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Abstract
 Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) play a major role due to their capability to 
provide information at the molecular level of complex samples. However, asphaltenes deposition in capillaries during ioni-
zation hinders the analysis of unstable fractions. To overcome this, in our previous work (10.1016/j.fuel.2022.124418), we 
demonstrated laser desorption ionization (LDI) as an alternative to FT-ICR MS analysis of unstable asphaltene fractions 
without the occurrence of any capillary obstructions. Herein, a simplified fractionation methodology for separating asphal-
tene fractions according to their structural motifs is presented. Then, the asphaltene fractions were characterized by LDI ( +) 
FT-ICR MS. Moreover, structural characterization was also performed Collision-Induced Dissociation (CID) experiments.
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Introduction

 Asphaltenes are the petroleum fraction insoluble in 
n-alkanes, but soluble in toluene (Podgorski et al. 2013; 
Rueda-Velásquez et  al. 2013; Santos et  al. 2014). The 
asphaltene molecules can be classified as island or archi-
pelago-type. The island-type molecules are constituted by a 
single polycondensed aromatic nucleus. On the other hand, 
archipelago-type asphaltenes consist of at least two aromatic 
nuclei linked by alkyl bridges (Chacón-Patiño et al. 2017).

This petroleum fraction is known as the responsible for 
several problems in the oil industry, such as deposit for-
mation in wells, pipes, and reservoirs (Ghosh et al. 2016; 
Neuhaus et al. 2019; Subramanian et al. 2016). Therefore, 
it is essential to characterize asphaltenes, as the knowledge 
produced can be used to support models that allow us to 
predict under what conditions asphaltenes will remain stable 

(Dutta Majumdar et al. 2017; Mousavi-Dehghani et al. 2008; 
Rashid et al. 2019).

Mass spectrometers with FT-ICR analyzers are essential 
to accomplish this task, as they can differentiate thousands 
of species in mass spectra (Molnárné Guricza & Schrader 
2015). Even so, the high complexity of asphaltene samples 
and its tendency to self-associate make their analysis a chal-
lenging task.

The high complexity of asphaltenes samples directly 
impacts MS analyses due to differences in ionization effi-
ciencies. Consequently, only the most ionizable species are 
detected when analyzing such a complex sample (Chacón-
Patiño et al. 2017, 2018). To overcome this problem, the 
fractionation of asphaltenes into sub-fractions of reduced 
complexity is normally employed.

However, the asphaltene's self-association tendencies 
are another problem to be concerned about. That is because 
asphaltenes tend to aggregate before and during ionization 
(Chacón-Patiño et al. 2017; Herod 2010; McKenna et al. 
2013). That is specially concerning because the most com-
mon ion sources used for MS analysis of asphaltenes, elec-
trospray ionization (ESI) and atmospheric pressure photon 
ionization (APPI), that require the complete solubilization 
of the sample. Therefore, this can make it unfeasible to 
analyze asphaltene fractions that show greater aggregation 
tendencies.
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Alternatively, in a previous study we demonstrated Laser 
Ionization/Desorption (LDI) as a viable tool for the FT-ICR 
MS characterization of asphaltenes in solid state without the 
occurrence of capillary obstructions. Herein, a fractionation 
methodology based on solubility mechanisms is presented. 
Then, all asphaltene fractions were characterized by LDI ( +) 
FT-ICR MS analyses and the structural characterization of 
the samples was achieved by CID experiments.

Materials and methods

Materials

The HPLC grade (≥ 99%) n-heptane (Hep), ≥ 99% purity 
used in precipitation and extraction was purchased from 
Sigma Aldrich (Saint Louis, USA). The HPLC grade 
(≥ 99%) acetone, acetonitrile (ACN), and toluene (Tol) were 
purchased from Tedia (Fairfield, USA). The glass micro-
fibre filters (90 mm) used were purchased from Whatman 
(Maidstone, UK).

