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Abstract

Purpose of the review Robotics is a rapidly advancing field, and its introduction in healthcare can have a multitude of benefits for
clinical practice. Especially, applications depending on the radiologist’s accuracy and precision, such as percutaneous interven-
tions, may profit. This paper provides an overview of recent robot-assisted percutaneous solutions.

Recent findings Percutaneous interventions are relatively simple and the quality of the procedure increases a lot by introducing
robotics due to the improved accuracy and precision. The success of the procedure is heavily dependent on the ability to merge
pre- and intraoperative images, as an accurate estimation of the current target location allows to exploit the robot’s capabilities.
Summary Despite much research, the application of robotics in some branches of healthcare is not commonplace yet. Recent
advances in percutaneous robotic solutions and imaging are highlighted, as they will pave the way to more widespread imple-

mentation of robotics in clinical practice.

Keywords Biopsy - Robot - Needle - Image-guided interventions - Medical - Diagnostic

Introduction

Early cancer diagnosis with improved detection and precise de-
livery of therapeutic measures challenges the perceptual and dex-
terity capacities of the physicians. In this context, robotics may
play a significant role to direct the future of the percutaneous
procedures toward more precise biopsies and targeted therapies.

During a biopsy procedure, a tissue sample is removed
from a suspected lesion for further pathological examination,
to confirm a cancer diagnosis. Traditional biopsy relies on
manual insertion of the needle by the radiologist, while robotic
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approaches add higher stiffness and precision by a more sta-
bilized robotic manipulator compared to human hands. It sup-
ports the retraction of the needle including a tissue sample
more accurately. Imaging techniques such as magnetic reso-
nance (MRI), ultrasound (US), computed tomography (CT),
and other technologies are applied to localize lesions before
the intervention, and to guide the needle through the proce-
dure using image feedback.

The robotic biopsy was introduced in the following ana-
tomical sites: the bone [1], lung [2], breast [3], brain or
brainstem [4], prostate [5¢], and liver [6]. In addition, needle
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approaches can be extrapolated for treatment purposes such as
thermal ablation [6] or brachytherapy. These treatments can
substitute more complicated and invasive surgeries.

In the mid-1980s, the first computed tomography (CT)—
guided neurosurgical robotized biopsy was performed by a
team at the Memorial Medical Center by using a modified
PUMA industrial robot (Advance Research & Robotics, CT,
USA) [7]. Since then, several different robots for needle inter-
ventions were presented using different imaging modalities,
such as CT, magnetic resonance imaging (MRI), ultrasound
(US), and fluoroscopy.

A commercial success story, The Da Vinci Robotic System
(Surgical Intuitive, Inc., Mountain View, CA) occupies a mo-
nopoly position in minimally invasive robotic surgery. The
complex surgery that Da Vinci robot assists, and the type of
images used in navigation, makes its autonomy very limited or
actually not existing. Even if this type of robots operates for
more than 20 years, their superiority over the manual proce-
dure is still an issue of discussion in contradicting studies [8,
9].

In case of percutaneous interventions, the trajectory that the
robot should follow is most of the time a straight line, while
the images used for guidance are standard radiological im-
ages. In this case, the robot may have a double utility: on
one side, it can integrate diagnostic and interventional images
through a fusion process; on the other side it can use the image
fusion to impose the linear trajectory from a suitable external
position to a target point. This type of interventions can sup-
port the awareness that robotics showed improvements in
precision.

However, the benefits of robotic applications in hospital
settings, such as improvements in accuracy, precision, and
repetition of small tasks; better ergonomics; and immunity
of fatigue, are not used to the full extent. There seems to be
a gap between sophisticated robotic technology and clinical
needs. Recent advances in minimally invasive treatments have
brought the attention to new types of robots specifically de-
signed for a particular type of intervention or even systems
personalized for each patient through 3D printing [10].

This paper explains the essential workflow phases and de-
sign elements of robotic-assisted percutaneous solutions and
will discuss current and future trends to demonstrate the po-
tential in interventions and impact on the cancer workflow.

