where G is defined in Eq. 12.

Track Initialization

Given that the measurements and tracks are expressed with
respect to the same coordinate frame, we use the new
measurements that do not belong to any existing track to
initialize new tracks.

For simplicity, suppose that we have two observable
targets whose motion can be described by a linear time-
invariant model where both targets are in the camera field-
of-view. Some of the camera’s measurements correspond to
a target while others are spurious false measurements. Since
there are multiple targets and false measurements, we need
a way to associate measurements to their respective targets
or noise. We do this using the standard RANSAC algorithm.

Suppose that we currently have one target in the field-of-
view of the camera and a batch of measurements as depicted
in Fig. 6.

We take a minimum subset of measurements such that the
target’s trajectory can be reconstructed by the measurements
in the subset and so that at least one of the measurements is
from the latest time step. One particular minimum subset is
depicted in Fig. 6 using red circles.

Using the minimum subset, a trajectory hypothesis is
generated. The trajectory hypothesis is used to identify
other measurement inliers (i.e., measurements that are close
to the trajectory hypothesis). The trajectory hypothesis is
then scored using the number of inliers. An example of a
trajectory hypothesis is depicted in Fig. 6 by the red line.

290 Curr Robot Rep (2021) 2:285–295



current measurement

Fig. 6 Black dots indicate measurements, and the current batch of
measurements are denoted with z∗. A particular minimum subset is
denoted with red circle, including the current measurement zk . A
track hypothesis generated from a minimum subset of measurements,
depicted with the red curve. Alternate trajectory hypotheses that are
not selected are shown in yellow

This process is repeated up to a predetermined number of
times. The trajectory hypothesis that has the most number of
inliers is then filtered (e.g., using an EKF) to produce a new
current track estimate. An example of track initialization
with multiple targets is shown in Fig. 7. Alternate trajectory
hypotheses that were not selected during initialization are
shown in yellow in Fig. 7.

Track Management

When new measurements are received, they are associated
to either an existing track or are used to initialize a
new track. The measurements that are associated to a
track are used to update the track. The modular design
of R-RANSAC allows us to use various techniques to
associate measurements and update the tracks. Some
popular methods include the global nearest neighbor filter
[38, 39], probabilistic data association filter [40], and
joint probabilistic data association filter [40, 41]. Other
possibilities include algorithms in [7].

R-RANSAC maintains a bank of M tracks. As the track
initializer generates new tracks, tracks are pruned to keep
the number of tracks at or below M . Every track is rated

current measurement

Fig. 7 Track initialization for multiple targets

by the number of inliers it has and its lifetime. When there
are more than M tracks, tracks with the lowest ratings are
pruned until there are only M tracks.

As tracks are propagated and updated, they may leave the
field-of-view of the camera, they may coalesce, or they may
stop receiving measurements. To handle these situations, we
remove tracks that have not received a measurement for a
predetermined period of time, and we merge similar tracks.

Good tracks, i.e., tracks that have a high inlier ratio, are
given a unique numerical track ID. The good tracks passed
to the track selection algorithm at every time step.

Track Selection

R-RANSAC passes good tracks to the track selector which
chooses a track to follow. In this section, we list several
possible options for target selection.

Target Closest to the Image Center One option is to follow
the track that is closest to the image center. If visual-MTT
returns a set of normalized image coordinates εi for the
tracks, then select the track that minimizes ‖εi‖.

Target Recognition A common automatic method for track
selection is target recognition using visual information. This
method compares the tracks to a visual profile of the target
of interest. If a track matches the visual profile, then it is
followed. A downside of this method requires the visual
profile to be built previously. For visual target recognition
algorithms, see [42–44].

User Input A manual method for track selection is to query
a user about which track should be followed. After the
user has been queried, a profile of the target using gathered
data can be made to recognize the track in the future. One
example of this is [45] which uses a DNN to build the visual
profile online.

The selected track is communicated to the target
following controller.

