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Abstract
Vanadium pentoxide (V2O5) thin films were grown on porous silicon (PS) layer by electron beam evaporation technique under 
an oxygen partial pressure. The morphology of the porous surface before and after V2O5 deposition for different evaporation 
times was observed by the Scanning Electron Microscope (SEM). The predicts changes of the chemical composition and 
bonds at the porous surface have been studied by FTIR and Raman spectroscopies. Photoluminescence (PL) spectroscopy 
was carried out to study the effect of vanadium pentoxide thickness on the optical properties of V2O5/PS nanocomposites. 
The PL spectrum of PS show a red-shift of 90 nm following the deposition of vanadium pentoxide while a quenching of the 
PL intensity was observed. Referring to FTIR and Raman results, the origin of this shift can be attributed to the formation 
of oxidized vanadium elements at PS surface as well as the creation of localized states by V2O5 molecules inside the band 
gap of PS. The wavelength dependence of optical transmittance, reflectance and absorption coefficients were investigated. 
An increase in the optical band gap from 1.95 to 2.18 eV was obtained due to Moss-Burstein effect as well as the presence 
of vacancy defects in V2O5 film.
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Introduction

Over the last years, Vanadium pentoxide (V2O5) has received 
an important attention in research and technology. It is 
widely used for the development of electrical switching 
devices (Viswanathan et al. 2019), photodetector (Shafique 
et al. 2019), catalysts (Jin et al. 2011), optoelectronics (Yu 
et al. 2012), and sensors (Yan et al. 2015). In general, vana-
dium oxides are known by their diversified layered struc-
tures, wide bandgap, high chemical activity as well as its 
interesting optical and electrical properties (Mane et al. 
2015; Abdel Maksoud et al. 2023). However, these proper-
ties strongly depend on the elaboration methods and pro-
ceedings used to prepare films. Vanadium pentoxide thin 

films can be prepared on different substrates by a variety 
of deposition techniques like electron beam evaporation 
(Ramana et  al. 1997), magnetron sputtering technique 
(Khairy et al. 2023), pulsed laser deposition (Julien et al. 
1999), chemical deposition method (Nandakumar and See-
bauver 2011) and sol-gel process (Jin et al. 2009). In other 
hand, porous silicon (PS) has attracted great attention with 
the discovery of its emission properties (Canham 1990). 
Since then, several studies were focused on the develop-
ment of optic devices (Sharmila 2023), sensors (Arshavsky-
Graham et al. 2019), medical applications (Tieu et al. 2019), 
solar cells (Rotshteyn et al. 2021), and waveguides (Escobar 
et al. 2018) using PS as base material. PS in the nanoporous 
regime with pore diameters from 2 to 5 nm has been known 
since 1990 by its emission of light in the visible range and 
it is still the subject of intense research (Canham 1990). 
In order to improve the optical performance and solve the 
problem of instability of the PS structure, several studies 
have focused on the deposition or the infiltration of certain 
chemical elements in the porous layer. Amdouni et al. (2015) 
have investigated the optical properties of SP/Ni composites 
prepared by electrodeposition method, they found a great 
enhancement in the integrated PL intensity of PS containing 
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nickel. Knowing that PL is an optical phenomenon which 
manifests itself by the emission of light by a material follow-
ing the absorption of incident light whose energy is greater 
than its energy band gap. Thus, Ni elements contribute to the 
radiative recombination process which leads to an improve-
ment in the optical properties of PS. Ktifa el al. (2018) have 
investigated the photothermal properties of PS/Rhodamine 
6G nanocomposites. They found an enhancement in the ther-
mal conduction and the PL emission by the insertion of Rho-
damine molecules in the porous matrix. They reported that 
an energy transfer from PS to nanocomposite band can take 
place due to Rh6G. Due to the fact that the PS has a large 
specific surface area that can be modified with a wide vari-
ety of chemistry products and polymers. Recently, McInnes 
et al. (2021) have reported interesting properties of porous 
silicon-polymer composites and their applications in tissue 
engineering. In the present study, we report on V2O5 thin 
films deposited on PS with different thicknesses prepared by 
electron beam evaporation method. The vacuum evaporation 
technique can control the increase in layer thickness and 
minimize the level of impurity, which has an advantage over 
other deposition methods. We discuss the effect of V2O5 in 
morphological, optical, and room-temperature PL proper-
ties. V2O5/PS/Si structure has been used to detect ethanol 
vapor at different concentrations by Chebout et al. (2013). 
Thanks to the electronic properties of V2O5 particles, con-
ductance and capacitance measurements at low frequencies 
indicate the presence of interface states which can follow an 
alternating current signal that contributes to excess capaci-
tance and conductance.