Biopsy Robots—Design and Developments

The design of a biopsy robot starts with analysis of the med-
ical procedure that will give insight to the physical constraints,
therefore the mechanical design. The imaging source, used
during intervention, will be supplemented with other sensors
required for the navigation. Last but not least, the design of the
software integrated in the robot will face all the other aspects
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of the procedure: control of the robot, navigation and image
processing, user interface, and real-time functionality. All
these aspects should fulfill the medical standard and con-
straints, while the robot should be compliant with other equip-
ment already used in the procedure (e.g., ultrasound system,
standard needles and probes, MRI compatibility).

Mechanical Design

There are several challenges in the design and construction of
interventional biopsy robots. Table 1 shows an overview of
biopsy robots presented and optimized in the last 5 years. An
effective mechanical design should provide the ability to ac-
cess any point in the target organ and should have the flexi-
bility to avoid critical structures upon needle insertion. Not
only specialized robotic systems were developed to target
the needle to the biopsy target but also commercially available
industrial robotic arms and systems were embedded. The de-
grees of freedom (DOF) determine which positions and poses
the system can take with respect to the target. As shown in
Table 1, systems ranging from 2 to 7 DOFs were presented
with different types of kinematics for robotic manipulators
using parallel, serial, and hybrid approaches, which influences
individual joint values to the end-effector’s position and ori-
entation using platforms or a specific gripper as end effector.

Considerations regarding to structure and workspace are
essential in biopsy. Serial manipulators are preferred for a
large workspace and many degrees of freedom, but stiffness
and strength are more difficult to achieve. In general, parallel
manipulators are preferred for precise positioning since these
mechanisms can be designed to have a higher accuracy with
higher stiffness compared to serial robots.

Actuators are located near the base in parallel designs and
on the links in serial approaches. The type of actuation is
based on output power, speed, acceleration, and maximum
force and is environment dependent. The following actuation
-methods were used: electric actuators including ultrasonic/
piezoelectric, pneumatic actuators, hydraulic actuators, and
electromagnetic actuators; Bowden tubes; and chain transmis-
sion [11]. Actuation is mainly limited for MRI applications
due to the high magnetic field, interaction with radiofrequency
(RF) signals, and switching gradients [12¢]. MR-safe systems
and actuation methods were presented for several applications
including mainly prostate applications [5e, 13, 14] and, to a
lesser extent, breast applications [15, 16e, 17].

Needle devices are based on passive, semi-active, and ac-
tive approaches ranging from assistive holders to autono-
mously insertion. Many computer-aided design (CAD) and
computer-aided manufacturing (CAM)-based biopsy systems
were developed and insert the needle autonomously using
image guidance. These systems are mainly meant for imple-
mentation of iterative optimization in an early stage develop-
ment but are not mature for market introduction.
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The safety of the mechanism and the sterilizability are im-
portant requirements to keep into account when designing the
robot. Some systems use passive mechanisms to ensure safety
[18], while in other approaches, compliant robots, such as the
KUKA lightweight robot [19], are employed [20¢]. The
sterilizability can be ensured by using detachable elements
that can be sterilized or by using disposable parts.

Besides needle punctures through the skin, intraluminal
navigation through the gastrointestinal tract for biopsy pur-
poses is another attractive field. An overview of endoscopic
applications is shown in Table 2. Progression in developments
was mainly focused on enabling biopsies in the gastrointesti-
nal (GI) tract [21, 22] and stomach [21-23]. The capsule en-
doscope robot was introduced including structures which are
relatively complex by the use of external magnetic actuation
and size limitations due to the swallow capacity of patients. In
addition, robotic catheters for flexible navigation were opti-
mized to take for example transbronchial biopsies.

Trends are seen in the development of compact robotic
designs compatible with several imaging modalities.
Multimodality approaches were introduced to combine mor-
phological, functional, and real-time data. Prostate and breast
use cases are shown, but applications include lung and brain
sites as well (see Table 1).

Image-Based Needle Navigation and Robotic Control

Preoperative imaging provides an anatomical roadmap to
guide the needle during the procedure to the correct target,
and the intervention/needle path is based on planning algo-
rithms. Real-time navigation through complex anatomical
areas is a challenge, as during the insertion, the tissue deforms
and patient movement or breathing requires re-localization of
the predefined target [24].

The intraoperative image modality is chosen based on the
application: many procedures implement US as a real-time
image feedback modality in their application to improve nee-
dle insertion due to immediate image generation, no setup
constraints, cheap, and limited patient discomfort, and there-
fore, US is seen as the gold standard for biopsy. CT introduces
X-ray radiation, but is relatively fast, while MRI provides
high-quality soft tissue images, no radiation, and high spatial
resolution, but requires that robotic devices are compatible
with the magnetic field and are free of ferromagnetic mate-
rials. A device is called MR-safe if no metallic, ferromagnetic,
or conductive materials are present and MR Conditional if any
material and device allowed are safety-validated under given
conditions.

A so-called registration process is required to align preop-
erative images, where the diagnosis was made and the target
was identified, with the intraoperative images or with the pa-
tient. In the case of a robotic orthopedic surgery, this task is
easier because of the rigid nature of the anatomy and the

@ Springer

possibility to invasively attach the robot directly to the patient
[25], while in the soft tissue sites, the registration is more
challenging and is still an open research area [26, 27].

There are several reviews that deepen the topic of image
registration for robotic applications (e.g., [28, 29]). The map-
ping of the preoperative images to the intraoperative images
can be performed once, before the robotic intervention, or can
be updated during the intervention, in case the patient moved
or the organ deformed. Correct image registration, such that
the current target position is known to the robotic system, is of
vital importance for the success of the procedure. Image reg-
istration is a time-consuming process, and since registration
assists robotic navigation in real-time, a suitable choice of the
registration algorithm that minimizes the time delay should be
made.

New algorithms for image registration, based on Al, are
showing very promising results both in terms of time efficien-
cy and accuracy [30, 31]. These new approaches require the
use of large amount of data and the involvement of the radi-
ologists to create the dataset that will be used to train the
algorithms so, despite their novelty and innovation, they are
not implemented in the actual clinical biopsy robots.

In the case of brain procedures or, more generally, in or-
thopedic applications, the registration is rigid and is based on a
weighted combination of points and surfaces. The registration
is performed before the procedure to align the reference sys-
tem of the robot with the patient and with the preoperative data
(e.g., MRI, CT), while the rigid fixation of the robot to the
patient ensures keeping the target fixed with respect to the
robot (e.g., [32, 33], [34¢,35]). The MRI-safe robots are de-
signed to operate inside a closed-bore MRI scanner to auto-
matically align a needle guide to the target lesions, while still
employing manual needle insertions outside the bore (e.g., [5e,
36, 37¢]). The robot should include MRI-compatible markers
to be visualized in the image.

In addition, the robots guided by CT images may be
mounted on the patient’s body and the doctor positions and
inserts the needle according to the trajectory and target chosen
by the radiologist in the image. The robot is visible in the CT
images and can be easily segmented and registered [38].

US-guided biopsy robots have the advantage of intraoper-
ative real-time imaging to be used for navigation, but most of
the time, the target is defined in preoperative MRI or CT, since
a tumor is not always visible in US. This is the most challeng-
ing task for a biopsy robot. Typical application are breast and
prostate biopsy (e.g., [39, 40, 20+]). They will be discussed in
the next subsections.

Several solutions for robot-assisted needle insertion are ap-
plied and include conventional stiff needles, precurved
needles, concentric tube approaches, and tendon-based
steering biopsy needles under robotic control [41]. Biopsy
needles are mainly classified as symmetric (e.g., conical or
triangular prismatic) or asymmetric (e.g., beveled). Stiff
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needles with a symmetric tip require that no critical structures
are located between insertion point and target, as only small
corrections during needle insertion are possible. Recently,
needle steering came more into focus to deflect the needle
with bevel tips toward the target [36]. Each needle needs its
own guide as several needle sizes are used in biopsy proce-
dures. The robot-assisted approaches will reduce the number
of reinsertions and caused scar tissue afterwards. In addition,
needle insertion and the shooting mechanism to take the biop-
sy should be aligned and release the needle on distance before
the target has been reached.

In a Cartesian or joint space of the robot, the needle should
be directed smoothly via trajectory planning to the target.
There are several control schemes which can be implemented
in the biopsy workflow. Autonomous scanning and needle
insertion are complex tasks due to patient movement and tis-
sue deformation. Important aspects include stability, safety,
controllability, and robustness. Hybrid and impedance control
are often used. In case of impedance control, the behavior
between the manipulator and environment is controlled as an
impedance with motion input and force output. Hybrid posi-
tion or vision/force control uses trajectory or visual servoing
tracking information. Most often, external force sensors are
used to receive force feedback and guarantee constant force
interventions. Trajectory planning is often based on localiza-
tion of identifiable markers on the human body or preimaging
data. Most often, a 3D virtual patient-specific model is built
using surface or volume rendering. During registration, the
preoperative data is aligned with the intraoperative (biopsy)
view based on rigid or deformable methods with manual,
point-based, or surface-/volume-based methods. The entire
biopsy plan and intervention is relatively complex due to the
deformation of the 3D structures and the multiple parameters
to embed during the biopsy [42, 43].

Use Cases
Breast Cancer Use Case

Breast cancer is one of the most frequently diagnosed types of
cancer among women. Imaging modalities, such as mammog-
raphy, US, and MRI, are commonly used for the detection of
lesions. Currently, a biopsy is preferably taken under US guid-
ance, since this technology gives real-time feedback during
the procedure, causes relatively little patient discomfort, and
is cheap. However, a US-guided biopsy may be complex if the
lesion is detected on MRI. The lesion may not be visible on
US, and interpreting the relation between the 3D MRI data
and the actual patient is difficult. On one side, the breast is a
relatively basic structure to perform procedures on, since the
structure is isolated from the rest of the body, and contains no
vital structures. On the other hand, the structure is highly
deformable, so determining the target location is a challenge.

@ Springer

Figure 1 shows a possible workflow for ultrasound-guided
robotic breast biopsies on MR-detected lesions and its most
important steps, as indicated in the MURAB project [20°].
The radiologist is mostly there to supervise the procedure
and to confirm the suggested planning. Localization of the
patient can be performed utilizing stereo camera recognition
of projections or skin markers. Based on this information, the
robot acquires volumetric ultrasound data of the site, which is
subsequently registered with the MRI data to obtain the lesion
position in robot coordinates. Based on these coordinates, the
robot performs planning for the intervention. Deformation
modeling and tracking during the initial probe positioning is
necessary, as the breast is highly deformable. Once the robot is
in its final position, the lesion position is updated and the
intervention starts.

As an alternative to this approach, which takes place out-
side the MRI, there is the possibility to utilize MRI-safe ro-
bots. These robots fit inside the MRI, and hence, the MRI
images themselves can be used as feedback for the procedure.
The advantage of this type of robot is that registration between
the patient and the robot is less complex, since both are visible
on the same dataset. Additionally, there is no need to merge
several types of datasets, so just the conventional MR images
may be used during the intervention. However, the design
requirements for the robot itself are more strenuous since the
robot should fit inside the MRI bore and all materials should
be MR-safe.

Prostatic Cancer Use Case

One of the most successful and promising applications of the
robotic percutaneous approach is prostate biopsy and needle
treatment. The prostate has a favourable location in the body
such that there is little deformation while imaging the site with
a transrectal ultrasound (TRUS) probe. Moreover, there is
little risk for the needle to penetrate other organs since the
access is through the perineal wall, which is a fibromuscular
mass, or through the rectum.

The gold standard of the manual biopsy is the so-called
fusion biopsy [44] that allows the navigation for a targeted
biopsy based on the mpMRI (multiparametric MRI) preoper-
ative images, where the suspicious lesion is identified, regis-
tered with real-time US taken with an elongated rectal probe.
The targeted procedure is followed, in most of the cases, by
the saturated biopsy since the targeted biopsy misses a large
number of clinically significant prostate cancer (PCa) detected
by systematic biopsy [45, 46].

The prostate biopsy is highly dependent on the experience
of the doctor and the learning curve is long.

Hence, the reasons to introduce robotic assistance are man-
ifold: standardization of the procedure, operator indepen-
dence, improvement of the precision, and improved image
fusion, therefore better targeting, reduced trauma by reducing
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a.

Pre-operative data Plannin,
9

Fig. 1 Phases of a robotic breast biopsy. a The radiologist checks the
preoperative images and suggested path. b The robot localizes the patient.
¢ The robot acquires US data of the site. d The robot registers the

the number of insertions, shorter hospital time, and improved
and earlier diagnosis.

There are currently two trends in robotic prostate biopsy:
one is the in-bore solution, that is, an MR-compatible robot
(e.g., [5¢, 14, 37, 47]), and the other one uses the US images
or MR-US fusion to guide the robot toward the target (e.g.,
[40, 48, 49]).

An example of the architecture of a US-guided prostate
robot is shown in Fig. 2. The robot handles the needle and
the US probe separately, while dedicated sensors and the en-
coders of the motors track the movements in the reference
frame of the robot. Vision processing and control of the robot
is implemented in one or more dedicated PCBs. The
middleware will interface the low-level architecture with the
graphical user interface (GUI). The GUI allows the physician
to load preoperative images, check the image fusion process,
define the target area which is automatically sent to the robot,
and actuate the motors to position the needle in the correct

b. Localization

c. Acquisition

d. Registration

available preoperative data. e and f Modeling and tracking are utilized
to determine the target location after probe positioning. g The intervention
takes place

orientation that gives the linear trajectory toward the target.
The insertion can be performed automatically; therefore, the
position of the needle is given by the motor’s encoder, or
manually. During the manual insertion, a proximity sensor
may give hints on the distance to the target.

Conclusion and Outlook

The current diagnostic and therapeutic workflow will change
and improve with the introduction of robots. The benefits of a
robotic system for percutaneous interventions include: higher
accuracy and precision, standardization of the procedure, sta-
bility, improved hand-eye coordination, and less insertions.
Additionally, a robot does not suffer from fatigue or muscu-
loskeletal issues due to prolonged execution of the same task,
and a robot could introduce improvements at interpreting 3D
preoperative data. Due to these advantages, the procedures

Fig. 2 System architecture of a US-guided prostate biopsy robot
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will be faster, less expensive, and produce less trauma for the
patient. The biopsy workflow will shift to a one-stop source
procedure, with a short period of time between detection of a
suspicious lesion and cancer confirmation. The robotic proce-
dure is divided into the following phases: image scanning,
localization of the target by sensor fusion, preplanning with
deformation prediction and intervention, as described in
Fig. 1. We envision that more than 75% of the diagnostic
procedures can be standardized and interventions will be per-
formed by autonomous or semi-autonomous robots. The role
of the physicians will shift to a check-and-evaluation role of
the more difficult cases.

The spread of minimally invasive procedures and the
use of smaller needles and robotic manipulators will re-
duce scars and trauma to the patients. Consequently, a
new generation of interventional radiologists/surgeons
will become more and more familiar with this technology.
In the context of robot design, the introduction of biopsy
robots began with the modification of industrial robots
which were large, complex, and expensive. The current
trend is to introduce smaller, less expensive alternatives
which are compatible with all types of image modalities
dependent on the required application. Complex needle
navigation will be boosted by fusion of image data and
patient modeling to improve patient-specific treatment
such as drainage, drug delivery, thermal ablation, and ra-
dioactive seeds. In addition, high-level autonomous fea-
tures will be implemented to a greater extent. More atten-
tion will be on safety, reliability, and sterilizability of
systems to embed them in clinical robots. In general,
few systems reach the market due to the extensive trajec-
tory of certification and approval that requires to guaran-
tee safety in all circumstances. Therefore, more high-
quality test facilities and validation for the systems
in vivo or animal studies should be available to evaluate
the feasibility and guarantee safety. End-user involvement
becomes more and more crucial to adjust technology to
the real needs of the physician and patient.

Robotics is an interdisciplinary field combining computer
science, electrical engineering, and mechanical engineering,
and it is important to collaborate with physicians even more
to boost the technology. In addition, it is crucial due to multi-
tude of benefits to facilitate and accelerate the application of
robotic technologies across healthcare.
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