Target-Following Controller

This section overviews one possible target-following
controller as shown in Fig. 1. The controller consists of three
parts: (1) a PID strategy that uses a height-above-ground
sensor to maintain a constant pre-specified height above the
ground, (2) a position controller that follows the target based
on the track information, and (3) a heading controller that
aligns the UAV’s heading with the target’s heading. In this
section, we describe the position and heading controllers in
detail.

291Curr Robot Rep (2021) 2:285–295



The provided track contains the state estimate of the
target in normalized image coordinates. Image coordinates
are not invariant to the roll and pitch of the UAV; therefore,
we design the controller in the normalized virtual image
plane.

Let pc
t/c denote the position of the target relative to the

camera expressed in the camera frame; the track produced
by R-RANSAC is in normalized image coordinates and is
given by

εc
t/c = K−1

c pc
t/c

e�
3 K−1

c pc
t/c

whereKc is the camera intrinsic parameter [46]. The target’s
velocity is given by ε̇c

t/c. Note that the third element of εc
t/c

is 1, and the third element of ε̇c
t/c is 0.

The coordinate axes in the camera frame are defined so
that the z-axis points along the optical axis, the x-axis points
to the right when looking at the image from the optical
center in the direction of the optical axis, and the y-axis
points down in the image, to form a right-handed coordinate
system. Alternatively, the virtual camera frame is defined so
that the z-axis points down toward the ground, i.e., is equal
to e3, and the x and y axes are projections of the camera
x and y axis onto the plane orthogonal to e3. A notional
depiction of the camera and virtual camera frame is shown
in Fig. 8.

The virtual camera frame is obtained from the camera
frame through a rotation that aligns the optical axis with the
down vector e3. The rotation, denoted Rv

c , is a function of
the roll and pitch angles of the multirotor, as well as the
geometry of how the camera is mounted to the vehicle.

Fig. 8 A notional depiction of the camera frame and the virtual camera
frame. The optical axis of the virtual camera frame is the projection of
the optical axis of the camera frame onto the down vector e3

Therefore, the normalized virtual image coordinates of
the track in the virtual camera frame are given by

εv
t/c = Rv

c εc
t/c

e�
3 Rv

c εc
t/c

. (13)

Similarly, the pixel velocity in normalized virtual image
coordinates is given by

ε̇v
t/c = 1

(e�
3 Rv

c εc
t/c)

2

(
(e�

3 Rv
c εc

t/c)I − Rv
c εc

t/ce
�
3

)

·
(
Rv

c �ωc
c/v�εc

t/c + Rv
c ε̇c

t/c

)
. (14)

Equations 13 and 14 are computed by vision data using
the R-RANSAC tracker described in the previous section.
We also note that εv

t/c is simply the normalized line-of-sight
vector expressed in the virtual camera frame, i.e.,

εv
t/c = pv

t/c

eT
3 pv

t/c

= λpv
t/c,

where λ = 1/(eT
3 pv

t/c) is the constant height-above-ground.
In addition, we have that

ε̈v
t/c = λp̈v

t/c = λ
(
p̈v

t/i − p̈v
c/i

)
,

where ṗv
t/i and ṗv

c/i are the inertial velocities of the target
and camera, and p̈v

t/i and p̈v
c/i are the inertial accelerations

of the target and camera, all expressed in the virtual camera
frame.

If we assume that the inertial acceleration of the target is
0, and that the center of the camera frame is the center of
the multirotor body frame, then

ε̈v
t/c = −λav,

where av = p̈v
b/i = p̈v

c/i is the commanded acceleration of
the multirotor.

We now have the following theorem.

Theorem 2 Assume that the inertial acceleration of the
target is 0, and that the height-above-ground is constant
and known. Let εv

d/c be the desired constant normalized
line-of-sight vector to the target, and let

av = 1

λ

(
(k1 + k2)ε̇

v
t/c + k1k2

(
εv
t/c − εv

d/c

))
, (15)

where k1 > 0 and k2 > 0 are control gains, then

εv
t/c → εv

d/c.

