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Abstract
Preferential flow is still an elusive phenomenon in porous media, impacting the oil industry, micro- and nanofluidic applica-
tions, and soil sciences. The Lattice Boltzmann Method (LBM) with the Pore-Scale approach is a robust mesoscopic tool 
for modeling flows in complex geometries, detailing velocity fields, and identifying preferred pathways. Since preferential 
flow has several causes, it is hard to distinguish and evaluate the different contributions to the phenomenon. However, a 
starting simplification assumes that geometrical features are its primary cause. In this work, we discuss some insights about 
preferential flow and verify the validity of a previous tortuosity-dependent resistance model in a non-Darcy regime. Initially, 
we demonstrate that the Pore-Scale LBM recovers the Forchheimer empirical model. Although the tortuosity model reason-
ably predicts many preferred pathways, the inertial contributions in the Forchheimer regime make the porous pattern, grain 
shape, and path deflections disturb those predictions. The simulations indicate that paths with minor flow resistances affect 
the neighboring flow preferences. Dead zones arise by imposing clogging conditions, and the flow field and preferred paths 
change. Wondering how the observed preferential routes impact the evolution of a reactive flow, a mass transport analysis 
was carried out to track the porosity evolution during the reactive dissolution of the solid structures. As a result, the matrix 
porosity increases over time, especially under diffusion- and kinetic-dominated conditions.
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Introduction

Understanding fluid flow in porous media and mathemati-
cally describing its dynamics are still current challenges in 
research. The relevance of the problem is evidenced by a 
broad range of applications, from enhanced oil recovery 
(EOR) in the oil industry to pharmaceutical, geological, and 
environmental studies. In many cases, one is particularly 
interested in determining the preferential paths of the flow, 
which are defined as the higher flow rates in specific sections 
of the matrix, such as fractures and fingers (Nimmo 2009).

In pharmaceutical industries and farming, for instance, 
knowledge of the preferential flow allows for the design of 
microfluidic devices (Bhagat et al. 2009), and the targeted 
delivery of biochemicals and microbes (Wang et al. 2014; 
Fishkis et al. 2020). In soil sciences, preferential flow influ-
ences the aeration and contamination of soils (Kozuskan-
ich et al. 2014; Xiao et al. 2019), the design of geological 
reservoirs for CO2 sequestration (Gor et al. 2013), and also 
the formation of subsurface stormflow, which causes urban 
flooding and erosions (Dusek et al. 2012). In the oil industry, 
when preferential paths are considered, the reservoir oil dis-
placement can be optimized, e.g., through micro- and nano-
particle control in EOR (Donath et al. 2019). Additionally, 
the loss of drilling fluid as a result of fracture formation dur-
ing drilling operations can be perhaps prevented, since those 
fractures deflect the flow to preferential paths through the 
rocks (Calçada et al. 2015). Hence, an improved understand-
ing of the preferential flow dynamics could have a positive 
impact on diverse sets of problems.
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Preferential flows have several causes, including (i) topo-
logical features [e.g., presence of macropores (Guo et al. 2019) 
and differences in pore configurations (Clothier et al. 2008)], 
(ii) physical and chemical properties of the fluid and solid 
phases along with their interactions (e.g., capillarity, surface 
tension, and spatial variability of matrix properties (Dusek 
et al. 2012)), and (iii) flow dynamics [e.g., unstable wetting 
front (Parlange and Hill 1976)]. Because of the complexity of 
the problem, researchers have usually investigated each sepa-
rate contribution to establish their relative importance.

Regarding the influence of topology, some authors have 
identified critical geometry factors for better predictions of 
the preferential flow, like tortuosity (Viberti et al. 2020), 
channel size, and pore-to-pore alignment (Yeates et al. 2020). 
Ju et al. (2018) proposed and validated a tortuosity-dependent 
model derived from Darcy’s law to predict preferential trajec-
tories in porous media. However, the geometry features have 
been mostly restricted to creeping flows with extremely low 
Reynolds numbers [i.e., the flow rate is a relevant factor (Liu 
et al. 2019a)]. Since the preferential flow depends on several 
aspects, the current literature still lacks a unifying or general-
ized theory to determine it (Weiler 2017; Fan et al. 2022).

Some studies experimentally evaluate the preferential 
paths through tracer tests (Yao et al. 2017) or measurements 
of isotope signatures (Ma et al. 2017). However, experimen-
tal investigation of preferential flows is often problematic 
because it causes clogging and interferes with the flow pat-
terns (Parvan et al. 2020), decreasing permeability (Liu et al. 
2019b) and changing the outlet pressure (Shen and Ni 2017). 
Hence, a helpful alternative is the use of theoretical mod-
eling and simulation.

Depending on the length scale, there are two major mod-
eling approaches for porous media flow: the Representative 
Element Volume (REV) (Zhang et al. 2000) and the Pore-
Scale (Blunt et al. 2013) approaches. Macroscopic prop-
erties, such as permeability, and continuum models using 
standard computational fluid dynamic tools characterize the 
REV simulations. On the other hand, in Pore-Scale simu-
lations, the proper matrix is treated with connections and 
discrete models at a microscopic level (Sharma et al. 2019). 
REV is easy to implement but uses semi-empirical models 
(e.g., drag forces), oversimplifies the descriptions, and fails 
to provide crucial clues for preferential flow determination, 
such as the local information about the flow. Pore-Scale is 
precise and detailed, but it is also computationally expensive 
(He et al. 2019; Sharma et al. 2019).

A promising and recent approach in computational 
fluid dynamics is the Lattice Boltzmann Method (LBM), 
a kinetic-based numerical tool developed from the Lattice 
Gas Automata (Higuera et al. 1989). The LBM can model a 
variety of engineering problems (Sharma et al. 2020). Roth-
man (1988) presented one of the first works about LBM in 

porous media flow. Since then, several works applying LBM 
have appeared in the literature investigating, for instance, the 
effects of pore configuration in the flow (Sharma et al. 2018; 
Ju et al. 2020), multiphase flows (Kashyap and Dass 2018; 
Lourenço et al. 2022), and so on (Sharma et al. 2019). REV-
LBM, the most popular approach, represents the porous 
media through a resistance field model (He et al. 2019). One 
successful example is the Guo-Zhao model, which proposed 
adding the porosity and a forcing term in the LB methodol-
ogy (Guo and Zhao 2002). Nevertheless, it still relies on 
macroscopic empirical models, unsuitable for the preferen-
tial flow determination problem.