Our objective is to develop a selective layer of V2O5 capa-
ble of significantly increasing of the optical properties of PS. 
To achieve this goal, we have chosen the evaporation method 
which makes it possible to control the growth of the thin 
layers of V2O5. The elaborated composites may be used as 
basic materials for several applications such as optoelectron-
ics and photovoltaics.

Experimental

Porous Silicon (PS) was obtained using an electrochemi-
cal anodization etching method. P-type silicon substrates 
with (100) orientation, 20–50 Ω cm resistivity and cut into 
square-shaped pieces with an area of 1 cm2, were used 
as starting material. The etching process was performed 
using a Teflon cell where the substrates were placed on 
the bottom part facing upwards and in contact with an 
etching solution. The exposed area of the Si substrate was 
circular with a diameter of 0.9 cm. A platinum grid sus-
pended in the etching solution was used as the cathode 
while the back side of the substrate itself was used as the 
anode. The samples were etched at room temperature using 

a mixed solution containing HF (40%), ethanol and H2O 
with the same volume proportions. The current density 
was fixed at 20 mA cm−2 and the etching time was taken 
10 min. After etching, the samples were rinsed with etha-
nol and deionized water. The vanadium pentoxide (V2O5) 
layer was deposited on PS surface using a thermal evapo-
ration system under vacuum conditions at the pressure of 
4.10–6 mbar. The deposition speed in the thermal evapo-
ration method is set at 0.8 nm/s. The evaporation times 
were 250 s, 375 s and 500 s allowing to have layers with 
thicknesses of 200 nm, 300 nm and 400 nm, respectively. 
A schematic representation of the synthesis process has 
been illustrated in Fig. 1.

A Bruker DektakXT stylus profiler was used to take 
measurements of the V2O5 layer thicknesses. This pro-
filer measures large vertical features of surfaces (up to 
1 mm in height) with angstrom-level repeatability. The 
DektakXT uses Bruker's 64-bit parallel processing oper-
ating and analysis software, Vision64, which enables 
rapid data processing of large 3D map files. A confocal 
micro-Raman (Jobin–Yvon—T64000) with a resolution 
of 0.1 cm−1 and a recording time set at 30 s was used to 
perform Raman measurements. The morphologic obser-
vations of the synthesized composites were performed by 
using scanning electron microscope of ESEM Quanta 200 
type of the FEI Company. The photoluminescence spectra 
were obtained using a GaAs photomultiplier combined 
with a standard lock-in technique and through a 220 mm 
Jobin–Yvon monochromator with a resolution of 0.2 nm. 
An argon laser source emitting at 488 nm wavelength was 
used as a light source excitation for both Raman and PL 
measurements. Fourier transform infrared (FTIR) spec-
tra were recorded in 400–4000 cm−1 range with a step of 
2 cm−1 in transmission mode using a Bruker IFS 66 V/S 
-type spectrometer (vacuum instrument). The optical data 
of transmittance and reflectance spectra are carried out by 
Perkin Elmer Lambda 950 spectrophotometer in 300–2000 
nm wavelength range.
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Fig. 1   Schematic illustration of the SP/V2O5 nanocomposite synthe-
sis process
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Results and discussion

Firstly, we note that the elaboration conditions that we have 
adopted during the electrochemical etching process allow 
us to have a porous silicon (PS) layer with a porosity of 70 
% and a thickness of 7 µm (Bessaïs et al. 2000; Bisi 2000).