Separation of C‑7 asphaltenes

Asphaltenes were precipitated from two Brazilian oils as 
previously described (Silva et al. 2022). Briefly, n-heptane 
(n-C7) was added to the samples in proportions of 40 mL 
for each 1 g of oil. The mixtures were subject to ultrasonic 
bath for 60 min and left to stand for 24 h. Then, filtration was 
performed with glass fiber membranes for the separation of 
the unclean asphaltenes from the soluble fraction (maltenes). 
Finally, the unclean asphaltenes were washed with n-C7 in 
a Soxhlet apparatus for 120 h to promote the removal of 
occluded compounds.

Asphaltenes fractionation

The purified asphaltenes were encapsulated in chromato-
graphic filter paper and inserted into the Soxhlet apparatus 
for the extraction of 5 fractions using acetone, ACN, Hep, 
Hep/Tol (1:1), and Tol. The extraction process for each frac-
tion lasted for 24 h and 250 mL of each eluent was used to 
obtain the samples. The sample was ground between each 
extraction step to increase its area surface, improving extrac-
tion efficiency. Photos of the obtained fractions and a frac-
tionation procedure scheme are shown in Fig. 1S.

Asphaltenes characterization by LDI ( +) FT ICR MS

Analyses were performed using positive-ion mode LDI on 
a SolariX FT-ICR MS (Bruker, Germany) equipped with 
a YAG laser (355 nm) as previously described (Silva et al. 
2022). For this, all samples were dissolved in toluene at a 

concentration of 1 mg.mL−1 and 1 µL of each solution was 
spotted on the stainless-steel target without matrix. After 
drying, the LDI ( +) FT-ICR MS spectra were acquired 
with laser power from 17 to 24% and from 15 to 400 laser 
shots, according to the ionization efficiency of the analyzed 
sample.

Moreover, CID experiments were performed for all 
asphaltene subfractions in 3 different ranges of m/z (375, 
428 and 515 ± 20 Da). For this, a collision energy of 30 V 
(Q1 CID Energy) was employed for the range of m/z 
375 ± 20 Da range while 40 V was employed in CID experi-
ments performed for the ranges of m/z 428 and 515 ± 20 Da.

Data processing

Data visualization was performed with Bruker Compass 
DataAnalysis 5.0 software, and molecular formula assign-
ments were performed with Composer 1.0.6 software. 
Finally, the graphs were plotted using the Software Micro-
soft Excel, OriginPro 2018 b9.5.1.195, and Thanus 1.0.

Calculation methods

The molecular structures were characterized using analytical 
harmonic frequency calculations at the B3LYP/6–31 + G(d) 
level. The absence of an imaginary frequency indicates that 
the optimized structure is a local minimum (Sanches-Neto 
et al. 2020). The quantum chemistry calculations reported 
in this study were performed using the Gaussian 09 compu-
tational package (Frisch et al. 2016).

Results and discussion

Asphaltenes fractionation

Initially, a Brazilian asphaltene sample was fractionated by 
solubility mechanisms by Soxhlet extraction using a series of 
solvents: acetone, acetonitrile, heptane, heptane/toluene (1:1 
v/v) and toluene. The same asphaltene sample was already 
characterized by LDI ( +) FT-ICR MS and the results were 
reported in our previous study (Silva et al. 2022).

Tab. 1S shows the percentage yield of each sample 
extracted, and the total recovery. As already reported, ace-
tone is employed for the separation of asphaltene fractions 
that presents high ionization efficiency in positive-ion mode 
for LDI and APPI (Chacón-Patiño et al. 2018; Rodgers et al. 
2019; Silva et al. 2022). Then, acetonitrile is used to remove 
porphyrins that may be present in the samples (Chacón-
Patiño et al. 2018; Giraldo-Dávila et al. 2016). Using these 
solvents is important for the separation of the easily ioniz-
able species that causes ion suppression in MS analysis, lim-
iting the complete characterization of asphaltenes samples.
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Extractions with acetone and acetonitrile fractions 
resulted in recovery yields lower than 1%, which can be 
explained by the low solubility of asphaltenes in these sol-
vents (Larichev et al. 2016; Morantes et al. 2019). On the 
other hand, 5.8% of the sample was extracted using heptane. 
Although asphaltenes are insoluble in n-alkanes, in Soxhlet 
systems it is possible to extract low polarity asphaltene 
(Chacón-Patiño et al. 2016, 2018; Juyal et al. 2013; Strausz 
et al. 2006). Besides, as asphaltenes have low solubility in 
acetone, acetonitrile, and heptane, Soxhlet extraction with 
these solvents will promote the removal of less insoluble 
compounds.

In the sequence, the use of the heptane/toluene (1:1 v/v) 
resulted in the extraction of 78.6% of the sample. After 
that, the asphaltenes species that remained insoluble were 
extracted with toluene. As asphaltenes are soluble in toluene, 
this behavior can be explained by the presence of 50% tolu-
ene in the Hep-Tol mixture. Even so, species with a greater 
tendency to aggregation remain insoluble, requiring a higher 
percentage of toluene (Chacón-Patiño et al. 2016; Gawrys 
et al. 2003; Santos Silva et al. 2019; Sedghi et al. 2013; 
Spiecker et al. 2003).

Our previous study demonstrated a relation between ioni-
zation efficiency (IE) and the number of laser shots (LS) 
required to ionize the samples (Silva et al. 2022). As seen in 
Eq. (1), the IE is lower the higher the number of LS needed 
to accumulate a target number of ions in MS analyses.

Equation 1 was used to calculate the IE for all analyzed 
samples. Afterward, the calculated IE values were compared 
with the mass recovery for each fraction. The results are 
presented in Fig. 1.

Note that fractions extracted with acetone and heptane 
showed the highest ionization efficiencies in LDI ( +). On 
the other hand, despite the high mass recovery, samples 
extracted in Hep/Tol (1:1 v/v) and toluene are less ionizable. 
Thus, this result emphasizes the importance of the fractiona-
tion of asphaltenes because in analyzes of the unfractionated 
sample, only a small portion of the species would have their 
ionization favored.

The H/C ratios for the asphaltene sample determined 
by combustion elemental analysis is compared to the H/C 
ratio determined through LDI ( +) FT-ICR MS analysis in 
Fig. 2. As seen, determining the H/C ratio from the LID 
( +) FT-ICR MS analysis results in lower H/C values as the 
LDI favors the ionization of hydrogen-deficient species. 
However, the H/C values derived from LDI ( +) FT-ICR 
MS analysis of the fractions, calculated by Eq. (2), are 
higher. This result shows that the fractionation mitigates 
selective ionization. This is similar to the results published 

(1)IE ∝
1

LS

by Chacón-Patiño et al. (2021), in which an extrography 
fractionation also enabled access to compounds of higher 
H/C ratios in APPI ( +) FT-ICR MS analysis (Chacón-
Patiño et al. 2021).

in which, the H/C ratios for the asphaltene fractions (H/
CFractions) is equal to the sum of the abundance-weighted 
H/C ratio for each fraction (AW H/Ci) versus the percentual 
recovery of each extracted fraction (wt%i) (Chacón-Patiño 
et al. 2021).
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Characterization of the asphaltene fractions

Figure 3 illustrates the LDI ( +) FT-ICR MS spectra and the 
class distribution of the five asphaltene fractions extracted 
by the fractionation method. Detailed information on the 
mass spectra, such as zoom insets and peaks resolution rela-
tive to some assigned species, are shown in the supplemen-
tary material (from Fig. 2S to Fig. 6S). In addition, Table 2S 
shows information about the processing performance, i.e., 
the number of peaks and percentage of assigned species. 
Plus, error distributions for the molecular assignments are 
shown in Fig. 7S.

In the spectra of Fig. 3a, the samples extracted with ace-
tone, acetonitrile, and heptane showed unimodal distribu-
tions. On the other hand, samples extracted with Hep-Tol, 
and toluene showed greater amplitudes of m/z distribution 
and non-uniform profile, suggestive of the occurrence of 
nano-aggregation during the ionization process.

In Fig. 3b, it is seen a greater abundance of oxygen and 
sulfur-containing compounds in the last two fractions. Such 
results agree with the hypothesis of dimer and nano-aggre-
gates formation during the ionization of Hep-Tol and Tolu-
ene samples, since, in asphaltenes, a greater content of acidic 
species is related to higher aggregation tendencies (Juyal 
et al. 2010; Pinto et al. 2017; Rodgers and McKenna 2011).

As seen in Fig. 2 (b), hydrocarbons and nitrogen-com-
pounds were detected in greater abundance in the LDI ( +) 
FT-ICR MS analyses. Figure 4 shows the double-bound 

equivalent (DBE) distributions versus carbon numbers 
(C#) with mean values for the DBE and H/C ratios calcu-
lated for these compounds. In addition, DBE x #C relative 
to acidic compounds containing O and S heteroatom were 
also included, as they seem to play an important role in the 
asphaltenes aggregation.

Note that samples extracted with acetone and acetoni-
trile reached lower DBE values. On the other hand, it was 
detected highly unsaturated species (DBE > 40) in the hep-
tane/toluene and toluene extracted samples, especially for 
the O and S-containing compounds.

The H/C ratios are indicators of aromaticity, in which 
a low H/C average suggests a greater aromaticity. For the 
N-compounds, H/C is higher for acetone, acetonitrile, and 
heptane fractions, contrasting with the Heptane, Hep-Tol, 
and Toluene fractions, where compounds with higher C# and 
DBE were detected. Likewise, the HC compounds detected 
in the Hep-Tol, and Toluene fractions exhibit similar com-
positional spaces. Thus, we can affirm that more aromatic 
species were extracted in these last two fractions.

Finally, for the sample extracted in toluene, the O and 
S-containing compounds exhibit an atypical compositional 
space, in which, most of the compounds are in a region 
of DBE > 40. In addition, a bimodal profile evidence the 
presence of asphaltene aggregates in this sample. There-
fore, the results suggest a higher aggregation tendency for 
the O and S heteroatom containing compounds extracted 
in toluene. Such results agree with other studies published 

Fig. 3  (a) LDI ( +) FT-ICR MS 
spectra and (b) class distribu-
tion bar graph for the most 
abundant heteroatomic classes 
detected in the asphaltene F-01 
subfractions extracted by the 
developed methodology using 
acetone, acetonitrile, heptane, 
heptane/toluene (1:1 v/v), and 
toluene
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Fig. 4  Graphs of DBE versus carbon numbers, average DBE and H/C for N and HC class compounds, and classes containing heteroatoms O and 
S detected in the LDI ( +) FT-ICR MS analysis of the asphaltene fractions
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in the literature. In this case, the presence of these heter-
oatoms contributes to the formation of polar interactions 
between asphaltenes molecules, thus, aggregation is favored 
(Chacón-Patiño et al. 2020; Kilpatrick 2012).

Planar limits are defined as lines connecting maximum 
DBE values at given carbon numbers. Analyzing the slopes 
and y-intercepts of these lines is a means of predicting struc-
ture and molecular condensation. For asphaltenes, high pla-
nar limit slopes (~ 0.90) are associated with peri-condensed 

structures resulting from the non-linear addition of benzene 
units. On the other hand, the cata-condensed structures, 
resulting from the linear addition of benzene units, show 
planar limits slopes close to 0.75 (Cho et al. 2011; Hsu et al. 
2011; Silva et al. 2022). The planar limit slopes for the com-
pounds of class N, HC, and  NxOySz detected in the asphal-
tene fractions are shown in Table 1.

The higher slopes for samples extracted in heptane/tol-
uene and toluene indicate the predominance of peri-con-
densed structures. On the other hand, the first three fractions 
are mostly composed of cata-condensed structures.

Furthermore, the carbon number per DBE ratio (#C / 
DBE) acts as an aromaticity indicator. In this regard, low 
#C/DBE ratios indicate increased aromaticity. Aromaticity 
indices calculated for compounds of classes N and HC and 
other classes containing O and S heteroatoms are presented 
in Table 2 For all classes, the results show the greater aro-
maticity of the compounds extracted in heptane/toluene and 
toluene. Such results agree with the H/C ratios shown in 
Fig. 3.

Structural characterization of the asphaltene 
fractions

CID experiments can be used in the structural characteri-
zation of asphaltenes, differentiating fractions enriched in 
island and archipelago motifs (Silva et al. 2022). In this, the 
cleavage of alkyl bridges between aromatic cores reveals 
the presence of archipelago structures. To perform this, the 
region of m/z 428 ± 10 Da was selected, and the resulting 
LDI ( +) FT-ICR MS/MS spectra are shown in Fig. 5 along 

Table 1  Planar limit slops for the compounds of class N, HC, and 
 NxOySz detected in the asphaltene fractions

Fraction Class N Class HC Class  NxOySz

Acetone 0.696 0.740 0.623
Acetonitrile 0.685 0.717 0.685
Heptane 0.709 0.742 0.721
Heptane/Toluene 0.872 0.827 0.759
Toluene 0.892 0.904 0.810

Table 2  Aromaticity indices calculated for the compounds of class N, 
HC, and  NxOySz detected in the asphaltene fractions

Fraction Class N Class HC Class  NxOySz

Acetone 1.896 1.802 1.855
Acetonitrile 1.885 1.693 1.780
Heptane 1.860 1.762 1.919
Heptane/Toluene 1.864 1.748 1.745
Toluene 1.799 1.678 1.668
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with plots of DBE x #C for each fraction. The error distri-
butions for the molecular assignments are presented in sup-
plementary material (from Fig. 8S to Fig. 10S).

In the LDI ( +) FT-ICR MS/MS spectra, only dealkyla-
tion profiles are seen in the dissociation of island-type 
asphaltenes. In contrast, the cleavage of alkyl bridges 
between aromatic cores in archipelago-type asphaltenes 
leads to the formation of low m/z fragments. Conse-
quently, in MS/MS spectra, a bimodal profile is suggestive 
of a greater abundance of archipelago-type asphaltenes. 
Therefore, the mass spectra seen in Fig. 5 suggest the pre-
dominance of archipelago-type asphaltenes in the fraction 
extracted with toluene.

Graphs of DBE x C# are also presented in Fig. 5. In the 
graphs, vertical lines have been drawn to separate the region 
of precursors and product ions while horizontal lines indi-
cate the lowest DBE of the precursors. Therefore, only frag-
ments derived from the cleavage of alkyl bridges between 
aromatic cores in archipelago structures will be found below 
this horizontal line.

For all samples, the precursor ions covered a wide range 
of DBE, therefore, most of the fragments are found in a 
region above the line that delimits the DBE of the pre-
cursors. So, it makes it difficult to verify the presence of 
archipelago structures by losses of aromaticity. Even so, the 
toluene-extracted sample seems to contemplate a greater 
content or archipelago-type asphaltenes. Meanwhile, the 
first three fractions apparently comprehend a lower content 
of archipelago-derived product ions. Also, these findings 
agree with the results of CID experiments for other mass 
ranges in which the toluene-extracted sample seems enriched 
in archipelago-type asphaltenes, regardless of the m/z range 
analyzed (see Fig. 2S and 3S).

Further, the data about DBE and the number of aliphatic 
carbons obtained by analyzing the dealkylation profiles 
made it possible the proposition of molecular structures for 
the asphaltenes species. Figure. 6 shows theoretical struc-
tures proposed for the most abundant ions detected in each 
fraction by LDI ( +) FT-ICR MS/MS analyses for m/z 375 
and 438 ± 10 Da.

For m/z 375 ± 10 Da, the ions detected in greater abun-
dance in the fractions extracted with acetone and heptane 
have the same molecular formula. However, an in-depth 
analysis of the MS/MS data evidence the occurrence of 
structural isomerism due to the different numbers of ali-
phatic carbons in these structures. For the m/z 428 ± 10 Da, 
structures with the same aromatic nucleus were proposed for 
the most abundant species detected in the samples extracted 
in heptane/toluene and toluene.

The structures proposed represent only one of the several 
possibilities of molecular arrangements for the molecular 
formulas detected. Even so, the proposed structures agree 
with the calculated planar limit slopes, and aromaticity 
indexes (C#/DBE) for  N1 compounds detected in LDI ( +) 
FT-ICR MS analyses as shown in Table 1 and 2, respectively.

Molecular structures were also proposed for the ions 
identified in the region of m/z 515 ± 10 Da. In Fig. 7, the 
results point to the presence of cata-condensed structures in 
the first three fractions, with predominance of fragmentation 
by alkyl-side chains cleavage. In contrast, the Hep-Tol and 
toluene fractions presented archipelago-like fragmentation 
profiles. Thus, archipelago-type structures were proposed 
for the last two fractions along with possible fragmentation 
routs in.

Figure 8 a exemplifies a possible fragmentation route 
for the ion detected in greater abundance in the Hep-Tol 
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fraction. The proposed structure contains a nitrogen in one 
of the aromatic nuclei connected by an alkyl bridge. Several 
fragmentation routes are possible for this structure, but for 
all of them, the cleavage of the alkyl bridge leads to low 
DBE fragments. Moreover, an in-depth analysis of the MS/
MS reveals the loss of four aliphatic carbons, leading to the 
formation of the product ion  C35H21N•+ (DBE 25). Further, 
the data point to the cleavage of the bond between the two 
aromatic nuclei, generating the fragments  C21H14

•+ (DBE 
15) and  C14H11N•+ (DBE 10)

For the toluene-extracted sample, an in-depth analysis of 
the fragmentation reveals the loss of nine aliphatic carbons 
that leads to the fragment ion  C20H21N•+ (DBE 21). Further, 
the cleavage of the alkyl bridge between the aromatic nuclei 
in the archipelago structure leads to the formation of hydro-
carbon detected in the spectra with the molecular formula 
 C21H14

•+ (DBE 15) as shown in Fig. 8b.
The results of frequency calculations can be used to deter-

mine the stability of a molecule or compound and help iden-
tify possible issues with the molecular structure. Electronic 
structure calculations were performed using the Gaussian 
16 software to confirm the proposed structures in Fig. 6 
and Fig. 7 are real. The results showed that all structures 
have positive harmonic frequencies, indicating that they are 
local minima and therefore real. The harmonic frequencies 
obtained are presented in the Supplementary Material (from 
Tab. S3 to S12).

Conclusions

The fractionation methodology was effective in separating 
fractions that exhibit high ionization efficiencies, thus prov-
ing to be able to extend the characterization of asphaltenes 
samples, allowing access to information on species that are 
difficult to ionize. Furthermore, LDI ( +) FT-ICR MS analy-
sis allowed the characterization of all asphaltene samples, 
even the most unstable ones. Additionally, CID experiments 
were performed to provide structural characterization of the 
fractions. It was observed that the method was also effec-
tive in separating asphaltenes according to their condensa-
tion and structural motifs. Finally, structures were proposed 
based on data acquired and frequency calculations were con-
ducted using Gaussian 09 software to confirm the validity of 
the proposed structures.
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