In this context, the Pore-Scale LBM emerges as a pow-
erful and computationally efficient method to model flows 
through porous media (He et al. 2019). This method imple-
ments the no-slip boundary condition without necessarily 
using mesh refinement and it is easily extended to complex 
geometries (Sharma et al. 2019). Hence, in this work, we use 
the Pore-Scale LBM simulations to investigate the geom-
etry and topological effects of a bidimensional matrix on 
the preferential flow configuration. We initially detail the 
theoretical background, such as the governing equations for 
porous media flow and the LBM approach. Next, we present 
the methodology used, including the initialization process 
and parameter adjustments. Finally, we discuss the results 
observed from simulations and summarize the main contri-
butions of this work.

Theoretical background

Here we present an overview of the mathematical modeling 
behind the simulations in this paper. The first sections char-
acterize fluid flow in porous media by enumerating the main 
physical properties and governing equations, respectively. 
Then, the LBM concepts are introduced and lattice equations 
for fluid flow and mass transport are presented for a bidimen-
sional domain. Next, we explain how heterogeneous reac-
tions are included in this work and discuss the evolution of 
the porous structures over time due to reaction degradation. 
Finally, we close the theoretical background with important 
aspects of boundary conditions.

Physical properties

The most relevant physical properties used to characterize 
porous media are permeability, porosity, and tortuosity. The 
permeability K measures how easy it is for any fluid to per-
colate the porous pattern independent of its properties. It is 
generally associated with the fraction of empty space in the 
matrix, i.e., the porosity or voidage. Among different types 
of porosity, we can identify the overall porosity ( � ) as the 
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ratio between the void ( Vv ) and bulk volumes ( Vb ) of the 
porous media (Guo 2019),

Although permeability and porosity are related to flow 
magnitude, in this work, we consider tortuosity ( � ) as the 
most crucial matrix property to predict preferential flow. It 
measures how sinuous the trajectories are inside a porous 
medium, and it can be defined as � = Le∕L , where Le is the 
sinuous length through the porous structures, and L is the 
linear distance from inlet to outlet of the media (Clennell 
1997). The relevance of this geometrical parameter for pref-
erential flow will become clearer in the following section.

Additionally, the most relevant parameter to characterize 
fluid flow is the Reynolds number ( Re ). This dimensionless 
parameter is often used to identify the flow regime by recog-
nizing the balance of inertial and viscous forces. Especially 
for porous media flow, Re can be defined using the Blunt 
diameter as the characteristic length ( lc),

where � is the shear viscosity, u is the macroscopic veloc-
ity, � is the macroscopic density, Vb is the total volume of 
the porous media, and Aw is the wetted surface (Blunt 2017; 
Viberti et al. 2020).

Governing equations in porous media

In systems described by small Re , i.e., Stokes or creeping 
flows ( Re < 25 ), only viscous forces control the flow (Mck-
ibbin 1998). In this case, the velocity is directly proportional 
to the pressure drop but inversely proportional to the matrix 
length, as suggested by Darcy’s law,

The integral form of Eq. (4), which is the simplest equa-
tion for modeling one-phase flow in porous media, makes 
the dependence of the velocity flow on pressure p and porous 
media length LPM even more evident,

Because the velocity must be inversely proportional to 
the flow resistance G , we can define G = �LPM∕K (Ju et al. 
2018). Given, however, that the permeability of the matrix is 

(1)� =
V
v

V
b

.

(2)Re =
�|u|lc
�

,

(3)lc =
�Vb

Aw

,

(4)∇p = −
�

K
u.

(5)|u| = K

�

�p

LPM
.

usually a function of tortuosity (Clennell 1997; Guo 2012), 
the flow resistance through a uniform cross-sectional area 
can be written as

where ℂ is a constant related to the chosen permeability 
model. Here, we identify Eq. (6) as the Ju et al. model since 
it is similar to Darcy’s flow resistance equation derived in 
their work (Ju et al. 2018). When modeling a specified fluid 
through settled porous structures, the fluid and matrix prop-
erties are fixed. Consequently, the flow resistance is only 
dependent on the tortuosity. In these conditions, small tortu-
osities (i.e., small flow resistances) indicate the preferential 
paths of the porous medium.

As the flow rate increases, the inertial forces become 
stronger and the application of Darcy’s law at the so-called 
inertial regime ( 25 < Re < 375 ) becomes unfeasible. For 
systems with larger Re , the Forchheimer equation is a semi-
empirical model that seeks to describe the further complexity 
of the porous media flow. Hence, the resistance in this model 
admits contributions from both viscous forces (first term) and 
inertial forces (second term) (Mckibbin 1998),

where � is a constant which, despite some model proposals 
to predict it (Takhanov 2011), is easily obtained experimen-
tally (Iriarte et al. 2018).

The Forchheimer equation successfully recovers Darcy’s 
law for small Re when the second term is much smaller than 
the first term, i.e., when 𝛽𝜌K|u|∕𝜇 ≪ 1 . Thus, it is conveni-
ent to give a proper name to this dimensionless term: the 
permeability Reynolds number ReK = ��K|u|∕� . Hence, 
when ReK ≪ 1 , the inertial contributions become unimpor-
tant and the Forchheimer equation reduces to Darcy’s law 
(Mckibbin 1998; Dukhin and Goetz 2009).

Again, to inspect the dependence of velocity on the pres-
sure gradient, the Forchheimer equation can be rewritten in 
more attractive form by defining the apparent permeability 
Kapp = −�|u|∕|∇p| (Huang and Ayoub 2008),

which provides a linear relationship between the velocity u 
and 1∕Kapp (Iriarte et al. 2018).

Lattice Boltzmann method (LBM)

The LBM is a mesoscopic approach, where we consider a 
statistical description of the particles in the system. LBM 
uses the density distribution function f (�, �, t) to track the 

(6)G = ℂ�LPMτ
2,

(7)−∇p =
�

K

(
1 +

��K

�
|u|

)
u,

(8)
1

Kapp

=
1

K
+

��|u|
�

,
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distributions of molecules, which describes the probability 
of finding a particle with velocity � at an infinitesimal space 
and time interval around � and t . In the absence of an exter-
nal force field, the advection of f (�, �, t) is governed by the 
simplified Boltzmann Transport Equation (BTE),

where Ω is the collision operator, which describes the com-
plex dynamical interactions during particle collisions. The 
linear model known as the Bhatnagar-Gross-Krook (BGK) 
operator is broadly used in the LBM literature because of 
its simplicity (Bhatnagar et al. 1954). Alternatively, more 
robust collision schemes can be implemented, such as 
the Multiple-Relaxation-Time (MRT) model proposed by 
d’Humières (1992). Here, we implement the MRT model 
for fluid flow to ensure viscosity-independent permeabilities 
(Pan et al. 2006) and use the BGK model for mass transport 
to save computational time.