Knowing that the deposition speed in the thermal evapo-
ration method is set at 0.8 nm/s and the evaporation times of 
V2O5 particles were 250 s, 375 s and 500 s. The estimated 
thicknesses of V2O5 layers are then 200 nm, 300 nm and 
400 nm. To confirm these thickness values, we carried out 
measurements using the profilometer technique. The val-
ues (Eprf) found by this technique are very close to those 
estimated from the parameters taken in the evaporation pro-
cess (Eest). The results of these measurements are given in 
Table 1.

Figure 2 shows plan view SEM images of porous sili-
con (PS) before treatment (a) and after deposition of V2O5 
thin film with different thicknesses (200 nm (b), 300 nm 
(c), and 400 nm (d)). The SEM image in Fig. 2a shows a 

quasi-homogeneous and rough surface. The pores which 
appear as dark spots are distributed in the (100) plane thus 
forming a porous network on the silicon substrate. Images 
(b), (c) and (d) show remarkable changes in PS surface 
morphology after vanadium oxide evaporation. The surface 
morphology of V2O5 contains irregular nanoflakes inter-
connected to each other with the appearance of cracks and 
fissures on the outer surfaces with different lengths and ori-
entations. A similar morphology containing cracks has been 
observed for layers of metal oxides such as iron oxide depos-
ited on a PS matrix (Mabrouk et al. 2015). The presence 
of pores under the deposited layer promotes the formation 
of cracks across its surface leaving distinctive nanoflakes. 
These cracks form in a region of high stress related to defects 
in the crystal lattice. The decoration of V2O5 nanoflakes by 
light spots is shown on a SP/V2O5 surface with a thickness 
of 400 nm (Fig. 2d) with a strong synergy due to a large 
condensation and overaccumulation of vanandium oxide 
molecules.

We carried out measurements by FTIR spectroscopy on 
PS and PS/V2O5 nanocomposites with different thicknesses 
of V2O5. The corresponding spectra are presented in Fig. 3 
and the most distinguished peaks are numbered in this figure 
from 1 to 12.

The total number of peaks observed for the PS/V2O5 
nanocomposites is greater than those in the PS spectrum 
which shows a direct effect of vanadium pentoxide dep-
osition on the chemical composition at the porous sur-
face. The strong absorption peaks numbered in the fig-
ure from 9 to 12 are attributed to the vibration modes of 

Table 1     The thickness values found by the profilometer (Eprf) and 
those estimated from the parameters fixed in the evaporation process 
(Eest)

timm (s) 250 375 500

Eest (nm) 200 300 400
Eprf (nm) 198.58 291.09 392.05

Fig. 2   Plan view SEM images 
of PS (a) and V2O5 thin film 
deposited onto PS with differ-
ent thicknesses (200 nm (b), 
300 nm (c), and 400 nm (d)
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H2O molecules and CH groups (Oktiani et al. 2019; Costa 
et al. 2012). The water molecules are localized inside the 
nanostructures coming from the etching solution follow-
ing the electrochemical anodization process. The vibration 
band (N° 5) at 1060 cm−1 corresponds to Si–O–Si and 
V=O terminal oxygen stretching mode (Jerbi et al. 2022; 
Baddour-Hadjean and Pereira-Ramos 2009). The band (N° 
2) centered at around 760 cm−1 is attributed to V–O–V 
asymmetric stretching mode (Jin et al. 2008).

The bonds formed by a triply coordinated oxygen 
atom between three vanadium atoms are also present at 
the porous surface, this is confirmed by the appearance 
of a vibration band (N° 1) at around 540 cm−1 (Chu et al. 
2016). The bands at 860 and 975 cm−1 numbered by 3 and 
4, which appear only for PS structures exposed to vana-
dium pentooxide evaporation, are attributed to non-bridg-
ing V–O bonds and the V=O stretching mode of the V–O 
axial bond, respectively (Frechero et al. 2007; Brown et al. 
1989). The results obtained by FTIR spectroscopy show a 
high chemical reaction between V2O5 and PS surface. To 
confirm these observations, we carried out measurements 
by Raman spectroscopy. Figure  4 displays the Raman 
spectra of PS and PS/V2O5 nanocomposites recorded in 
the wavenumber range between 100 and 1100 cm−1.