292 Curr Robot Rep (2021) 2:285–295



The desired attitude is selected to align with the target’s
velocity vector ṗn

t/i as follows:

Ri
d = (

r1 r2 r3
)

(16)

r1 = (I − e3e
�
3 )ṗv

t/i∥∥∥(I − e3e
�
3 )ṗv

t/i

∥∥∥ (17)

r2 = r1 × e3 (18)

r3 = e3. (19)

Therefore, the x-axis of the desired frame points in the
direction of the desired velocity vector, and the attitude is
otherwise aligned with the body-level frame. The attitude
control scheme is derived using the technique given in [47].

FollowingMultiple Targets

We briefly mention two approaches to the following
multiple targets. If the targets are clustered together, then the
following can be achieved by aligning their average position
with the camera’s optical center using a technique similar
to the one presented in this paper. A more realistic and
common approach is a decentralized multiple target tracking
scheme that uses a fleet of UAVs to cooperatively track
targets in their respective surveillance region and share their
information via a communication network [48].

Results

We implemented the target tracking and following pipeline
in simulation using PX4 software-in-the-loop with Gazebo
and ROS [49]. We used the IRIS multirotor model with
a camera pitched down by 45° provided by the PX4. We
used default simulated noise values. We had a single target

Fig. 9 The X and Y errors are in the normalized virtual image plane
in units of meters and the yaw error is in units of radians

move in a square upon command. For simplicity, we had
the UAV find the target using visual MTT before telling
the target to move. Once the target began moving, the UAV
followed it fairly well in the normalized virtual image plane.
Figure 9 shows the error plots. Notice that the yaw angle
has large increases in error at several points. This is when
the target is turning 90°. These turns also impact the error
in the northeast plane. The results show the effectiveness of
the complete pipeline and its robustness to target modeling
errors.

A video of the simulation is at https://youtu.be/C6JWr1
dGsBQ.

Conclusions

We have presented a review of a complete pipeline for track-
ing and following a target using a fixed monocular camera
on a multirotor UAV. In future work, we plan to improve
the controller to track multiple targets simultaneously, and
incorporate target recognition for when tracks leave the
camera field-of-view.

Funding This work has been funded by the Center for Unmanned
Aircraft Systems (C-UAS), a National Science Foundation Indus-
try/University Cooperative Research Center (I/UCRC) under NSF
award Numbers IIP-1161036 and CNS-1650547, along with signifi-
cant contributions from C-UAS industry members.

Compliance with Ethical Standards

Conflict of Interest Mr. Petersen has nothing to disclose. Mr. Samuel-
son has nothing to disclose. Dr. Beard reports grants from National
Science Foundation, during the conduct of the study; In addition, Dr.
Beard has a patent 10,339,387 issued.

Human andAnimal Rights and Informed Consent This article does not
contain any studies with human or animal subjects performed by any
of the authors.

References

1. Redmon J, Farhadi A. YOLO9000: Better, faster, stronger.
Arxiv:1612.08242. 2016.

2. Girshick R, et al. Rich feature hierarchies for accurate object
detection and semantic segmentation. In: Proceedings of the
IEEE Computer Society Conference on Computer Vision and
Pat- tern Recognition; 2014. p. 580–587. issn: 10636919.
https://doi.org/10.1109/CVPR.2014.81. arXiv:1311.2524.

3. Zhao ZQ, et al. Object detection with deep learning: a review.
IEEE Trans Neural Netw Learn Syst. 2019;30.11:3212–3232.
issn: 21622388. https://doi.org/10.1109/TNNLS.2018.2876865.
arXiv:1807.05511.

4. Pulford GW. Taxonomy of multiple target tracking methods. IEE
Proc-Radar Sonar Navigat. 2005;152.4:291–304. issn: <null>.
https://doi.org/10.1049/ip-rsn. http://arxiv.org/abs/1409.7618.

5. Blackman SS. Multiple hypothesis tracking for multiple target
tracking. IEEE Aerosp Electron Syst Mag. 2004;19.1:5–18.