LBM for fluid flow

The insertion of the MRT model into the BTE discretized in 
space ( � ), velocity ( �α ), and time ( t ) originates the LB-MRT 
equation for each discrete lattice direction �α,

which, after Chapman-Enskog expansion, recovers both the 
Navier-Stokes and the continuity equations without external 
forces. We note that � is the index of the direction �α and 
�t is the time interval that arises after discretization.

The purpose of � is to map fα from the population 
space into the moment space by a similarity transforma-
tion. These moments (averages) are the statistical descrip-
tors of the particle distribution. The collisions are then 
executed in the moment space. The matrix � expressed in 
Eq. (11) was calculated by implementing the orthogonal-
based Gram-Schmidt approach to satisfy the hydrodynamic 
moments. The main difference to the BGK operator is that 
the moments can be individually relaxed. Afterward, they 
can be mapped back onto the population space by computing 
the inverse transformation �−1.

Therefore, � and � are, respectively, the transformation 
and relaxation matrices,

(9)
[
�t + � ⋅ ∇

�

]
f (�, �, t) = Ω(f ),

(10)
fα
(
� + �α�t, t + �t

)
− fα(�, t) = −�−1

��
[
fα(�, t) − f eq

α
(�, t)

]
�t,

where � is the relaxation rate ( � ≡ 1∕� ), � is the relaxation 
time, �� and �j are the relaxation rates for the conserved 
moments (i.e., density and momentum), �ϵ and �q are free 
parameters adjusted to keep the method stable, �e is related 
to the bulk viscosity (or dilatational viscosity) � , and �� is 
related to the shear viscosity � (D’Humierès 1992; Jiang 
et al. 2022),

where cs is the speed of sound.
The matrix � also transforms the equilibrium distribu-

tion function f eqα  , represented by the Maxwell-Boltzmann 
distribution function,

into the moment space. Note that �α are the weights speci-
fied for each different lattice model after expressing the equi-
librium distribution as a Hermite polynomial. For the D2Q9 
model (a bidimensional model with nine discrete velocities), 
c2
s
=

1

3

(
�x

�t

)2

 and the weights are 

 in which the discrete velocities are 

(11)� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
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0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1

⎤
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,
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)
,
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3
,
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2

)
,
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,
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,
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,
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,
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Finally, the macroscopic density and flow velocity are 
recovered as the first moments of the density distribution 
function,

LBM for mass transport

The BTE can also be implemented to solve the mass trans-
port with the BGK collision scheme. Thus, the LB-BGK 
equation for each discrete lattice direction �α is

where g� is the concentration distribution function, and �g is 
the relaxation time. Because the macroscopic convection-
diffusion equation is linear in velocity, the equilibrium dis-
tribution function geqα (�, t) can be written in simpler form 
compared to Eq. (15):

Hence, after Chapman-Enskog expansion, Eqs. (20) and 
(21) recover the macroscopic convection-diffusion equa-
tion with Fick’s law. It is worth noting that source terms 
(e.g., homogeneous reactions) are neglected in this analy-
sis. The concentration field C(�, t) is obtained from the 
zeroth-moment:

Unlike for the fluid flow methodology, the D2Q5 model 
is considered here to discretize the spatial domain, in which 
only the discrete velocities in the range [ �0,… , �4 ] are used. 
In this case, the rest fraction J� is chosen as

where J0 ( 0 ≤ J0 ≤ 1 ) is either given or obtained from a 
known diffusion coefficient D calculated by the formula

For advection-diffusion problems, the Péclet dimension-
less number ( Pe ) determines if the system is primarily con-
trolled by advection ( Pe ≫ 1 ) or diffusion ( Pe ≪ 1 ), where

(18)�(�, t) =
∑
�

f�(�, t),

(19)�(�, t) =
1

�

∑
�

f�(�, t)�α.

(20)

gα
(
� + �α�t, t + �t

)
− gα(�, t) = −

�t

�g

[
gα(�, t) − geq

α
(�, t)

]
,

(21)geq
α
(�, t) = C(�, t)

[
J� +

�α.�(�, t)

2

]
.

(22)C(�, t) =
∑
�

g�(�, t).

(23)J� =

{
J0, � = 0(

1 − J0
)/

4, � = 1, 2, 3, 4

(24)D =

(
1 − J0

)
2

(
�g −

1

2

) (�x)2
�t

.

Heterogeneous reactions

Heterogeneous reactions can be implemented to evaluate 
the effect and significance of preferential paths. Here, the 
degradation of the solid porous structures is modeled by a 
first-order reaction,

where Pm represents the chemical component in the porous 
matrix (solid phase), Rc and Pd represent the reactant and 
the product soluble in the fluid phase, respectively, and kr 
is the forward reaction rate constant. The arbitrary compo-
nents in Eq. (26) can represent, for instance, an acid attack 
in carbonate rocks. Based on Eq. (26), the elementary rate 
of reactant consumption is

where the concentration of the reactant [Rc] at each time and 
position is computed from the mass transport.

Additionally, the dimensionless parameter known as 
Damköhler number ( Da ) can be used to distinguish between 
heterogeneous reactions controlled by kinetic ( Da ≫ 1 ) or 
diffusion ( Da ≪ 1 ) rates, since

Volume of pixel (VOP)

The Volume of Pixel (VOP) method can be used to track the 
evolution of the solid phase when heterogeneous reactions 
take place. In this method, the degradation rate of the solid 
phase is (Kang et al. 2006)

where Vs(�) is the solid volume at the node � , A is the area of 
the solid-liquid interface, and Vm is the solid molar volume. 
After first-order time discretization, the volume at the time 
step t + �t is calculated by

Vs(�, t = 0) is initialized with a constant value Vs0 . Adjust-
ing the time and space intervals ( �t and �x ) to be the same as 
used in the LB simulations, the volume of the solid gradually 
decreases according to Eq. (30), since r < 0 . When it locally 
reaches Vs(�, t + �t) = 0 , the node is updated as a fluid node 

(25)Pe =
uxlc

D
.