The main peak at 520 cm−1 is the well-known first-
order Raman scattering line of fundamental Si single crys-
tal lattice vibrations. We note that the positions of the 
Raman vibration peaks of V2O5 change and shift depend-
ing on the matrix on which it is deposited. The peak at 995 
cm−1 corresponds to the vibration of V+5=O in stretching 
mode (Kang et al. 2012). A broad band which extends 
from 940 to 990 cm−1 which becomes more intense by 
increasing the thickness of V2O5 showing an overlapping 

of the vibrations of the Si–OH and V=O bonds (Meng 
et al. 2006).

The broad band at 305 cm−1 is attributed to the bending 
vibrations of the triply coordinated oxygen (V3-O) (Shvets 
et al. 2019). Two bands at 630 and 435 cm−1, which appear 
clearly for relatively thick V2O5 layers, can be attributed 
to the vibrations of Ag phonons of VO2 and the bending of 
VO3, respectively (Meng et al. 2006; Frost et al. 2005). We 
note the appearance of certain vibration bands of low inten-
sity at 810, 930 and 1076 cm−1 which can be attributed to the 
vibrations of the V–O–V, V–O–Si and V=O bonds, respec-
tively (Moisii et al. 2005). We also note that the vibration 
bands at 305 cm−1, 630 cm−1, 940 cm−1 and 995 cm−1 that 
appear in the PS/V2O5 spectrum have appeared in Raman 
spectra corresponding to silicon substrate in other work 
(Lee and Chang 2018). However, in our case, these vibra-
tion bands are very weak or absent in the Raman spectrum 
of the PS elaborated under the same conditions as those of 
the PS/V2O5. Nevertheless, they appear clearly in the spectra 
relating to PS/V2O5, this can be attributed to an enhance-
ment of the Raman bands relating to the crystal lattice of Si 
caused by the Vanadium metal and it can also be explained 
by recrystallizing annealing of PS during the process of ther-
mal evaporation.

The XRD diffraction patterns of V2O5 layers deposited 
onto PS substrate by electron beam evaporation method for 
different thicknesses are shown in Fig. 5. This figure shows 
the presence of diffraction peaks corresponding to V2O5 
along different planes. The reflection peaks are sharp, sug-
gesting high crystallinity of the PS/V2O5 naocomposites. 
A predominant peak was observed in the XRD diffraction 
pattern at 60.8◦ which related with the preferred orientation 
along (701) plane. Furthermore, seven reflection peaks were 
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observed at 2θ values of 31.5°, 32,8°, 47,6°, 54,3°, and 65,4° 
correspond to (310), (301), (600), (002), (012), and (711) 
reflections of the orthorhombic V2O5 material (Mu et al. 
2015; Das et al. 2017).

The XRD peaks show the formation of high crystallinity 
orthorhombic phase of V2O5 which is similar to the results 
reported by several researchers (Schneider and Maziarz 
2018; Govindarajan et al. 2019). The most intense peak for 
all patterns at 69.1° corresponds to the Si(400) (Rahmani 
et al. 2021a) while the peak at 51.2° is related to the diffrac-
tion from the p-type Si substrate (Ktifa and Rahmani 2023). 
We also note the presence of a broad band centered at 28.2° 
in the XRD pattern of PS indicating the presence of SiO2 
caused by a native oxidation (Rahmani et al. 2021b). This 
oxidation is reduced by the presence of V2O5 on the porous 
surface. No impurity peak was observed in XRD patterns of 
PS/V2O5 composites. Note also that there is an absence of 
certain diffraction peaks for a V2O5 layer with a thickness of 
400 nm as well as a remarkable lowering of the intensity of 
the main peak at 69.1°. This is mainly due to the screening 
caused by the relatively large thickness of the V2O5 layer. 
XRD analysis results also confirmed the formation of PS/
V2O5 composites.

In the light of SEM, FTIR, XRD and Raman results, 
we can conclude the establishment of chemical reactions 
between the porous surface and the V2O5 molecules. As it 
is known, V2O5 is an n-type semiconductor having a mul-
tiple valence range from V2+ to V5+, this can explain the 
variety of chemical bonds detected by FTIR and Raman 
spectroscopies.

Figure 6 shows the photoluminescence (PL) spectra of PS 
and PS/V2O5 with different thicknesses (200, 300 and 400 
nm) under laser excitation fixed at 488 nm. PS exhibits the 
highest PL intensity. This is expected and is explained by the 
fact that the confinement of excitons in nanoporous silicon 

is very efficient in producing intense PL. When increasing 
the thickness of V2O5 thin films, PL shows a decrease of 
the peak intensity for 300 nm and then it increases and it 
remains lower than that of PS. The diffusion of vanadium 
oxide into the PS layer augments whenever increasing thick-
ness thus influencing the porous structure which explains 
the dependence of the PL intensity with V2O5 deposition. 
Also, the density of non-radiative defects in the vanadium 
oxide layer is a determining factor in the emission effi-
ciency obtained from these layers. This density is related 
to the thickness and the quantity of the V2O5 elements, this 
explains the lowering of the PL intensity compared to that 
of the PS. The quenching of the PL emission can be also 
due to the metal plasmonic absorption and non-radiative 
energy transfer due to vanadium deposition (Chalana et al. 
2015). The PL peak position of PS/V2O5 with vanadium 
oxide thickness of 200 nm centrated at 560 nm (2.21 eV) has 
not changed comparing it to that of PS before treatment, this 
is due to the band edge transition in V2O5 with a bandgap 
energy of 2.2–2.3 eV (Lamsal and Ravindra 2013). In the 
case of PS/V2O5 with 300 and 400 nm thickness, the PL 
band position is centered at 640 nm (1.94 eV), it therefore 
has a redshift of 80 nm. Given that the shift of the PL curves 
is essentially related to the crystallites size according to the 
quantum confinement model, the origin of the PL evolu-
tions can be attributed to the increase in the concentration 
of oxygen atoms incorporated into the porous layer which 
affects the size of the oxidized silicon nanocrystals. The shift 
to lower energy could be also due to the trapped electrons at 
the located states related to Si–O bond of PS layer following 
the substitution of hydrogen atoms by oxygen as well as the 
oxide vanadium molecules V–O–V that are formed at PS 
surface according to the FTIR analysis (Ktifa et al. 2018; 
Rahmani et al. 2008). Moreover, the creation of intermediate 
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states by V2O5 inside the band gap of PS and the passage 
of the radiative recombinations through these levels is the 
cause of the redshift of the porous silicon PL curve.

Figure 7 displays the optical transmittance (T), reflec-
tance (R), and absorbance (A) spectra of PS and PS/V2O5 
with different thicknesses of V2O5 layer. The results obtained 
for each sample show a similar pattern. All samples show 
significant absorbance in the visible range, while reflectance 
and transmission are very low.

A similar optical behavior was found for different series 
of V2O5 thin layers (Schneider 2020). For absorbance spec-
tra, a stability is observed in the entire visible range which 
extends up to 750 nm. In the N-IR region, unlike the PS/
V2O5 composites, the absorbance decreases rapidly for the 
PS while the reflectance and the transmittance start increas-
ing. It can also be seen that the transmittance percentage 
decreases as the thickness is increased. The absorption edge 
of the V2O5 grown film shifts to high energies and it was 
observed at a wavelength of approximately 1100 nm, and 
above the absorption edge, the transmittance decreased 
slightly with increasing wavelength from about 30% at 1100 
nm to 10% at 1800 nm. The effect of vanadium oxide on the 
optical spectra manifests itself in the N-IR range. Indeed, a 
reduction in the transmission and reflectance percentages of 
about 20% and 25%, respectively. This percentage increases 
by about 40% for the absorbance by comparing the PS/V2O5 
(300 nm) to the untreated PS.

The optical absorption coefficient is calculated by using 
the Beer – Lamber equation (Mäntele and Deniz 2017):

(1)A = −log(T)

Knowing that an accurate determination of the bandgap 
energy (Eg) is necessary to well understand the photophysi-
cal properties of semiconductor materials. In our study, we 
have used the Tauc method to determine the Eg values from 
optical spectra (Tauc et al. 1966). For excitation energies 
higher than gap energy, the quantity (�E)n should have linear 
variations with E, following the Tauc law:

where � is the absorption coefficient (α = A/L with L is the 
optic length), β is a constant related to the order in crys-
talline structure of deposited films, known as band edge 
sharpness. n can take the following values (1/2, 3/2, 2 or 3) 
according to the electronic structure of the material and the 
type of the dominant transitions. In the case of V2O5 thin 
film, n = 1/2 corresponding to an indirect allowed transition. 
By adopting this value of n, the curves of (�E)1∕2 versus E 
are plotted and they are shown in Fig. 8. β is the slope of 
the straight line.

We can determine the energy band gap from the linear 
part by extrapolating the straight line until its intersection 
with the x-axis. An increased optical band gap from 1.95 
eV to 2.18 eV was found by the deposition of a vanadium 
pentoxide layer. This increase is due to the Moss-Burstein 
effect (Dutta et al. 2021). Indeed, the V2O5 allows to inject 
carriers into the conduction band of PS, the Moss-Burstein 
effect occurs when the electron carrier concentration exceeds 
the conduction band.

Based on the above discussion and by referring to studies 
made on similar structures (Wang et al. 2019), a possible 
carrier transfer represented by electron transition/migration 
from V2O5 to PS may occur. We also note that following 
these surface modifications and the establishment of a V2O5/

(2)(�E)n = �(E − Eg)
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PS heterojunction, we obtained major changes in the optical 
properties. The same behavior is found for similar structures 
(Bento et al. 2023). The increase of the band gap can be also 
explained by the presence of vacancy defects in the V2O5 
layer. These defects, induced by the vanadium pentoxide 
deposition and influenced by the variation in its thickness, 
affects the optical transitions and it is traduced by a PL shift 
as well as by a variation of the optical gap energy.

Conclusion

V2O5 thin films were fabricated on porous silicon by an envi-
ronmentally friendly method. The results revealed that V2O5 
thichness strongly affects the structure as well as the optical 
properties of the PS/ V2O5 nanocomposites. Photolumines-
cence spectra are red-shifted with the V2O5 layer thickness 
increases. In correlation with Raman and FTIR results, 
the observed PL shift is attributed to the trapped electrons 
at the located states owing to Si–O bond of PS layer and 
the oxidized Vanadium V–O–V molecules. A quenching 
of the PL emission is observed which can be due to the 
metal plasmonic absorption and non-radiative energy trans-
fer due to vanadium deposition. Transmission, absorbance, 
and reflectance spectra changed with the variation of V2O5 
thickness. The edge absorbance shifts to high energies due to 
the growth process leading to a variation in V2O5 thickness. 
Due to the presence of vacancy defects, the optical band gap 
increased from 1.95 to 2.18 eV after V2O5 deposition on 
porous matrix. The presence of vanadium pentoxide layer on 
PS offers the possibility to change and control the band gap 
energy. After deposition of V2O5 on its surface, the optical 
bandgap value of PS is within the desirable energy range for 
applications in photovoltaic solar cells. In the light of these 
results, PS/V2O5 can be considered as a promising material 
for solar cells and optical switching device applications. As a 
perspective, we plan to study the electrical and photothermal 
properties of this material in future work.
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