293Curr Robot Rep (2021) 2:285–295

https://youtu.be/C6JWr1dGsBQ
https://youtu.be/C6JWr1dGsBQ
http://arxiv.org/abs/1612.08242
https://doi.org/10.1109/CVPR.2014.81
http://arxiv.org/abs/1311.2524
https://doi.org/10.1109/TNNLS.2018.2876865
http://arxiv.org/abs/1807.05511
https://doi.org/10.1049/ip-rsn
http://arxiv.org/abs/1409.7618


6. Cho S, et al. A vision-based detection and tracking of
airborne obstacles in cluttered environment. In: Proceed-
ings of the International Conference on Unmanned Air-
craft Systems (ICUAS). Philidelphia; 2012. p. 475–488.
https://doi.org/10.1007/s10846-012-9702-9.

7. Bar-Shalom Y, Willett P, Tian X. Tracking and data
fusion: a handbook of algorithms. YBS Publishing; 2011. isbn:
9780964831278.

8. Kurien T. Issues in the design of practical multitarget track-
ing algorithms. In: Multitarget-multisensor tracking: advanced
applications; 1990. p. 43–83.

9. Neira J, Tardos JD. Data association in stochastic mapping
using the joint compatibility test. IEEE Trans Robot Autom.
2001;17.6:890–897.

10. Fortmann TE, Bar-Shalom Y, Scheffe M. Multi-target tracking
using joint probabilistic data association. In: IEEE Conference
on Decision and Control including the Symposium on Adaptive
Processes; 1980. p. 807–812.

11. Niedfeldt PC, Beard RW. Recursive RANSAC: Mul-
tiple signal estimation with outliers. Vol. 9. PART
1. IFAC; 2013. p. 430–435. isbn: 9783902823472.
https://doi.org/10.3182/20130904-3-FR-2041.00213.

12. Niedfeldt PC, Beard RW. Multiple target tracking using
recursive RANSAC. In: Proceedings of the American Con-
trol Conference; 2014. p. 3393–3398. issn: 07431619.
https://doi.org/10.1109/ACC.2014.6859273.

13. Niedfeldt PC. Recursive-RANSAC: a novel algorithm for tracking
multiple targets in clutter. In: All Theses and Dissertations; 2014,
Paper 4195. http://scholarsarchive.byu.edu/etd/4195.

14. Niedfeldt PC, Beard RW. Convergence and complexity analysis
of recursive- RANSAC: a new multiple target tracking algorithm.
IEEE Trans Autom Control. 2016;61.2:456–461. issn: 00189286.
https://doi.org/10.1109/TAC.2015.2437518.

15. Niedfeldt PC, Ingersoll K, Beard RW. Comparison and analysis
of recursive- RANSAC for multiple target tracking. In: IEEE
Trans Aerosp Electron Syst. 2017;53.1. This article compares
recursive- RANSAC with other multiple target tracking methods
and gives a brief tutorial on Recrusive-RANSAC., p. 461–476.
issn: 00189251. https://doi.org/10.1109/TAES.2017.2650818.

16. Hutchinson S, Hager GD, Corke PI. A tutorial on visual servo
control. IEEE Trans Robot Autom. 1996;12.5:651–670. issn:
1042296X. https://doi.org/10.1109/70.538972.

17. Pebrianti D, et al. Intelligent control for visual servoing system.
Ind J Electr Eng Comput Sci. 2017;6.1:72–79. issn: 25024760.
https://doi.org/10.11591/ijeecs.v6.i1.pp72-79.

18. Corke PI. Spherical image-based visual servo and structure
estimation. In: Proceedings - IEEE International Conference on
Robotics and Automation; 2010. p. 5550–5555. issn: 10504729.
https://doi.org/10.1109/ROBOT.2010.5509199.

19. Liu N, Shao X. Desired compensation RISE-based
IBVS control of quadrotors for tracking a moving tar-
get. Nonlinear Dyn. 2019;95.4:2605–2624. issn: 1573269X.
https://doi.org/10.1007/s11071-018-4700-5.

20. Xie H, Lynch A. Dynamic image-based visual servoing for
unmanned aerial vehicles with bounded inputs. In: Canadian Con-
ference on Electrical and Computer Engineering; 2016. p. 1–5.
issn: 08407789. https://doi.org/10.1109/CCECE.2016.7726618.

21. Shi J, Tomasi C. Good features to track. In: Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition
CVPR-94. IEEE; 1994. p. 593–600.

22. Lucas BD, Kanade T. An iterative image registration tech-
nique with an application to stereo vision. In: Proceed-
ings of the Imaging Understanding Workshop; 1981. p. 121–
130.

23. Tomasi C, Kanade T. Detection and tracking of point features.
In: Carnegie Mellon University technical report CMU-CS-91-132.
1991.

24. Bradski G. The openCV Library. In: Dr. Dobb’s journal of
software tools. 2000.

25. Kaiser MK, Gans NR, Dixon WE. Vision- based estimation for
guidance, navigation, and control of an aerial vehicle. IEEE Trans
Aerosp Electron Syst. 2010;46.3:1064–1077.

26. Fischler MA, Bolles RC. Random sample consensus: a paradigm
for model fitting with applications to image analysis and
automated cartography. Commun ACM. 1981;24.6:381–395.

27. Choi S, Kim T, Yu W. Performance evaluation of RANSAC
family. In: British Machine Vision Conference, BMVC 2009 -
Proceedings; 2009. https://doi.org/10.5244/C.23.81.

28. Ma Y, et al. An invitation to 3-D vision from images to geometric
models: Springer; 2010.

29. Nister D. An efficient solution to the five-point relative pose
problem. IEEE Trans Pattern Anal Mach Intell. 2004;26.6:756–
770.

30. DeFranco PC. Detecting and tracking moving objects from a small
unmanned air vehicle: Thesis Brigham Young University, MA.
2015.

31. Ingersoll K, Niedfeldt PC, Beard RW. Multiple target tracking
and stationary object detection in video with recursive-RANSAC
and tracker-sensor feedback. In: 2015 Interna- tional Conference
on Unmanned Aircraft Systems, ICUAS 2015; 2015. p. 1320-
1329. https://doi.org/10.1109/ ICUAS.2015.7152426.

32. Ingersoll K. Vision based multiple target tracking using recursive
RANSAC: Phd thesis Brigham Young University; 2015.

33. Millard J. Multiple target tracking in realistic environments using
recursive-RANSAC in a data fusion framework: PhD thesis.
Brigham Young Universityl; 2017. p. 82. http://hdl.lib.byu.edu/
1877/etd9640.

34. Wikle JK. Integration of a complete detect and avoid system for
small unmanned aircraft systems. In: All Theses and Dissertations;
2017. This paper presents important improvements to recursive
RANSAC, such as track initialization optimization, and extending
R-RANSAC to nonlinear systems.

35. White J. Real-time visual multi-target tracking: PhD the-
sis. Brigham Young University; 2019. isbn: 9788578110796.
https://doi.org/10.1017/CBO9781107415324.004.
arXiv:1011.1669v3.

36. Yang F, Tang W, Lan H. A density-based recursive RANSAC
algorithm for unmanned aerial vehicle multi-target tracking in
dense clutter. In: IEEE International Confer- ence on Control
and Automation, ICCA k 1; 2017, p. 23–27. issn: 19483457.
https://doi.org/10.1109/ICCA. 2017.8003029.

37. Yang F, Tang W, Liang Y. A novel track initialization
algorithm based on random sample consensus in dense clut-
ter. Int J Adv Robot Syst. 2018;15.6:1–11. issn: 17298814.
https://doi.org/10.1177/1729881418812632.

38. Bhatia N, Vandana. Survey of nearest neighbor techniques. Int J
Comput Sci Inf Secur. 2010;8.2:302–305. 1007.0085.

39. Konstantinova P, Udvarev A, Semerdjiev T. A study of a target
tracking method using Global Nearest Neighbor algorithm. In:
International Conference on Computer Systems and Technologies;
2003. issn: 0042-8469.

40. Bar-Shalom Y, Daum F, Huang J. The probabilistic data
association filter. In: IEEE Control systems 29.6. 2009.

41. Rezatofighi S, et al. Joint probabilistic data association revisited.
In: IEEE International conference on computer vision (ICCV);
2015. https://doi.org/10.1109/icr.1996.574488.

42. Zou Z, et al. Object detection in 20 years: A Survey; 2019.
1905.05055.

294 Curr Robot Rep (2021) 2:285–295

https://doi.org/10.1007/s10846-012-9702-9
https://doi.org/10.3182/20130904-3-FR-2041.00213
https://doi.org/10.1109/ACC.2014.6859273
http://scholarsarchive.byu.edu/etd/4195
https://doi.org/10.1109/TAC.2015.2437518
https://doi.org/10.1109/TAES.2017.2650818
https://doi.org/10.1109/70.538972
https://doi.org/10.11591/ijeecs.v6.i1.pp72-79
https://doi.org/10.1109/ROBOT.2010.5509199
https://doi.org/10.1007/s11071-018-4700-5
https://doi.org/10.1109/CCECE.2016.7726618
https://doi.org/10.5244/C.23.81
https://doi.org/10.1109/ ICUAS.2015.7152426
http://hdl.lib.byu.edu/1877/etd9640
http://hdl.lib.byu.edu/1877/etd9640
https://doi.org/10.1017/CBO9781107415324.004
http://arxiv.org/abs/1011.1669v3
https://doi.org/10.1109/ICCA. 2017.8003029
https://doi.org/10.1177/1729881418812632
http://arxiv.org/abs/1007.0085
https://doi.org/10.1109/icr.1996.574488
http://arxiv.org/abs/1905.05055


43. Jia L, et al. A survey of deep learningbased object detec-
tion. IEEE Access. 2019;7:128837–128868. issn: 21693536.
https://doi.org/10.1109/ACCESS.2019.2939201.

44. Liu L, et al. Deep learning for generic object detection: a
survey. Int J Comput Vis. 2020;128.2:261–318. issn: 15731405.
https://doi.org/10.1007/s11263-019-01247-4. arXiv:1809.02165.

45. Teng E, Huang R, Iannucci B. ClickBAIT-v2: training an object
detector in real-time; 2018. 1803.10358.

46. Hartley R, Zisserman A. Multiple view geometry in computer
vision: Cambridge University Press; 2003.

47. Lee T, Leok M, McClamroch NH. Geometric tracking control
of a Quadrotor UAV on SE(3). In: Proceedings of the IEEE
Conference on Decision and Control; 2010. p. 5420–5425.

48. Farmani N, Sun L, Pack D. Tracking multiple
mobile targets using cooperative unmanned aerial vehi-
cles. In: 2015 Inter- national Conference on Unmanned
Aircraft Systems, ICUAS 2015; 2015. p. 395–400.
https://doi.org/10.1109/ICUAS.2015.7152315.

49. Meier L, Honegger D, Pollefeys M. PX4: A node-based
multithreaded open source robotics framework for deeply
embedded platforms. In: 2015 IEEE International Conference
on Robotics and Automation (ICRA); 2015. p. 6235–6240.
https://doi.org/10.1109/ICRA.2015.7140074.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

295Curr Robot Rep (2021) 2:285–295

https://doi.org/10.1109/ACCESS.2019.2939201
https://doi.org/10.1007/s11263-019-01247-4
http://arxiv.org/abs/1809.02165
http://arxiv.org/abs/1803.10358
https://doi.org/10.1109/ICUAS.2015.7152315
https://doi.org/10.1109/ICRA.2015.7140074

	Target Tracking and Following from a Multirotor UAV
	Abstract
	Introduction
	Architecture
	Visual Front End
	KLT Feature Tracker
	Estimate Homography
	Estimate Essential Matrix
	Moving/Non-moving Segmentation

	R-RANSAC Multiple Target Tracker
	Transform Measurements and Tracks
	Track Initialization
	Track Management

	Track Selection
	Target Closest to the Image Center
	Target Recognition
	User Input



	Target-Following Controller
	Following Multiple Targets

	Results
	Conclusions
	References