(26)Pm(s) + Rc(aq)
kr
�������→ Pd(aq),

(27)r = −kr[Rc],

(28)Da =
krl

2
c

D
.

(29)
�Vs(�)

�t
= AVmr,

(30)Vs(�, t + �t) = Vs(t) + AVmr�t.
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and, consequently, the fluid properties must be set. In this 
work, density and concentration are initialized to average 
values from neighboring fluid nodes; velocities are initial-
ized to zero since the node is near to the stationary solid 
phase (no-slip condition); and the distribution functions are 
initialized to their equilibrium values.

Boundary conditions

Figure 1 presents an illustration of the system simulated in 
this work, where the inlet ( x = 0 ) and the outlet ( x = 2LPM ) 
are open boundaries. Considering that the isothermal 
equation of state that emerges from the LB approach is 
p(�) = �(�)c2

s
 , a pressure drop �p was imposed to ensure 

fluid flow:

By setting an average density ⟨�⟩ inside the domain, the 
macroscopic densities are specified on the open boundaries:

A  p e r i o d i c  c o n d i t i o n 
f
neq
α (x = 0, y, t) = f

neq
α

(
x = 2LPM , y, t

)
 , where f neqα = fα − f

eq
α  

is the non-equilibrium distribution function, is set at the 
open boundaries. This type of boundary condition guar-
antees that the information (e.g., momentum) exiting from 
one side of the domain enters the opposite side. Thus, the 
periodic condition with pressure variation (Kim and Pitsch 
2007) is

(31)�p =
[
�(x = 0) − �

(
x = 2LPM

)]
c2
s
= c2

s
��.

(32)�(x = 0) = ⟨�⟩ + 0.5��,

(33)�
�
x = 2L

PM

�
= ⟨�⟩ − 0.5��.

where yα = y + eαy�t.

The halfway bounce-back scheme (Ladd 1994) was 
adopted to model the solid boundary conditions for fluid 
flow and mass transport (for non-reactive solids) because 
it yields exact mass conservation and second-order accu-
racy. Kang’s scheme (Kang et al. 2007) is implemented for 
reactive boundaries, through which the distribution function 
g�(��, t) coming into the fluid domain is calculated by

where 
−
� is the opposite orientation of �.

Finally, it is assumed that the mass flux at the liquid-
solid interface equals the rate of generated species from the 
chemical reaction. This boundary condition can be written as

Methodology

For reader’s convenience, we describe the setup of the 
numerical simulations step by step in the following sepa-
rate sections. The algorithm was developed in-house in 
C + + language and implemented for serial processing. The 
hardware is an Intel processor (11th Gen Intel® Core(TM) 
i7-11700 @ 2.50  GHz) and 16 GB of memory (RAM 
DDR4). The computational time for the slowest reactive 
case ( Pe = 10.0 and Da = 1.0 ) was 92 min.

Porous media construction

We consider an artificial square computational domain filled 
with a porous medium of length LPM = 1mm , as shown in 
Fig. 1. Aiming to work with irregular paths and sudden flow 
changes, we intentionally generated the porous structure 
from a freehand sketch and converted it into a bidimensional 
array identifying fluid and solid nodes. This matrix was then 
filtered for fluid nodes that could cause unstable LB simula-
tions, such as fluid nodes surrounded by solids. The final 
lattice resolution after processing was 366 × 366.

(34)
fα(x = 0, y, t) = f eq

α

[
�
(
x = 0, yα, t

)
, �
(
x = 2LPM , yα, t

)]

+ fα
(
x = 2LPM , yα, t

)
− f eq

α

(
x = 2LPM , yα, t

)
,

(35)
fα
(
x = 2LPM , y, t

)
= f eq

α

[
�
(
x = 2LPM , yα, t

)
, �
(
x = 0, yα, t

)]

+ fα
(
x = 0, yα, t

)
− f eq

α

(
x = 0, yα, t

)
,

(36)g�
(
�
�
, t
)
− g−

�

(
�
�
, t
)
= −D

�C

�x�
,

(37)D
�C
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Fig. 1   Simulated domain with artificial porous media. White and 
black areas represent, respectively, fluid and grain regions, while LPM 
is the length of the porous medium
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Preferential paths in a single‑component fluid flow

Water at 25◦C  ( � = 0.997g∕cm2 , � = 0.890cP , and 
� = 2.4cP (Dukhin and Goetz 2009)) was initialized as a 
stationary fluid. The single-component flow was ensured 
by ten different settings of the pressure drop equivalent to 
varying heights of the water column H = [2m, 20m] by 2m 
increments. We highlight that the LBM algorithm is solved 
by considering its proper units (lattice units) rather than the 
physical ones. Therefore, the D2Q9-LBM was implemented 
with the common choice of �x = 1 and �t = 1 , and ⟨�⟩ = 1 in 
order to adopt the periodic condition with pressure variation. 
Solid-fluid interaction forces were neglected. Parameters 
related to the conserved moments were set as unity while 
the remaining parameters were set to keep the method stable 
( �� = 0.513 , �ϵ = 0.7 , and �q = 0.6 ). We implemented the 
flow dynamics for both the orientation displayed in Fig. 1 
as well as the opposite direction. The simulations were 
interrupted when the velocity field inside the porous media 
reached stationary state with an absolute error of less than 
10−5.

Given that fluid properties are assumed to be constant, 
and the minimum areas of each channel are considered simi-
lar, only the tortuosity governs the preferential path. There-
fore, the preferential paths are first theoretically predicted by 
Eq. (6) (Ju et al.’s model), in which the smallest resistance G 
(i.e., smallest �2 ) reveals the preferred routes (the reader can 
find more details in the supplementary material). Since the 
preferential paths coincide with the channels that develop 
the highest flow velocities (Liu et al. 2019a), we could also 
measure the main paths from simulations by evaluating the 
velocity field and, consequently, compare the initial predic-
tions with the simulation results. Lastly, Fig. 2 enumerates 
some pores and outlets for identification.

Preferential paths with reactive‑mass transport

At this moment, we are interested in discussing how pre-
ferred routes inside a porous matrix can impact the evo-
lution of a reactive flow. As a result, after identifying the 
preferential paths using the previous methodology, the mass 
transport analysis was carried out to track the porosity evolu-
tion in different sections of the porous matrix. For this pur-
pose, the matrix was virtually subdivided into three regions 
(regions 1, 2, and 3), as identified in Fig. 2. However, we 
must normalize the porosity in each region first to further 
compare its evolution over time. The normalized overall 
porosity 𝜙̄(t) at time t and in a given region is

where �0 is the initial overall porosity at that region.

(38)𝜙̄(t) =
𝜙(t)

𝜙0

,

Based on Eq. (38), the normalized porosity is limited to 
the range 1 ≤ 𝜙̄(t) ≤ 𝜙̄

max
= 1∕𝜙0 . Then, by imposing a new 

definition to standardize the range, we obtain

where we call η(t) the rescaled normalized porosity, which 
is limited to the range 0 ≤ η(t) ≤ 1.

Similarly, to facilitate the comparison between the regions 
for the given flow conditions, we define a rescaled time tR,

where t0 and tf  are the beginning and final reference times, 
and tR is limited to the range 0 ≤ tR ≤ 1 . Consequently, we 
can write that η = η

(
tR
)
.

The evolution of η
(
tR
)
 is tracked for each flow and reac-

tive condition, specified by varying the Péclet and Dam-
köhler numbers. The D2Q5-LBM was implemented for mass 
transport with �x = 1 and �t = 1 . The inlet concentration is 
set as C = 1 , the relaxation time as �g = 1 and, based on a 
previous work (Zhang et al. 2019), the molar volume of the 
solid is set as Vm = 1.303 × 10−4 m³/mol, and Vs0 = Vm . The 
D2Q9-LBM is implemented with a height of water column 
equal to H = 4 m ( Re = 92.4 ). The diffusion coefficient and 
reaction constant are calculated by Eqs. (25) and (28) for a 
given Pe and Da . Then, J0 is obtained from Eq. (24).

At t = 0 , only at the inlet is there reactant. The chemical 
reaction displayed in Eq. (26) only starts when the reactant 
reaches the matrix due to its advection and diffusion. This 
interval of time without reaction is sufficient for the velocity 

(39)η(t) =
𝜙̄(t) − 1

𝜙̄
max

− 1
,

(40)tR =
t − t0

tf − t0
,

Fig. 2   Identification of pores, channels, inlets, outlets, and regions in 
the considered porous media that supports discussion. The complete 
numbering can be found in the supplementary material
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and density profiles inside the porous media achieving the 
stationary state.

Results and discussion

Preferential paths in a single‑component fluid flow

This section discusses the preferential paths that emerge 
with a single-component fluid flow. First, we consider the 
original porous matrix for the analysis; then, we add some 
structural modifications.

Flow in the original porous media

The ten different heights considered here generated flows 
within a Reynolds range of Re = [55.4, 274.2] . Initially, 
to demonstrate the LBM potential with the Pore-Scale 
approach and achieve the matrix permeability, we plotted the 
relationship between the inverse of the apparent permeability 
( Kapp ) and the average velocity in Fig. 3. A linear regression 
of the data shows that the method recovers the linearized 
Forchheimer equation ( 1∕Kapp = (0.72u + 1.37) × 1010 ) 
with a permeability of K = 0.76Ȧ2 and strong correlation 
( R2 = 0.998 ). Additionally, the Blunt diameter and the over-
all porosity are lc = 0.08 mm and � = 0.45, respectively.

Fig. 3   Linear regression of the calculated points (circles) with the lin-
earized Forchheimer equation (dashed line): 
1

Kapp

= (0.72u + 1.37) × 10
10 with R2 = 0.998

Fig. 4   Velocity field of the flow 
simulation for H = 10 m in the 
original porous media. In case 
(a) the flow is from left to right, 
and in case (b) is the opposite. 
The circles evidence some chan-
nels with their flow preference 
altered after changing the flow 
orientation

Fig. 5   Flow simulation through 
a rectangular pore with a trian-
gle with length L in the center. 
The sketch is presented in a, 
where the solid (—) and dashed 
(– –) lines are the shortest paths 
passing under and above the 
triangle, respectively. The flow 
is presented in b, where the 
white rectangles specify the two 
regions with the same area
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After establishing the physical properties and flow 
characteristics, this section will focus on a sample case at 
H = 10m with Re

K
= 1.11 ∼ 1 , which suggests that the iner-

tial forces contribute to describing the flows in our simula-
tions (Forchheimer regime). Figure 4a presents the velocity 
profile considering the flow from left to right, while Fig. 4b 
shows the flow in the opposite direction. Both velocity pro-
files confirm that most paths agree with the theoretical pre-
dictions and, in agreement with Ju et al.’s model, suggest 
that the main preferential paths may be independent of the 
flow orientation.

This observation, however, becomes locally distorted 
and is exemplified, for instance, by the flow around pores 
2 and 3. The velocity magnitudes in Fig. 4a are equivalent 
in pores 2 and 3. This happens because the flow from inlet 
9 splits into two paths, in which one of them influences the 
flow coming from inlet 1 and directs it to pore 2. On the 
other hand, Fig. 4b indicates that pore 2 is favored in the 
path A-1 since the grain shape and channel orientation are 
favorable to the flow direction. In both situations, Ju et al.’s 
model is incapable of discerning which pore (2 or 3) is pre-
ferred. Hence, in the Forchheimer regime, the inertial effects 
propagated due to sudden flow changes and geometry shapes 
locally influence the preferred pore.

A controlled flow configuration, sketched in Fig. 5a, is 
simulated to illustrate this discussion and investigate the 
importance of the local shape. The artificial pore region 
has a solid triangle with length L = 100 lattice nodes at the 
center. The two dashed rectangles in Fig. 5b indicate regions 
with the same lattice area 3L∕5 , through which the fluid 
must stream. At those regions, the velocity magnitudes can 
be compared. Although Ju et al.’s model predicts that the 
path under the triangle ( �2 = 1.13 ) is favored rather than the 
path above it ( �2 = 1.28 ), Fig. 5b shows that the velocities 
are higher in the dashed rectangle at the top. Thus, the route 
above the triangle is favored.

Therefore, both the pore configuration and its orientation 
relative to the velocity field are crucial to determining which 
path will be chosen. Additionally, some small recirculation 
zones can emerge in the pore due to entrainment, jet effects, 
and transitional regimes, affecting the preferential paths. 
These drawbacks make Ju et al.’s model unviable to predict 
the preferential flow in the Forchheimer regime accurately, 
but it is sufficient to discern the main possible trajectories. 
As additional examples, some channels preferred in Fig. 4a 
(circled regions) are not preferred in Fig. 4b after only 
changing the flow orientation.

Fig. 6   Velocity field of the flow simulation with H = 10  m and the 
a outlet A, b outlet E, and c pore 32 closed
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Flow with clogging

In the last section, Fig. 4a shows that some global preferen-
tial paths arise in the matrix, such as paths 1-A in region 1 
and 59-G/H in region 3, since they locally present small flow 
resistances. In region 2, although some preferred channels 
agree with the theoretical prediction, it is difficult to identify 
one global preferential path. Instead, the flow is divided into 
several channels with representative velocity magnitudes. 
The outlet E, however, is a significant outlet for this region.

Wondering how clogging might affect the preferential 
paths, we blocked some pores, channels, or outlets and 
performed flow simulations with these modified porous 
matrices. Four main observations from these simulations 
are: (i) paths with minor flow resistance influence the flow 
preferences; (ii) many routes have their flow locally changed 
when an obstruction happens; (iii) some pores, channels, or 
outlets can lose their applicability after clogging; and (iv) 
dead zones can arise near an obstructed region.

Figure 6 presents some velocity fields that illustrate 
these observations. Firstly, Fig. 6a shows that the veloc-
ity magnitudes in route 22-B/C increases when outlet A 
is blocked. This is expected because the fluid must find an 
alternative route if the original path is blocked. However, 
what is remarkable here is that the paths with minor flow 
resistance in the original matrix significantly impact the pre-
ferred route, a condition that can be altered with clogging. 
Secondly, Fig. 6b illustrates what is affirmed in (ii) by block-
ing outlet E. In this situation, some routes have their flow 
locally changed, such as the disappearing flow in connec-
tions 30–34 and the decreasing flow in connections 40–41. 
Thirdly, Fig. 6c confirms statements (iii) and (iv). The con-
sequence of closing pore 32 is the flow reduction in 51-F. 
Although outlet F is still open in this case, it drastically loses 
its applicability because the main contribution to the flow 
in F comes from pore 32. Moreover, this case illustrates the 
formation of dead zones near the obstructed pore. Since the 
flow is close to zero in these regions, it could, for instance, 
reinforce the surface runoff in soils or even influence the 
displacement of oil in geological reservoirs.

Preferential paths with reactive‑mass transport

Here, we discuss the influence of preferential paths for reac-
tive-mass transport in porous media. First, we consider the 
original porous matrix for the analysis; then, we consider 
some structural modifications.

Fig. 7   Concentration field and solid degradation for Pe = 10 and 
Da = 10 at the following dimensionless times: a t∕tf = 0.4 , b 
t∕tf = 0.8 , and c t∕tf = 1.0 . The white circles evidence dead zones 
accessed by diffusion
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Porosity evolution in the original porous matrix

The reader can follow the evolution of the concentration 
field and the solid degradation in Fig. 7 for Pe = 10 and 
Da = 10 . The spatial differences in the porous structures 
developed some preferred connections, as discussed previ-
ously, making the concentration field advance heterogene-
ously through the matrix. The circles identify some local 
dead zones that were also noticed in Fig. 4 and that are only 
accessed by the reactant through diffusion, which can affect 
the porosity evolution in the matrix.

Figure 8 shows the changes in the overall porosity for 
the whole original porous matrix, varying Pe and Da . The 
reference time T for comparison is chosen based on the pres-
ence of reactant in the outflow. Hence, we found T = 15, 200 
l.u., which is the minimum observed time when the reactant 
concentration is different than zero in the outflow. In Fig. 8a, 
the changes in � start earlier ( t∕T = 0.5 ) for Pe = 1.0 than 
for the other two cases ( t∕T = 0.8 ), which are explained by 
the noticeable diffusion condition at Pe = 1.0 that allows 
the reactant to reach more zones in the porous media. For 
advection-dominated conditions (i.e., higher Pe ), the reac-
tants are readily advected through the channels, making the 
time related for advection insufficient to achieve large reac-
tive conversions (observed through the �-profile). Hence, 
by increasing Pe , the overall porosities decrease due to the 
difference in the characteristic time scale between the phe-
nomena and the complication of the reactant reaching spe-
cific parts of the matrix.

On the other hand, Fig.  8b shows that the porosity 
increases with Da . In contrast to the case in Fig. 8a, it is 
inconsistent to explain the changes in porosity for Da varia-
tion in terms of diffusion effect because, if so, Pe or Re would 
vary, hindering the investigation. Instead, the phenomenon is 
explained by the modification of the reaction rate. Hence, the 
increase of Da (kinetic-dominated or diffusion-controlled 
condition) intensifies the heterogeneous reaction, causing 
larger values of � to arise. Furthermore, the changes in � 
start almost at the same time ( t∕T ≈ 0.7 ), whereby we under-
stand that the diffusion has a smaller impact within the stud-
ied range of Da compared to the range of Pe.

To understand how much different regions of the matrix 
and their preferential paths contribute to the porosity evo-
lution, we plot η

(
tR
)
 in Fig. 9. We first point out that with 

contrasting degrees, distinct regions of the matrix, having 
their own structural properties and local preferential paths, 
individually contribute to the global porosity evolution. This 
is illustrated by Fig. 9, which shows that region 1 most con-
tributes to the advancement of η

(
tR
)
 and has its relevance 

accentuated by Pe , while region 3 produces the smallest 
contributions for the three different Pe cases. Interestingly, 
we observe that the role of region 2 in porosity evolution 
changes with Pe . Although region 2 contributes similarly 
to region 1 at Pe = 1 (a gap of Δη = 0.092 ), its importance 
gradually declines with Pe , achieving a gap of Δη = 0.169 at 
Pe = 100 and η

(
tR
)
 comparable to those of region 3. Hence, 

some zones of a porous media (in our case, region 2) are 
more significantly affected under diffusion-dominated condi-
tions (i.e., lower Pe ) than others (e.g., region 1).

Fig. 8   Overall porosity evolution in the whole matrix for different a Pe and b Da numbers. Da and Pe are fixed respectively in cases a Da = 7.7 
and b Pe = 10 . The lines are plotted to help guide the eye, and the reference time is set as T = 15, 200 l.u.
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Fig. 9   Rescaled normalized porosity evolution for each region in 
the original porous media at Da = 7.7 , for a Pe = 1 , b Pe = 10 , and 
c Pe = 100 . tR is computed assuming t0 as the first time when η(t) 
changes and tf  as the time when the reactant first reaches the outlet of 
the matrix. The lines are plotted to help guide the eye

Fig. 10   Rescaled normalized porosity evolution for each region in 
the original porous media at Pe = 10 , for a Da = 5 , b Da = 10 , and 
c  Da = 15 . tR is computed assuming t0 as the first time when η(t) 
changes and tf  the time when the reactant first reaches the outlet of 
the matrix. The lines are plotted to help guide the eye
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We can see the kinetic effect in Fig. 10 for a fixed advec-
tion-diffusion condition of Pe = 10 . Regions 1 and 3 still 
provide major and minor contributions to the porosity evo-
lution for all the Da cases, and the relevance of region 2 
only slightly alters their contributions, resulting in similar 
gaps in each case. In general, the relative contributions to 
the porosity evolution remain kinetically independent, which 
implies that the solid amount is gradually available over the 
studied Da range.

Porosity evolution in an obstructed porous matrix

Now, we insert some structural modifications in the reactive-
mass transport issue to check how far they hinder the matrix 
dissolution at fixed conditions ( Pe = 10 and Da = 10 ). We 
observed that the reactive-mass transport through the origi-
nal structure delivers a maximum � for each time. The over-
all porosities from the matrix with modifications are always 
lower than this upper value since the blocked pores or outlets 
invariably alter the flow and create dead zones.

However, the clogging effect in the reactive conversion 
is negligible for the modifications tested. For instance, the 
reactive flow with closed pore 32 originates the lowest � 
(2.72% lesser than for the original matrix), while the flow 
with blocked outlet A produces the closest � compared to the 
original matrix (1.00% lesser than for the original matrix). 
Obviously, this remark results from specific considerations 
employed in this work, such as the given matrix, individual 
topological alterations, and reactive-transport conditions.

In other words, the reactive conversion could either stay 
unaltered or be strongly affected, depending on the studied 
case and the extent of the modifications. To illustrate this 
point and reinforce that diversified modifications affect the 
matrix dissolution differently, we plot Fig. 11, which sepa-
rates the contribution of each region for the entire poros-
ity evolution. For instance, the blocked pore 32 affects the 
regions where it is located (i.e., regions 2 and 3) as well as 
the distant region 1. This impact, however, is not observed 
for the restrictions of outlet A and pore 4, since they mainly 
influence the region where they are located (i.e., region 1) 
and originate slight porosity variations in the other regions.

Conclusion

Preferential flow is a phenomenon that affects a vast range 
of problems and needs to be better understood. Because of 
the attractive advantages of the Pore-Scale LBM approach 
(e.g., the absence of empirical models), Lattice Boltzmann 
is an inviting method to model the flow in porous media and 

Fig. 11   Rescaled normalized porosity evolution at Pe = 10 and 
Da = 10 for the regions a 1, b 2, and c 3, considering different struc-
tural changes in the porous matrix. Here, tR is computed assuming 
t0 = 8400 l.u. and tf = 17, 500 l.u
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search for preferential pathways. Performing a geometric 
investigation of the matrix is a typical and simplified numer-
ical way to predict these paths. Hence, in this work, we dis-
cussed some insights about preferential flow and tested the 
Ju et al. model, a tortuosity-dependent resistance model, to 
measure the preferential paths in a non-Darcy flow through 
an artificial square porous medium.

LBM naturally recovers the Forchheimer equation for 
the established range of Reynolds. The Ju et al. model suc-
cessfully indicates many preferential paths independent of 
the flow orientation, but its accuracy is more substantial 
for Darcy flows. This deficiency is related to the inertial 
effects in the Forchheimer regime, which the model fails to 
account for. Therefore, geometric characteristics like grain 
shape and pore-to-pore alignment (deflections of the paths) 
are highlighted features to describe this kind of flow. When 
clogging occurs, we observe that paths with lower flow 
resistance affect the flow preferences in the neighboring sec-
tions. Additionally, depending on the position of the blocked 
pores, not only the flow configuration, but also preferred 
paths, and reaction rates may change. Dead zones in the 
porous medium can also arise, and some are only accessed 
by diffusion.

The reactive flow through the original matrix delivers a 
maximum overall porosity, below which the porosities from 
the clogged matrix stand. The porosity of the entire matrix 
increases when reducing the Péclet (diffusion-dominated 
condition) or enlarging the Damköhler numbers (kinetic-
dominated condition). Different regions considered in this 
work contribute separately to the porosity evolution, having 
kinetic-independent relative contributions. However, some 
are more significantly affected under diffusion-dominated 
conditions than others.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s43153-​022-​00286-8.

Acknowledgements  We gratefully acknowledge the financial support 
of FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa do 
Estado do Rio de Janeiro), CAPES (Coordenação de Aperfeiçoamento 
de Pessoal de Nível Superior), CNPq (Conselho Nacional de Desen-
volvimento Científico e Tecnológico) and Petrobras-ANP (Agência 
Nacional do Petróleo).

Authors’ contributions  Conceptualization: Frederico Tavares; Meth-
odology: Ramon Lourenço, Pedro Constantino; Software: Ramon 
Lourenço; Validation: Ramon Lourenço, Pedro Constantino; Formal 
analysis and investigation: Ramon Lourenço, Pedro Constantino; Writ-
ing - original draft preparation: Ramon Lourenço, Pedro Constantino; 
Writing - review and editing: Pedro Constantino, Frederico Tavares; 
Funding acquisition: Frederico Tavares; Resources: Frederico Tavares; 
Supervision: Frederico Tavares.

Funding  This work was supported by FAPERJ (Fundação Carlos Cha-
gas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro), CAPES 
(Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and 
Petrobras-ANP (Agência Nacional do Petróleo).

Data Availability  The datasets generated and analyzed during the cur-
rent study are available from the corresponding author on reasonable 
request.

Code Availability  The code used during this current study is available 
from the corresponding author on a reasonable request.

Declarations 

Conflicts of interest  The authors have no financial or proprietary inter-
ests in any material discussed in this article.

Ethics approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  All authors agree with the content of this 
manuscript and give explicit consent to submit it.

References

Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2009) Iner-
tial microfluidics for continuous particle filtration and extrac-
tion. Microfluid Nanofluid 7:217–226. https://​doi.​org/​10.​1007/​
s10404-​008-​0377-2

Bhatnagar PL, Gross EP, Krook M (1954) A model for collision pro-
cesses in gases I: small amplitude processes in charged and neutral 
one-component systems. Phys Rev 94:511–525. https://​doi.​org/​10.​
1103/​PhysR​ev.​94.​511

Blunt MJ (2017) Multiphase Flow in Permeable Media: a pore-scale 
perspective. Cambridge University Press, Cambridge

Blunt MJ, Bijeljic B, Dong H et al (2013) Pore-scale imaging and mod-
elling. Adv Water Resour 51:197–216. https://​doi.​org/​10.​1016/j.​
advwa​tres.​2012.​03.​003

Calçada LA, Duque Neto OA, Magalhães SC et al (2015) Evaluation 
of suspension flow and particulate materials for control of fluid 
losses in drilling operation. J Pet Sci Eng 131:1–10. https://​doi.​
org/​10.​1016/j.​petrol.​2015.​04.​007

Clennell M, Ben (1997) Tortuosity: a guide through the maze. Geol 
Soc Lond Spec Publ 122:299–344. https://​doi.​org/​10.​1144/​GSL.​
SP.​1997.​122.​01.​18

Clothier BE, Green SR, Deurer M (2008) Preferential flow and trans-
port in soil: Progress and prognosis. Eur J Soil Sci 59:2–13. 
https://​doi.​org/​10.​1111/j.​1365-​2389.​2007.​00991.x

D’Humierès D (1992) Generalized lattice-boltzmann equations, Rar-
efied Gas Dynamics: theory and simulations. Prog Astronaut 
Aeronaut 159:450–458. https://​doi.​org/​10.​2514/5.​97816​00866​
319.​0450.​0458

Donath A, Kantzas A, Bryant S (2019) Opportunities for particles and 
particle suspensions to experience enhanced transport in porous 
media: a review. Transp Porous Med 128:459–509. https://​doi.​org/​
10.​1007/​s11242-​019-​01256-4

Dukhin AS, Goetz PJ (2009) Bulk viscosity and compressibility meas-
urement using acoustic spectroscopy. J Chem Phys 130. https://​
doi.​org/​10.​1063/1.​30954​71

Dusek J, Vogel T, Dohnal M, Gerke HH (2012) Combining dual-con-
tinuum approach with diffusion wave model to include a pref-
erential flow component in hillslope scale modeling of shallow 
subsurface runoff. Adv Water Resour 44:113–125. https://​doi.​org/​
10.​1016/j.​advwa​tres.​2012.​05.​006

Fan D, Chapman E, Khan A et al (2022) Anomalous transport of col-
loids in heterogeneous porous media: a multi-scale statistical 

https://doi.org/10.1007/s43153-022-00286-8
https://doi.org/10.1007/s10404-008-0377-2
https://doi.org/10.1007/s10404-008-0377-2
https://doi.org/10.1103/PhysRev.94.511
https://doi.org/10.1103/PhysRev.94.511
https://doi.org/10.1016/j.advwatres.2012.03.003
https://doi.org/10.1016/j.advwatres.2012.03.003
https://doi.org/10.1016/j.petrol.2015.04.007
https://doi.org/10.1016/j.petrol.2015.04.007
https://doi.org/10.1144/GSL.SP.1997.122.01.18
https://doi.org/10.1144/GSL.SP.1997.122.01.18
https://doi.org/10.1111/j.1365-2389.2007.00991.x
https://doi.org/10.2514/5.9781600866319.0450.0458
https://doi.org/10.2514/5.9781600866319.0450.0458
https://doi.org/10.1007/s11242-019-01256-4
https://doi.org/10.1007/s11242-019-01256-4
https://doi.org/10.1063/1.3095471
https://doi.org/10.1063/1.3095471
https://doi.org/10.1016/j.advwatres.2012.05.006
https://doi.org/10.1016/j.advwatres.2012.05.006


773Brazilian Journal of Chemical Engineering (2023) 40:759–774	

1 3

theory. J Colloid Interface Sci 617:94–105. https://​doi.​org/​10.​
1016/j.​jcis.​2022.​02.​127

Fishkis O, Noell U, Diehl L et al (2020) Multitracer irrigation experi-
ments for assessing the relevance of preferential flow for non-sorb-
ing solute transport in agricultural soil. Geoderma 371. https://​doi.​
org/​10.​1016/j.​geode​rma.​2020.​114386

Gor GY, Stone HA, Prévost JH (2013) Fracture propagation driven by 
Fluid Outflow from a low-permeability Aquifer. Transp Porous 
Media 100:69–82. https://​doi.​org/​10.​1007/​s11242-​013-​0205-3

Guo P (2012) Dependency of Tortuosity and Permeability of Porous 
Media on directional distribution of Pore Voids. Transp Porous 
Med 95:285–303. https://​doi.​org/​10.​1007/​s11242-​012-​0043-8

Guo B (2019) Petroleum reservoir properties. In: Well productivity 
handbook: vertical, fractured, horizontal, multilateral, multi-
fractured, and radial-fractured wells. pp&nbsp;17–51

Guo Z, Zhao TS (2002) Lattice Boltzmann model for incompressible 
flows through porous media. Phys Rev E 66:036304. https://​doi.​
org/​10.​1103/​PhysR​evE.​66.​036304

Guo L, Liu Y, Wu GL et al (2019) Preferential water flow: influence of 
alfalfa (Medicago sativa L.) decayed root channels on soil water 
infiltration. J Hydrol 578. https://​doi.​org/​10.​1016/j.​jhydr​ol.​2019.​
124019

He YL, Liu Q, Li Q, Tao WQ (2019) Lattice boltzmann methods for 
single-phase and solid-liquid phase-change heat transfer in porous 
media: a review. Int J Heat Mass Transf 129:160–197. https://​doi.​
org/​10.​1016/j.​ijhea​tmass​trans​fer.​2018.​08.​135

Higuera FJ, Succi S, Benzi R (1989) Lattice gas dynamics with 
enhanced collisions. Eur Lett 9:345–349. https://​doi.​org/​10.​1209/​
0295-​5075/9/​4/​008

Huang H, Ayoub J (2008) Applicability of the Forchheimer equation 
for non-darcy flow in porous media. SPE J 13:112–122. https://​
doi.​org/​10.​2118/​102715-​PA

Iriarte J, Hegazy D, