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Abstract
Purpose of Review Autonomous robotic systems require the core capability of planning motions and actions. Centralized
motion planning exhibits significant challenges when applied to multi-robot problems. Reasoning about groups of robots
typically cause an exponential increase in the size of the search space that an algorithm has to explore. Moreover, each robot
by itself might be an articulated mechanism with a large number of controllable joints, or degrees of freedom which can
pose its own difficulties in planning. Roadmaps have been a popular graph-based method of representing the connectivity
of valid motions in such large search spaces including specialized variants for multi-robot motion planning.

Recent Findings This article primarily covers recent algorithmic advances that are based on roadmaps for motion planning,
with specific optimizations necessary for the multi-robot domain. The structure of the multi-robot problem domain leads to
efficient graphical decomposition of the problem on roadmaps. These algorithms provide some desired theoretical properties
of being guaranteed to find a solution, as well as optimality of the discovered solution. Extensions to richer planning
applications are also discussed.

Summary The design of efficient multi-robot planning algorithms like the roadmap-based ones discussed in this article
provides the cornerstone for the deployment of large-scale multi-robot teams to solve real-world problems.

Keywords Multi-robot motion planning · Roadmaps · Motion planning · dRRT

Introduction

Robots form the key embodiment of artificial intelligence.
Capable robots rely on efficient algorithms dictating how
they should move and operate. Beyond controlling a single
robot, a key question becomes how we can make effective
use of robotic teams. Having multi-robot systems should
allow roboticists to solve more problems faster. Industrial
automation provides application domains where a large
number of robots are already in use in warehouses and ful-
fillment centers. The development of aerial robot technol-
ogy has yielded impressive demonstrations involving large
groups of such drones. The push towards autonomous cars
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is poised to introduce large-scale fleets into road networks.
Despite the enormous possibilities that multi-robot teams
possess, they simultaneously exhibit significant computa-
tional challenges. Such a motivating illustration is shown in
Fig. 1.

Each robot in a group can have its own objective.
Individual robots will have their own optimal solution path
to reach their goal. When such a robot exists in multi-robot
teams, it can happen that the robots obstruct each other and
have to coordinate in order to ensure every robot reaches
its goal. Consider a situation where two robots find their
individual desired optimal motion crossing the same narrow
corridor from opposite sides as shown in Fig. 2.

Decoupled approaches [1–7] reason about the robots
separately. These approaches solve subproblems typically
corresponding to each robot and combine these solutions.
Guarantees in discrete domains assume inherent decou-
pling [6]. Methods focusing on dynamical systems [4] and
control-based methods [8] can more readily scale because of
the efficiency of decentralized reasoning, but typically trade
off theoretical guarantees and quality assurances. Multi-
robot path planning can also be cast as a problem of
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Fig. 1 Teams of robots can be
very useful if they can work
together. The challenge lies
when they have to closely
coordinate. The image shows
teams of aerial robots, robotic
arms, and mobile robots

learning policies for each robot [7]. Nonetheless, decoupled
techniques exhibit inherent limitations in general problem
domains due to lack of centralized information.

As an illustration, consider a greedy team in Fig. 2 that is
liable to get stuck in the middle of the corridor. A decoupled
approach can make one of the robots assume priority and
move before the other robot can move. Such a sequential
execution increases the time taken and can weaken the
benefits of using multiple robots. Another option lets one of
the robots assume priority and makes the other robot avoid
the prioritized robot, either by changing its speed along
the same path or resorting to alternate paths. While being
relatively straightforward strategies, which are faster, they
are liable to cause situations where a solution might not

be found or the discovered solution has poor quality. This
motivates centralized approaches where all the robots in the
team work together to plan to reach the objectives of the
team as a whole, i.e., centralized strategies [9–13]. A toy
problem instance is shown in Fig. 2.

A roadmap is a graph of valid motions of a robotic sys-
tem. This article focuses specifically on centralized motion
planning techniques for multi-robot problems using road-
maps. The article first sets up the formal definition of the
problem. A key focus is laid on the efficient, general techni-
ques that leverage the structure of the multi-robot prob-
lem in what are called tensor roadmaps, and the algorithms
designed therewith [14••, 15••]. Other simplified mod-
els [16••] of the problem, including extensions to other

Fig. 2 (Left) A toy problem is demonstrated in the first figure. A
red and green disk robots have to reach their goals (denoted by the
empty circles). The black regions are obstacles. The individual short-
est paths show being greedy causes a deadlock in the middle of the
lower corridor. (Middle) A decoupled solution can make the green

robot avoid the red path. This causes suboptimal behavior, which is
worse in terms of the multi-robot solution. (Right) The shortest solu-
tion for both the robots involves the robots coordinating with each
other within the lower corridor using coordinated multi-robot motion
planning
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applications, are briefly discussed. The article describes
the core concepts behind state-of-the-art applications of
roadmaps to multi-robot motion planning.

Fundamentals of Multi-robot Motion
Planning

A motion planning problem involves a workspace W ⊂
SE(3) within which resides the physical geometries of the
robotic system r . The degrees of freedom of the robotic sys-
tems denote all the controllable aspects of the robot—for
instance X,Y coordinates of a freely moving robot on a
plane; X, Y, Z, roll, pitch, yaw of an aerial robot; or the set of
joints of a robotic arm. Controlling the values of any of these
degrees of freedom changes how the physical geometries of
the robot exist in the workspace. The number of degrees of
freedom d creates a d-dimensional space [17]. This is called
a configuration space Q ⊂ R

d , which is typically assumed
to be Euclidean. A point within the configuration space, re-
ferred to as a configuration x ∈ Q, fully specifies the values
of every controllable degree of freedom of the robot. Some
of these points might describe the robot’s geometries colli-
ding with obstacles or unsafe regions in the workspace.
Such configurations are invalid, and their collection repre-
sents the invalid subset of the configuration space Qobs ⊂
Q. The valid subset is denoted by Qfree = Q \ Qobs and
represents all the collision-free configurations of the robot.

The problem starts with the robotic system at an initial
configuration xinit ∈ Qfree. The objective of the robot is
denoted by a goal configuration xfinal ∈ Qfree.

A geometric path consists of a sequence of configura-
tions parameterized by time. This is typically denoted by a
mapping π : [0, T ] → Q where π is the path and maps
configurations to a time range 0 to T . π(t) represents the
configuration along π at time t .

A feasible motion planning solution is one that starts at
the initial configuration, ends at the goal configuration, and
passes solely through valid configurations along the way,
i.e.,

πfeasible(0) = xinit, πfeasible(T )

= xfinal, πfeasible(t) ∈ Qfree∀t ∈ [0, T ].

Definition 1 (Feasible Motion Planning) An instance of
a feasible motion planning problem is denoted by a tuple
(Qfree, xinit, xfinal). A solution to the problem is denoted by
a collision-free valid path πfeasible connecting xinit to xfinal.

In multi-robot motion planning, there are R robots. If
each of them has d degrees of freedom,1 the group of robots

1In general, the robots can be non-uniform and have different degrees
of freedom.

can be thought of as a single robotic system with Rd degrees
of freedom, i.e., describing an Rd-dimensional multi-robot
configuration space Qfree ⊂ Q1

free × · · · × QR
free ⊂

R
Rd . Note that as the number of robots increases, the

volume of the configuration space increases exponentially.
Each superscripted index [1, 2 · · · R] denotes the valid
configuration space for the corresponding robot. The same
superscript convention will be followed for other variables
as well. A multi-robot configuration x correspondingly is
composed of the individual robot states x = (x1, · · · xR).
It should be noted that a valid multi-robot configuration
not only avoids collisions with obstacle geometries but also
other robots along their respective motions. This makes the
problem significantly more challenging that reasoning about
each robot and environment obstacles separately. Each
multi-robot path also contains the path followed by each
constituent robot along it, i.e., π(t) = (π1(t), · · · πR(t)).
Denote this decomposition by π = (π1, · · · πR). This is
shown in Fig. 3.

Definition 2 (Feasible Multi-robot Motion Planning) A
multi-robot motion planning problem for R robots is
denoted by a tuple:

(
Qfree, (x

1
init, · · · xR

init), (x
1
final, · · · xR

final)
)

.

The feasible solution to the problem can be denoted by:

πfeasible = (π1
feasible, · · · πR

feasible).

A cost can be defined for the solution paths. This is
a positive real number assigned to each path. Different
applications can require specific cost functions like path
length, time of execution, and energy expended. Typical
multi-robot metrics over a multi-robot path represents some
combination of the individual path metrics. This can be the
sum of path lengths or some weighted linear combination.
The cost can even be described as the Euclidean path length
in the multi-robot configuration space. The most common
motivating metrics are the maximum time duration of one of
the robot paths (makespan). A geometric analog of the same
is the maximum of the path lengths.

Definition 3 (Optimal Multi-robot Motion Planning) An
optimal motion planning problem is denoted by a tuple

(
Qfree, (x

1
init, · · · xR

init), (x
1
final, · · · xR

final), cost
)

.

The optimal path πopt is a feasible motion planning solution
that minimizes the cost function.

Definition 4 (Roadmap) A roadmap is a graph with n

vertices, where each vertex in the vertex set is a valid
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configuration. The edge-set defines each edge as an ordered
pair of vertices (xu, xv). In a valid roadmap, each edge is
also associated with a path πu→v that connects xu to xv .
Such a connection can be shown as −−−→

xu, xv , which is typically
a short path connecting through the configuration space.2 A
valid roadmap requires all such edge paths to be valid.

G(V, E)

V = {x ∈ Qfree}, |V| = n

E = {e = (xu, xv), xu, xv ∈ V, πu→v

= −−−→
xu, xv, πu→v(t) ∈ Qfree∀t}

Later sections of the article will detail different ways
such roadmaps can be constructed. The choices that affect
the construction include how the vertices are chosen. Not
all possible valid edges between the vertices are included
in the edge-set, and different strategies carefully choose the
subset of such edges to include in the roadmap. However,
something common to all these methods is that a motion
planning solution can be recovered from a valid roadmap.

A path on the roadmap πG connecting two vertices x1 and
xL is an ordered sequence of L vertices, pairwise connected
by valid edges (xi, xi+1), and corresponding edge-paths
πi→i+1.

πG = (x1, x2 · · · xL).

Let the ⊕ denote the concatenation of paths. Then a path
π connecting x1 and xL is π = π1→2⊕π2→3 · · ·⊕πL−1→L.
So a path can be reconstructed from a roadmap path. This
operation is denoted by the shorthand π = ⊕πG .

Definition 5 (Multi-robot Motion Planning on a Roadmap)
Given a multi-robot motion planning problem:

(
Qfree, (x

1
init, · · · xR

init), (x
1
final, · · · xR

final), cost
)

and a valid roadmap G that includes the initial and goal con-
figurations as vertices, a feasible solution on the roadmap is
a sequence of edges connecting the xinit to xfinal as follows:

πG:feasible = (x1, x2 · · · xL), x1 = xinit,

xL = xfinal, (xi, xi+1) ∈ E ∀i ∈ [1, L − 1].

2Typically these are straight-line interpolations, but in general, the
edge only needs a guarantee that the path connects the two vertices xu

and xv . This is denoted by steerability of the system, i.e., the ability
to steer to a specific configuration xv from xu, and is not a valid
assumption for robots with non-trivial dynamics.

The feasible solution path πfeasible = ⊕πG:feasible. The
optimal roadmap solution πG:opt corresponds to the feasible
roadmap solution that minimizes the cost function.

It should be noted that a concatenation of edge paths
along πG:opt (represented as ⊕πG:opt) is restricted by
definition to connections across vertices in the roadmap.
This means that the true optimal cost in Qfree needs not
be the same as the optimal roadmap solution which only
involves a set of vertices in Qfree, i.e., cost(πopt) ≤
cost(⊕πG:opt).

A roadmap constructed in the multi-robot configuration
space will include multi-robot configurations, and roadmap
paths will correspondingly express multi-robot solutions
(Fig. 3). The objective of multi-robot motion planning on
roadmaps is to construct G using (a) appropriately chosen
vertices, and (b) choosing a subset of valid edges, and then
(c) efficiently recover solution paths3 traversing roadmap
vertices with a cost sufficiently close to the optimal cost.

Roadmap-BasedMulti-robot Motion
Planners

This sections highlights some key roadmap-based approa-
ches that have been designed for use in multi-robot motion
planning. The underlying structure of a roadmap, and the
principle of motion planning over it adhere to the descrip-
tions outlined in Definitions 4 and 5. There are however
different ways in which both the construction and represen-
tation of the roadmap, and efficient strategies for finding
motions over it have been presented to specifically address
the centralized multi-robot problem.

Planning Directly on Probabilistic Roadmaps in the
Multi-robot Configuration Space

Robots with high degrees of freedom like many-jointed
robotic arms can have configuration spaces with compli-
cated topologies, which is not easy to describe exactly. Sam-
pling [18, 19] provides a way to cover such spaces effec-
tively. Probabilistic roadmap methods (PRM) [18] describe
a sampling-based motion planning algorithm to deal with
high-dimensional planning problems. The sampling aspect

3Note that the construction phase and the solution recovery phase are
distinct. This means that for scenarios where the environment is known
beforehand, a roadmap can be constructed and reused for all motion
planning problems in the same (or a similar) environment. Conversely,
a roadmap optimistically constructed ignoring some or all obstacles
can also be reused to recover the solution on the subgraph that is
collision-free.
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Fig. 3 The image on the left
shows a roadmap G in the valid
multi-robot configuration space
Qfree solving the motion
planning problem to connect a
multi-robot start configuration
xinit to the goal xfinal through a
valid motion planning solution
path π . The right half of the
image visualizes the
corresponding start and goal
pairs for each of the R robots, in
their respective d-dimensional
Qi

free, and the component of the
solution πi providing the valid
motions for the individual robots

arises from the choice of vertices in G, which are sampled
uniformly at random4 from Qfree.

The edge-set E in the graph constructed by PRM contain
local connections, i.e., connections defined by the valid
subset of some local neighborhood. Typical connection
strategies include (a) connecting each vertex to all other
vertices lying within a radial neighborhood defined by
a connection radius and (b) connecting each vertex to k

nearest neighbors.
As the number of samples n, i.e., the size of G increases

so does the coverage of the space. It has been shown that a
PRM is guaranteed to find a solution if one exists asymp-
totically in n, a property called probabilistic completeness.
More recent results [20, 21] have additionally shown that
careful choices of the connection radius and k as functions
of n can guarantee that G will asymptotically contain road-
map paths that converge in cost to the optimal solution cost.
This property is called asymptotic optimality. This variant
was called PRM*.

A key detail about both these asymptotic properties is
that they are closely related to the effectiveness of the ran-
dom sampling in covering Qfree. The larger Qfree is, the
more samples would be required achieve good coverage of
the space.

The formulation of roadmaps is general enough to direct-
ly apply to the multi-robot configuration space [22]. This
involves sampling all the available Rd degrees of freedom,
i.e., randomly situate all the robots, and then connect neigh-
borhoods of such configurations by simultaneously moving
all the robots along an edge.

4Deterministic sampling strategies have also been proposed for PRM
methods. The motivation remains the same that the chosen sampling
strategy has to effectively cover the space as the number of samples
increases. Uniform sampling is the classical technique, though for
simpler domains grids, or other informed samples preserve the same
arguments.

Once a roadmap has been constructed (like the one
illustrated in Fig. 3), a solution exists if xinit and xfinal are in
the same connected component of G. The number of vertices
necessary for G to have a solution and achieve a good
enough solution cost depends upon the volume of Qfree. Say
a single robot roadmap displays connectivity and acceptable
solutions for n̂ samples. To preserve similar properties for
each of the robots in the Rd-dimensional space, O(n̂R)

samples would be necessary in the roadmap constructed in
the multi-robot configuration space. Once such a roadmap is
constructed, typically heuristic search A* [23] can be used
to find the optimal roadmap path.

The roadmaps can quickly become prohibitively expen-
sive to compute, store, or search as R increases. Planning
directly over multi-robot configuration space roadmaps is
only feasible for simple problems with relatively small
configurations spaces, for a small number of robots. This
shortcoming motivates specialized techniques to address the
curse of dimensionality in the multi-robot problem domain.

Tensor Roadmaps

In the typical multi-robot problems discussed thus far
each robot possesses some notion of independence, its
own objective, its own degrees of freedom, and its own
valid motions and connected configuration space. This
independence is beneficial in problem instances where each
robot is an independent kinematic chain (i.e., changing any
of the degrees of freedom of one robot does not update the
geometries of any of the other robots). In such scenarios
the multi-robot roadmap has an intrinsic structure [13, 24,
25]. Since each of the vertices can be represented by a set
of individual robot configurations, and the edges represent
coordinated motions for each of the robots, intuitively the
multi-robot roadmap can be thought of as a combination of
single robot roadmap slices.
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Definition 6 (Tensor roadmap) Given a roadmap Gi with ni

samples each constructed for robot ri , in its corresponding
valid configuration space Qi

free for each i ∈ [1, 2, · · ·R],
a valid tensor roadmap G in the multi-robot configuration
space is defined as follows:

G(V, E) = G1 × G2 · · · × GR

V = {x = (x1, · · · xR), xi ∈ Gi .V,

x ∈ Qfree}, |V| ≤
R∏

i=1

ni

E = {e = (xu, xv), xu, xv ∈ V,

(xi
u, x

i
v) ∈ Gi .E ∀i ∈ [1, · · · R],

πu→v = (π1
u→v, · · · , πR

u→v),

πu→v(t) ∈ Qfree ∀t}

This means that the tensor roadmap contains all
combinations of vertices from Gi , and each such tensor
vertex is connected to edges which are again all possible
combinations of edges that exist in each Gi . For both the
vertices and edges, they need to be collision free given
the multi-robot configuration space, which accounts for all
the robot geometries and their interactions as well. It is
straightforward to see however that the number of vertices
in such a roadmap is at most the product of all the individual
roadmap sizes. The nature of these edge-neighborhoods is
shown in Fig. 4. This attributes the way in which the tensor
roadmap can grow in size with R. This adheres to the trend
observed in the volume of Qfree as well.

Power of Implicit Structure The construction of the tensor
roadmap defined above depends on the samples and

edge-connectivity of each individual Gi . More importantly,
given each Gi the structure of G can be implicitly derived.
This means that if each of the R individual roadmaps
has O(n̂) samples, it is sufficient to store a R roadmaps
separately with a total of O(Rn̂) samples, instead of the
tensor roadmap which has O(n̂R) samples.

What is left now is to define computationally efficient
ways to reconstruct the structure of G on the fly and recover
solutions from it.

M*

An efficient search strategy to implicitly explore the tensor
roadmap was proposed in the M* algorithm [15••, 26,
27]. This was an improvement over the traditional optimal
heuristic search algorithm A*, by specifically exploiting the
structure of the tensor roadmap.

A* maintains a priority queue and proceeds by sys-
tematically selecting vertices and expanding their entire
neighborhoods. This expansion step involves adding to the
queue all of the roadmap neighbors connected by out-
edges. It is possible to implicitly derive these neighborhoods
in the tensor roadmap from the out-edges in the individ-
ual robot roadmaps. Such an expansion step however still
needs to maintain all the expanded neighborhoods and a
queue that grows drastically due to the exponentially larger
neighborhoods of the tensor roadmap.

The key insight in M* is that, not all the neighbors of a
vertex in the tensor roadmap are useful.

Each robot in a motion planning problem has its own
goal. In the absence of other robots, each robot has an
optimal policy (shortest roadmap path) to reach the goal.
If the motion planning problem does not involve any of
the robots ever interacting along their shortest paths, then

Fig. 4 Top: Neighborhoods of
vertices x1

u, x2
u , and x3

u in
individual robot roadmaps
G1,G2, and G3 are shown. The
two neighbors each are denoted
by the subscripts v and w.
Bottom: The tensor roadmap G
in the multi-robot configuration
space shows the neighborhood
of vertex xu = (x1

u, x2
u, x3

u)

composed of a combination of
the individual roadmap’s
out-edges
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the optimal solution5 will consist of each robot moving
along their respective shortest paths. This property implies
that reasoning about groups of robots depends on whether
they are expected to interact. More concretely, M* only
considers subsets of the tensor roadmap neighborhoods
which are expected to involve some R̂ number of robot-
robot interactions. When R̂ = 0, the robot can follow its
individual shortest path greedily, since no other robot stands
in its way.

During the search, if the algorithm finds that the selected
vertex has a neighborhood that only involves a subset of
robots that can interact (i.e., some combination of Gi out-
edges involve overlaps of robot geometries), then it only
expands the neighborhood composed from the interacting
robot out-edges. The algorithm keeps track of the limited
neighborhood of every explored vertex, based on the robot
interactions at the vertex level, and the edge-level (i.e.,
two robots can collide at a vertex, or two robots might
collide while traversing a pair of individual robot edges
concurrently). An illustration of such different interaction
sets is shown in Fig. 5.

M* ensures that it prunes any unnecessary expansions by
considering interacting robot subsets, effectively reducing
the dimensionality of the search space in local neighbor-
hoods. M* preserves the expansions necessary to converge
to any optimal solution A* might discover. This makes
M* much more scalable than performing A* on the tensor
roadmap though M* can exhibit a worst-case complexity
that is the same as A*.

Both algorithms build an optimal search tree rooted at the
start vertex, and growing outwards towards the goal, with
successive expansions dictating the parent-child structure.
It should be noted that the heuristic search-based strat-
egy requires that every useful expansion be included in the
queue immediately. Even though M* limits this to the inter
acting robot subset, there is any overhead for determining
interactions for the large set of edges. For constrained prob-
lems with high interactions, not enough of the neighbor-
hoods might be pruned, and this can still lead to scalability
issues.

An alternative way to search the implicit tensor roadmap
was introduced in the sampling-based framework of discrete
Rapidly-exploring Random Tree (dRRT) [12, 14••, 28].

dRRT*

As the number of robot interactions increases in a part
of the configuration space, the size of the neighborhood
that might need to be explored can get quickly out of hand.

5Though the optimality is stated for shortest path lengths, the
optimality at this step describing paths for individual robots which can
be combined into a multi-robot optimal path.

Fig. 5 A toy problem with three disk robots (r1,r2,r3) that have
start on the left and have to reach the right of the environment. The
three sections indicate regions where different degrees of robot-robot
interaction might occur. The middle section involves robots {r1,r2}
needing to pass through a corridor. The third section requires all three
robots {r1,r2,r3} to pass through the last corridor. M* can focus on the
limited subset of robots whose combined neighborhood needs to be
explored depending upon their interactions. The bottom row indicates
the tensor neighborhoods involved out of G1,G2, and G3

Sampling within these neighborhoods provides an easy way
to mitigate this problem. As long as the sampling procedure
guarantees that the desired edge in the tensor neighborhood
is expanded with enough attempts, asymptotic properties
can be argued, while preserving practical performance for
the search.

The original idea was proposed [12] as an extension to
the RRT algorithm. As opposed to roadmap-based methods,
RRT builds a tree structure rooted at the start configuration.
The discrete nature of dRRT is to restrict the expansion of
the tree to be confined to the tensor roadmap, which is a
discrete approximation of Qfree. This structure is shown in
Fig. 6. From the theoretical properties of RRT, it was shown
that given enough iterations for growing the tree, a feasible
solution on the tensor roadmap would be discovered. It was
initially shown that when the underlying roadmaps were
probabilistically complete, as the size of each Gi increases,
and the amount of iterations given to the tree expansion
increases, the algorithm is guaranteed to find a solution.
Optimality Building on this idea, a new algorithm dRRT*
[14••, 28] was proposed to provide asymptotic optimality.
It had been known that roadmaps could be constructed with
specific neighborhood connections [20, 21] to assure such
a property for motion planning problems. It turns out when
each individual roadmap Gi is constructed to be asymptot-
ically optimal, the tensor roadmap is also asymptotically
optimal, i.e., the tensor roadmap will eventually contain a
roadmap path with a solution cost that converges to the opti-
mal solution cost.6 The asymptotic guarantee of the search

6Optimality was shown for different cost functions: Euclidean arc
length in Qfree, and any linear combination of individual robot shortest
paths including makespan distance.
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Fig. 6 The image on the left
shows two edge expansions of
dRRT* in Qfree: a heuristic
biased one in the top middle and
a random tensor neighbor in the
bottom middle. The heuristic
bias edge makes progress
towards the red goal vertex in the
individual robot roadmaps. The
image on the right shows what
the search tree might look like
once the goal is reached. Note
that edges are rewired within
tensor neighborhoods as well

tree’s optimal nature relies on ensuring that every neighbor-
hood edge could be selected uniformly at random.

The tree expansions include a fraction of iterations where
both a tree node, and a neighboring edge are selected at ran-
dom. A neighboring tensor edge can be deduced by random-
ly choosing from each Gi neighborhood, requiring R samp-
ling operations instead of having to reconstruct the entire
exponential tensor neighborhood. Once an edge is expan-
ded, it must be collision checked to ensure no robot-robot
interactions occur. A rewiring step is also performed for
every new expansion to keep the local roadmap neighbor-
hood of a newly added tree node optimally connected.
This allows more aggressive convergence to good-quality
solutions.

The practical performance of the algorithm heavily relies
on the informed heuristic guidance. Each vertex is assigned
a heuristic estimate7 for the motion planning problem.
When there is no interaction, the heuristic is assumed to be
the best each robot can do given its own Gi . Goal biasing
in a tree-based planner attempts to greedily shoot the tree
towards the goal. Therefore, goal biasing in the tree expan-
sion takes the form of choosing the next edge on each
robot’s optimal path. As an additional algorithmic change
to promote progress towards the goal, every time all the
robots make progress towards the goal, the goal biasing
is repeatedly applied, until it gets stuck with robot-robot
collisions. These two exploration and exploitation strategies
are shown in Fig. 6.

The algorithm is designed to quickly make progress
towards the goal in parts of the multi-robot configuration
space where the robots do not need to interact. Whenever
coordination would be required, the random sampling is

7Each robot’s individual shortest path to the goal proves a very reliable
heuristic in the multi-robot configuration space. An efficient way
to precompute this would be to maintain an all-pairs shortest path
data structure tied to each Gi . This is feasible when each individual
roadmap is reasonably sized.

designed to explore around the blockages, beyond which
greedy progress again takes over until the goal is attained.

dRRT* has been shown to be very robust to planning for a
large number of high-degree of freedom systems like robotic
arms (which are typically have d = 7), where each robot can
have its unique roadmap and configuration space. Due to the
generality of the sampling-based formulation, it is amenable
to be applied to a wide variety of such combinations of
robotic systems.

Note to Practitioners The number of samples, say n̂, in
each Gi is effectively a parameter. Though the theoretical
properties dictate making the roadmaps as large as possible,
in practice this can get prohibitvely expensive to search. The
design of dRRT* is tuned to overcome the exponent in the
tensor product’s size n̂R , i.e., overcome the scaling issues
with larger number of robots R. It is advised to maintain
the most compact individual roadmaps that is sufficient to
solve problems in an environment, i.e., keeping n̂ small. It
should be noted that even if n̂ is relatively small, say 1000,
the tensor roadmap being implicitly searched is going to be
n̂R , which for 5 robots for instance will have 1015 vertices.

Multi-agent Path Finding on a Graph

The multi-agent path finding (MAPF) problem on a graph is
a special case of the general roadmap formulation described
in the previous sections. If every robot ri is identical, and
the configuration space of each robot is also identical,
then it is possible to only consider a single instance Gi

for all the robots. For instance, consider a factory floor
setting with planar robots. The configuration space of each
robot consists of the reachable passageways in the factory.
Such settings can be discretized effectively into a single
graph. The conflict resolution in this case is simplified
since collision checking can be avoided in favor of simply
ensuring vertices and edges on the graph are never occupied
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by more than one robot at a time. The typical complexities
of motion planning here reduce to an optimization problem
on a graph.

This problem was reduced [16••] to a multi-commodity
network flow by thinking of each robot as a commodity,
edges as channels with capacity 1 at any time step. The
consideration of discrete time-steps as a dimension for
coordinating the robots leads to a time-expanded graph,
where copies of vertices are created for every time-step,
with a specific edge-structure connecting time step t to time
step t + 1. This is shown in the gadget in Fig. 7.

The network flow problem is formulated as a mixed
integer linear program to optimize the solution in terms of
edge weights on the graph. This line of work has extensively
applied this method large multi-agent problem instances.

Pebble-Graphs Extensive work has been done on an
abstraction of this problem [16••, 29–32] which thinks
of robots as pebbles on commonly shared graphs. Several
algorithmic and complexity results have been demonstrated
through the years in this domain.

Road Networks A related problem is multi-agent path
finding over road networks [33–35]. Here again the graph
is shared by all the agents, but as opposed to the classical
MAPF problem, roads display loads and congestion.
Routing is seen as an optimization problem, with large-scale
pickup-and delivery, or even multi-modal variants [35].

Geometric Reasoning A model of representing multi-robot
teams with shared workspaces reasons about each robot as
a disk [36, 37] or ball [38, 39] and applies computational
geometric reasoning to argue stronger properties for systems
that can be simplified to fit these models.

Extension to Task Planning

Insights from multi-robot motion planning have been
applied to different applications of task planning. The

Fig. 7 The gadget for constructing the time-expanded graph. This
replaces every undirected graph edge (xu, xv). Traversing a graph edge
between steps t and t+1 makes a robot cross the corresponding gadget

most straightforward application involves concurrently
performing sequences of actions using multiple robots [25],
where each action is itself a motion plan. Such problems
involve task and motion planning, and motions realizing
multi-robot actions require all the typical considerations of
multi-robot motion planning. The multiplicity of available
actions [40] also draws unique parallels to multi-robot
planning. Specifically when the actions involve picking
and placing multiple objects, it describes an object
rearrangement problem. The objects themselves can be
thought of as pebbles [41]. dRRT*-eque techniques [42]
have been applied to problems where multiple robots need
to coordinate their actions. The task planning domain itself
can have graphical structures [43] that can be leveraged
in tandem with the tensor decomposition. In a multi-robot
pick-and-place domain, task planning reduces to an MAPF
problem on specially constructed graph [44].

Conclusions

Roadmap-based centralized, coordinated, multi-robot
motion planning provides theoretically sound, and prac-
tical ways to find high-quality multi-robot motions. It is
still a challenge to provide real-time performance similar
to decoupled, optimization-based techniques, but there is
value in roadmap-based, complete, optimal methods. These
can provide the valid and good solutions that can be reused
in experience-based, or learning-based frameworks. Cur-
rently, roadmap-based approaches provide the tools that are
general enough to scale to many high degree-of-freedom
robots, while being versatile and efficient enough to solve
problems involving large numbers of simpler robotic sys-
tems. A focus on pushing the performance of coordinated
motion planning would be key in properly seizing the bene-
fits of large-scale deployment of robotic teams in real-world
scenarios in the very near future.
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25. Gharbi M, Cortés J, Siméon T. Roadmap composition for
multi-arm systems path planning. In: IEEE/RSJ IROS; 2009. p.
2471–2476.

26. Wagner G, Choset H. M*: a complete multirobot path planning
algorithm with performance bounds. In: IROS. IEEE; 2011. p.
3260–3267.

27. Wagner G, Kang M, Choset H. Probabilistic path planning
for multiple robots with subdimensional expansion. In: IEEE
ICRA; 2012. p. 2886–2892.

28. Dobson A, Solovey K, Shome R, Halperin D, Bekris K.
Scalable asymptotically-optimal multi-robot motion planning.
In: IEEE MRS; 2017. p. 120–127.

29. Kornhauser DM, Miller GL, Spirakis PG. Coordinating pebble
motion on graphs, the diameter of permutation groups, and app-
lications. Master’s thesis, M. I. T., Dept of Electrical
Engineering and Computer Science. 1984.

30. Luna R, Bekris K. An efficient and complete approach for cooper-
ative path-finding. In: Conference on artificial intelligence, San
Francisco, California, USA; 2011. p. 1804–1805.

31. Yu J. Constant factor time optimal multi-robot routing on
high-dimensional grids. In: RSS; 2018.

32. Chinta R, Han SD, Yu J. Coordinating the motion of labeled
discs with optimality guarantees under extreme density. In:
WAFR. Springer; 2018. p. 817–834.

33. Ma H, Li J, Kumar TS, Koenig S. Lifelong multi-agent path
finding for online pickup and delivery tasks. In: AAMAS; 2017.
p. 837–845.

34. Ho F, Salta A, Geraldes R, Goncalves A, Cavazza M,
Prendinger H. Multi-agent path finding for uav traffic manage-
ment. In: AAMAS; 2019. p. 131–139.

35. Choudhury S, Solovey K, Kochenderfer MJ, Pavone
M. Efficient large-scale multi-drone delivery using transit
networks. In: ICRA. IEEE; 2020. p. 4543–4550.

36. Adler A, de Berg M, Halperin D, Solovey K. Efficient multi-
robot motion planning for unlabeled discs in simple polygons.
IEEE TASE. 2015;12(4):1–17.

37. Solovey K, Yu J, Zamir O, Halperin D. Motion planning for
unlabeled discs with optimality guarantees. In: RSS; 2015.

38. Turpin M, Michael N, Kumar V. Concurrent assignment
and planning of trajectories for large teams of interchangeable
robots. In: IEEE ICRA; 2013. p. 842–848.

39. Solomon I, Halperin D. Motion planning for multiple unit-ball
robots in Rd. In: WAFR. Springer; 2018. p. 799–816.

40. Cohen JB, Phillips M, Likhachev M. Planning single-arm
manipulations with n-Arm robots. In: RSS; 2014.

41. Krontiris A, Shome R, Dobson A, Kimmel A, Bekris K. Rear-
ranging similar objects with a manipulator using pebble graphs.
In: IEEE humanoids; 2014. p. 1081–1087.

42. Shome R, Bekris K. Anytime multi-arm task and motion
planning for pick-and-place of individual objects via handoffs.
In: IEEE MRS. IEEE; 2019. p. 37–43.

43. Shome R, Solovey K, Yu J, Bekris K, Halperin D. Fast and
high-quality dual-arm rearrangement in synchronous, monotone
tabletop setups. In: WAFR; 2018. p. 778–795.

44. Shome R, Bekris K. Synchronized multi-arm rearrangement
guided by mode graphs with capacity constraints. In: WAFR;
2020.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

94 Curr Robot Rep (2021) 2:85–94


	Roadmaps for Robot Motion Planning with Groups of Robots
	Abstract
	Introduction
	Fundamentals of Multi-robot Motion Planning
	Roadmap-Based Multi-robot Motion Planners
	Planning Directly on Probabilistic Roadmaps in the Multi-robot Configuration Space
	Tensor Roadmaps
	Power of Implicit Structure

	M*
	dRRT*
	Optimality
	Note to Practitioners



	Multi-agent Path Finding on a Graph
	Pebble-Graphs
	Road Networks
	Geometric Reasoning



	Extension to Task Planning
	Conclusions
	Declarations
	References


