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Abstract
Purpose of Review We investigate the first use of deep networks for victim identification in Urban Search and Rescue (USAR).
Moreover, we provide the first experimental comparison of single-stage and two-stage networks for body part detection, for cases
of partial occlusions and varying illumination, on a RGB-D dataset obtained by a mobile robot navigating cluttered USAR-like
environments.
Recent Findings We considered the single-stage detectors Single Shot Multi-box Detector, You Only Look Once, and RetinaNet
and the two-stage Feature Pyramid Network detector. Experimental results show that RetinaNet has the highest mean average
precision (77.66%) and recall (86.98%) for detecting victims with body part occlusions in different lighting conditions.
Summary End-to-end deep networks can be used for finding victims in USAR by autonomously extracting RGB-D image
features from sensory data. We show that RetinaNet using RGB-D is robust to body part occlusions and low-lighting conditions
and outperforms other detectors regardless of the image input type.

Keywords Urban search and rescue . Victim identification . Body part occlusion . Low-lighting conditions . Deep learning

Introduction

Autonomous victim identification in urban search and rescue
(USAR) scenes is challenging due to the occlusion of body parts
in cluttered environments, variations in body poses and sensory
viewpoints, and sensor noise [1]. The majority of classical

learning approaches that have been developed to detect human
body parts in clutteredUSAR environments have focused on first
extracting a set of handcrafted features, such as human geometric
and skin region features [1] or histograms of oriented gradients
(HOG) [2], and, then, training a supervised learning model (e.g.,
support vector machines (SVM)) using these features. The man-
ual design of the features often requires empirical selection and
validation [3], which can be time-consuming and entail expert
knowledge. Furthermore, these approaches also use pre-defined
rules to analyze the grouping of human parts. However, in
USAR scenes, due to occlusions, multiple body parts of a person
may not be visible at the same time for such groupings to occur.

Deep networks have the potential to be used in USAR to
autonomously extract features directly from sensory data.
While they have been applied to human body part detection
in structured environments, such as operating rooms [4], of-
fice buildings [5], and outdoor urban settings [6–9], they have
not been considered for cluttered USAR environments. In
USAR, victim identification needs to take place in environ-
ments that are unknown, without any a priori information
available regarding victim locations. Furthermore, the entire
body of a victim may not be visible due to occlusions and
lighting conditions may vary significantly.
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Our previous research has focused on developing rescue
robots that use learning for exploration, navigation and victim
identification tasks in USAR environments [1, 10–12], and
identifying landmarks in USAR scenes for 3D mapping
[13–15]. In this paper, we present the first feasibility study
that investigates the use of deep learning to address the victim
identification problem in robotic USAR. We propose an over-
all architecture that uses deep neural network detectors with
RGB-D images to identify body parts. We provide a detailed
investigation of these deep neural networks to determine
which ones are robust to body part occlusion and low-
lighting conditions.

Related Work

Person and Body Part Detection Using Learning

In this section, we discuss classical machine learning and deep
learning methods that have been used to identify human bod-
ies or body parts in varying environments.

Person Detection Using Classical Machine Learning
Approaches

There exists a handful of papers that have specifically focused
on finding victims in USAR environments using RGB and
depth images with classical learning classifiers, e.g., [1, 2,
16]. For these detection methods, input features or body-part
grouping templates were needed to be handcrafted.

For example, our own previous work in [1] focused on first
segmenting potential bodies from depth images based on con-
cave curvature information. Then, 2D ellipses were fit to the
segmented regions and an elliptical shape factor was comput-
ed. A recursive algorithm grouped potential body parts that
were spatially close. The grouping of body parts, the elliptical
shape factor, and skin color extracted from corresponding
RGB images were all used as features for an SVM classifier.

In [2], infrared images were first used to detect human body
temperature. In cases where a human body could not be de-
tected using these images, a head detection technique was
used. The head detection technique extracted Haar features
from RGB images and HOG features from the infrared im-
ages. Adaboost was then used to classify the Haar features,
while an SVM was used to classify the HOG features. The
correspondence between the two sets of images was used to
locate the head.

In [16], an infrared sensor was used to first detect a poten-
tial victim, and then trigger an RGB image capture of the
scene. The RGB image was converted into grayscale and fed
into a three-layer feed-forward neural network (NN) for body
part classification. The input and hidden layers of the NN both

contained 256 nodes, and the output layer contained 3 nodes
representing a foot, hand, or body.

Other classical learning approaches have also been pro-
posed for identifying human body parts in outdoor environ-
ments, such as parking lots and town centers [17], and indoor
environments, such as retail stores and offices [18]. For exam-
ple, in [18], a two-stage procedure was used for detecting the
top of human heads using RGB and depth.

Person Detection Using Deep Learning Approaches with RGB
Images

Recently, deep learning approaches have been used for body
pose estimation by detecting individual body parts in RGB
images [6–9]. In [6], Adapted Fast R-CNN (AFR-CNN)
[19] and a dense CNN architecture were used to identify body
parts as part of the pose estimator DeepCut. Training and
evaluations were conducted on the Leeds Sports Poses [20]
and MPII Human Pose [21] public datasets consisting of peo-
ple doing sports or everyday activities such as eating, fishing,
or typing, in both indoor and outdoor environments.

In [7], a sliding window detector with a 152-layer deep
residual network (ResNet) [22] was used to detect body parts
as part of the pose estimator DeeperCut. The model was
trained on the same datasets as in [6].

In [9], a Faster R-CNN multi-person detector with a
ResNet backbone was trained using the person category of
the COCO public dataset [23] as part of the pose estimation
process. This category contains adults and children doing
sports or everyday activities in indoor or outdoor
environments.

In [24], a Single Shot Multi-box Detector (SSD) [25] net-
work was used to recognize body parts within a pose estima-
tor. It was trained on both the MPII Human Pose and Leeds
Sports Poses datasets containing annotations for the lower and
upper legs, lower and upper arms, and head.

In [26], a You Only Look Once (YOLOv2) detection net-
work was used to detect hands for a hand-pose estimator. The
network was initialized using weights pre-trained on
ImageNet [27], a public dataset with 14 million images
consisting of humans, animals, and objects. It was then fine-
tuned on an in-house RGB image dataset captured in different
indoor environments.

In [28], a Feature Pyramid Network (FPN) was extended
for body part instance segmentation. A multi-task loss was
regressed to provide instance-level body part masks and sur-
face patches, including left and right hands, feet, upper and
lower legs, head, etc. The network was trained on the
DensePose-COCO dataset.

In [29], a Detector-in-Detector network was proposed
where the first detector (body detector) detects the body, and
the second (parts detector) uses this information to detect
hands and faces. The body detector uses Faster R-CNN with
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a ResNet-50 backbone while the parts detector builds on the
body detector with two convolutional layers. A custom
Human-Parts dataset consisting of 14,962 images and
106,879 annotations was used for training.

The availability of public datasets makes training of the
aforementioned RGB image-based detectors very convenient.
However, as these detectors are dependent on only RGB im-
ages, they have difficulty functioning in low-lighting USAR
environments.

Person Detection Using Deep Learning Approaches with RGB
and Depth Images

Only a few detectors have considered the use of both RGB
and depth (RGB-D) images as inputs to their networks [4, 5],
which are more robust against illumination and texture varia-
tions. In [4], a ResNet detector was used to detect upper body
parts in an operating room. RGB-D information was used as
inputs and a score map for upper body parts was the output of
the network. The RGB-D data was captured by multiple cam-
eras fixed around the operating room. The score map was then
used by a random forest classifier to classify the overall hu-
man pose.

In [5], a long short-term memory (LSTM) network was
used to detect head-tops. The first layer employed the head-
top detection technique presented in [18], where for each pos-
sible head-top pixel, a set of bounding boxes were generated
from both RGB and depth images. This set of boxes contained
different ratios of potential human body proportions for a par-
ticular head-top. Each set of bounding boxes belonging to a
head-top pixel was simultaneously fed into two LSTM chains,
one for RGB images and one for depth images. A third LSTM
fusion network used feature vectors from both LSTM chains
at each link in the chain, and logistic regression was used at
the end of the third LSTM chain to classify whether a person
was detected.

The aforementioned detectors have been trained for struc-
tured indoor environments such as operating rooms, offices,
and building corridors. People in such settings are less occlud-
ed and typically have common poses, such as standing, sitting,
or lying down. Therefore, they do not generalize well to
cluttered USAR environments in which people can be partial-
ly buried in a variety of different poses and with only small
portions of their body visible. In this paper, we investigate the
first use of deep learning networks to uniquely address these
challenges for the victim identification problem in cluttered
USAR scenes.

Deep Learning Networks for the Victim Identification
Problem in USAR Environments

The proposed architecture for victim identification comprises
three stages: data collection, training, and inference (Fig. 1). In

the data collection stage, RGB and depth images are collected
and used as inputs to the training stage, where features are
extracted to produce a feature map used to train a detector
for body part classification. In the inference stage, new
RGB-D images are used as inputs for the trained detector for
body part detection.

Two main approaches can be used when designing deep
learning architectures for person detection. The first is a two-
stage approach, which comprises a first stage that generates a
set of region proposals indicating where target objects might
be located, and a second stage classifies each proposed region
as an object class or as background [30•]. In contrast, a single-
stage detector performs object localization and classification
concurrently [31]. When using such approaches, there is a
trade-off between accuracy and speed. In this work, we inves-
tigate both these approaches for the victim identification prob-
lem in USAR environments. The two-stage detector we con-
sider is Feature Pyramid Network (FPN) with Faster R-CNN
[38]. It is more accurate than its predecessors such as Faster R-
CNN [32•] and R-CNN [33]. The FPN with Faster R-CNN
and its variations have been used in person and object detec-
tion applications, e.g. [34, 35]. However, they have not been
used in cluttered USAR environments where body parts are
occluded.

Single-stage detectors have the advantage of faster detec-
tion speed than the two-stage approaches, by removing the
proposal generating stage. Their drawback is that they tend
to have lower accuracy [30•]. The most popular single-stage
detectors are SSD [25], YOLOv2 [36], YOLOv3 [37•], and
RetinaNet [30•]. They have been adopted for real-time object
detection in self-driving cars and environment monitoring ap-
plications [38–40]. However, they have not yet been applied
to cluttered USAR scenes. Their faster detection speeds can be
an advantage in time-critical search and rescue missions. The
below sub-sections discuss how we have designed the net-
work architectures for each of the aformentioned detectors to
address the victim identification problem.

Two-Stage Detector

FPN with Faster R-CNN

The FPN with Faster R-CNN approach [32•] (Fig. 2a) uses an
FPN to extract features from RGB-D images taken in USAR
scenes, and outputs feature maps at different scales. The fea-
ture maps are generated by a backbone ResNet-50 model
pretrained on the ImageNet dataset [27]. The feature maps
are passed to the region proposal network (RPN) to generate
bounding box proposals, which are used for the second-stage
network for body part classification and bounding box refine-
ment. The FPN network structure is designed to improve de-
tection accuracy by extracting features at different scales
while keeping computation cost low [32•]. In USAR, body
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parts can appear at any scale based on their relative pose to the
robot. As shown in Fig. 2a, the FPN structure consists of a
multiple layer CNN (ResNet) that scales down an input image
through convolution, and at the last layer scales it back up.
Feature maps produced when scaled down are added element-
wise to those produced when scaled up through lateral connec-
tions. While lower level feature maps have higher resolution and
provide more details on small body parts, higher-level feature
maps are processed through more convolution layers and gain
more semantic understanding of the overall image. By combin-
ing the feature maps, the detector benefits from both aspects.
With high-level semantic features in higher-resolution layers,
the network becomes more robust to the detection of small body
parts where occlusion is present. The number of output classes
for the network is seven; six body parts (arm, foot, hand, head,
leg, torso) and one for background.

Single-Stage Detectors

SSD

In SSD [25], RGB-D images are first processed by
pretrained convolutional layers (VGG16 [41]) to output a
feature map (Fig. 2b). The feature map goes through size
reduction via a chain of convolution layers. The feature

maps at different detection layers are processed indepen-
dently by convolution filters to provide coordinates of vic-
tim body part bounding boxes and classification probabili-
ties. Each cell in a feature map is associated with k × 4
values representing the four coordinates of k bounding box-
es centered at this cell [25]. The size and aspect ratio of the
boxes are initialized using manually selected default values
and then refined by the network, enabling the network to
detect both small and large body parts. For each bounding
box, the filters output one body part detection probability
for each of the six classes of body parts, plus four additional
scalars predicting the offset values to improve upon the
bounding box coordinates [25]. The output, 6 + 4 values,
for each bounding box are compared with manually labeled
ground truth to calculate losses.

YOLOv2

YOLO detectors use a single CNN [36, 37] for both body part
localization and classification. The CNN is a Darknet-19
pretrained on the ImageNet dataset [27]. To apply YOLO
detectors on our body part dataset from a cluttered USAR-
like environment, the labels were annotated according to the
Pascal VOC format [42]. An input RGB-D image is processed
by the CNN shown in Fig. 2c [36] which directly outputs a

Training

Inference
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New RGB-D 
Image

Feature Map

Pretrained 
CNN

Feature Extrac�on For each spa�al 
loca�on

Body Part 
Classifica�on
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Body Part 
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Bounding Box 
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Fig. 1 Deep network architecture for body part detection
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S × S × (b × (c + 5)) tensor for bounding box localization and
victim body part classification, where c = 6 is the number of
body part classes. The number of grid cells that an input is
divided into is S × S = 13 × 13. For each cell, b bounding box-
es are initialized, and for each bounding box, 6 + 5 scalar
values are predicted. With respect to the five scalar values,
four are for localization and one is for confidence, defined as
Pr classð jobjectÞ � IOUt

p. Pr(class|object) is the probability of
whether a body part belongs to a specific class, conditioned on
the grid cell containing a victim body part. The four localiza-
tion values are the horizontal and vertical offsets against the
grid cell, and the height and width are normalized against the
size of the entire image, respectively. IOUt

p is the Intersection

Over Union calculated using the predicted body part bounding
box, p, and the hand labeled ground truth bounding box, t, by
dividing the area of overlap by the area of union.

YOLOv3

YOLOv3 [37•] further improves upon YOLOv2 by in-
corporating elements used in other state-of-the-art detec-
tion algorithms such as residual blocks [22] and feature
pyramids [32•]. The feature extraction layers of
YOLOv2 are replaced by a pretrained Darknet-53 (Fig.
2d), which consists of 53 layers mainly composed of
3 × 3 and 1 × 1 convolutions with residual blocks. The
output feature map is passed through another 53 layers
for detection. Detection is done at three different scales
using a similar concept to feature pyramid networks
[37•] to improve small body part detection. Namely,
body parts are detected on three different-size feature
maps, output by different layers. The larger dimension
grids are responsible for detecting smaller body parts,
and vice versa.

classes  
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boundary box 
regressor 

 

Bounding box  
coordinates 

Objectness  
score 3x3x96 

RPN (ZFnet) 
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Fig. 2 Two stage detector: a FPN with Faster R-CNN Network Flow. Single-stage detectors: b SSD architecture, c YOLOv2 Architecture, d Darknet-
53, the feature extraction layers used in YOLOv3, and e RetinaNet
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RetinaNet

TheRetinaNet architecture [30•] uses FPN formulti-scale feature
extraction from RGB-D images, followed by two parallel
branches of convolutional networks for body part classification
and bounding box regression (Fig. 2e). Similar to FPN with
faster R-CNN, the feature maps are generated by a backbone
ResNet-50 model pretrained on the ImageNet dataset.
RetinaNet uses the feature pyramid levels P3 to P7.At each level,
b = 9 anchor boxes are selected for each spatial location of the
feature map grid. Each box is associated with class prediction for
all c classes (6 body parts + 1 background) and four coordinates.
From a structural perspective, the feature map at each level of the
pyramid is passed to two branches of convolutional networks in
parallel. The classification branch consists of four 3 × 3 × 256
convolution layers with rectified linear unit (ReLU) activation.
This is followed by a 3 × 3 × (b× c) convolution layer that out-
puts a gridsize × b× c sized tensor, predicting the victim body
part classifications for each anchor box. The box regression
branch also consists of four 3 × 3 × 256 convolution layers with
ReLU activation, followed by a 3 × 3 × (b× 4) layer that predicts
the location coordinates of all bounding boxes (Fig. 2e).

Training

In order to train all the designed detectors, we created a dataset
consisting of 570 corresponding RGB-D images of both hu-
man and mannequin body parts in a cluttered USAR-like en-
vironment (Fig. 3). The images were obtained from a Kinect
sensor onboard a mobile Turtlebot 2 platform. The images
were manually labeled into six classes for training purposes:
arm, foot, hand, head, leg, and torso. To account for different
lighting conditions, we applied a random distribution of noise
to the RGB images during preprocessing by using gamma
correction. First, image pixel intensities were scaled from [0,
255] to [0, 1.0]. A gamma corrected image was then obtained
using

O ¼ I 1=Gð Þ ð1Þ

where I is the scaled input image and G is the gamma
value. The corrected image O is then converted back to the
range [0, 255]. We distributed our image dataset to five
possible gamma values: 0.1, 0.2, 0.4, 0.8, and 1.0, where
G = 1 has no effect on the image and G = 0.1 is the darkest
setting. We trained each network on RGB-D images
consisting of both partially and fully visible parts. For the
training process, k-fold cross validation (k = 5) was used to
partition our dataset into training and validation images.
Training took place on a Nvidia Titan V GPU. The learn-
ing parameters were initialized according to Table 1 and
fine-tuned empirically for each network. The maximum
training iterations required for all runs of a network are
also reported in Table 1 for each network. The reported
batch size is the number of images used to compute the

Fig. 3 USAR-like environment
layout (top two and bottom two
panels consist of mannequin and
human victims, respectively)

Table 1 Training parameters

Network Backbone Batch α Iterations

FPN w. Faster R-CNN ResNet-50 2 0.025 20,000

YOLOv2 Darknet-19 64 0.0001 5000

YOLOv3 Darknet-53 64 0.001 5000

SSD VGG-16 4 0.00004 30,000

RetinaNet ResNet-50 2 0.025 30,000
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gradient for backpropagation. For deeper networks, this is
generally limited by GPU memory (e.g., for RetinaNet, the
maximum is two images on our GPU). This same training
procedure was also implemented separately on only RGB
and depth images for comparison.

Experiments

Experiments were performed on a validation set of images
from our dataset. All predicted regions equal to 0.5 with the
manually labeled ground truth were accepted, which is

common for object detection benchmarking [43].
Furthermore, repetitive detection of the same object in an im-
age was minimized by using non-maximum suppression
(NMS) [44] with the default threshold of 0.45 [36].

We chose 11-point mean average precision (mAP) [42] and
recall as evaluation metrics. Recall was used to define the
percentage of true victim body parts detected, and mAP mea-
sured the robustness of each network in maintaining high pre-
cision in tradeoff for higher recall. The precision-recall results
for both the fully visible and partially occluded body parts for
all networks are presented in Table 2 and Fig. 4. Furthermore,

Fig. 5 Test results from RetinaNet. Each sub-figure contains, from top to bottom, the RGB input image, the depth input image, the combined RGB-D
image, and the detection output. Gamma values are 0.1, 0.2, 0.4, 0.8, and 1.0 from a to e, respectively
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Fig. 4 Comparison of the
precision-recall results for both
the fully visible and partially
occluded body parts for all
networks, values are averaged
across all body parts
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results for the networks using RGB-only or depth-only images
are also presented for comparison.

Table 2 presents the results for each individual body part.
In general, RetinaNet had higher overall precision-recall for
both the fully visible and partially occluded datasets, demon-
strating its robustness to occlusion. The main advantage of
RetinaNet is its focal loss which allows the network to focus
on harder training examples by down-weighting the contribu-
tion of easier examples (e.g., fully visible body parts) in the
loss function [30•]. This allows the network to focus on harder
examples (e.g., occluded body parts) and harder classes (e.g.,
body parts that are more difficult to detect). Namely, the focal
loss allows RetinaNet to significantly outperform the other
networks, in some cases with up to 43% performance im-
provement on the most difficult body parts to detect: a hand
and a foot. Therefore, despite being a single-stage detector,
RetinaNet is able to outperform the two-stage detector here.
FPN with Faster R-CNN, being the two-stage detector, out-
performs the other single-stage detectors such as YOLOv2,
YOLOv3, and SSD overall when using the RGB-D and
RGB datasets. The YOLO networks generally performed bet-
ter than SSD as they used higher resolution input images. One
possible reason that FPN with Faster R-CNN was able to
outperform the YOLO and SSD detectors is due to its lateral
connections that produce high-resolution high-level semantic
feature maps, allowing it to detect small body parts. For ex-
ample, being able to capture small features such as fingers on
hands can result in more accurate hand detection, especially
when the hand is partially occluded.

The hand, due to self-occlusion, size, and its similarities
with the foot, was difficult to detect for a number of the net-
works, especially, for instances where the spacing between
fingers is less distinct. In contrast, the head and torso were
easier to detect with higher precision-recall for the majority
of the networks. Using the RGB-D information resulted in
higher overall precision and recall for the majority of the net-
works compared to only using RGB or depth data. The RGB-
D data incorporates color, geometry, and scale information,
while being invariant to illumination. By further analyzing
failure cases, it was observed that the other single-stage detec-
tors, the two YOLO and the SSD detectors could not handle
changes in illumination such as dim lighting conditions as
well as RetinaNet. As depth is invariant to lighting, this result-
ed in better precision in these networks for the depth-only
dataset over the RGB dataset, especially for the YOLO detec-
tors. The robustness of RetinaNet to illumination also suggests
that the network has encoded stronger illumination-invariant
features (i.e., using focal loss).

Figure 5 shows the performance of RetinaNet using the
RGB-D dataset under the different illumination conditions.
In Fig. 5a, with the lowest lighting condition, two feet, an
arm, and a hand of a potential victim were detected. In Fig.
5b with the second lowest lighting condition, the partially

occluded torso and a head of one potential victim were detect-
ed along with a hand and foot of other potential victims. Both
Fig. 5 c and e exhibit large body part occlusions, with self-
occlusion as well as by clutter, while Fig. 5d presents partially
occluded heads at different viewpoints and scales. RetinaNet
was able to detect these body parts, demonstrating its ability to
not only deal with occlusion, but also different illumination
conditions and body parts of varying viewpoints and scale.

Conclusions

In this paper, we investigated, for the first time, the use of deep
learning networks to address the victim identification problem
in cluttered USAR environments. By providing the first fea-
sibility and comparison study of state-of-the-art detectors, our
results showed that deep networks can be trained to perform in
dark cluttered environments by including RGB-D informa-
tion, and we can use deep learning to detect partially occluded
body parts. In general, using RGB-D information resulted in
higher precision-recall compared to only using RGB or depth
data. With respect to the individual detectors, the single-stage
detector RetinaNet had both higher recall and mean average
precision than the other detectors. By adopting such end-to-
end deep networks, we can eliminate the time-consuming pro-
cess of manually defining features to extract from such com-
plex environments.
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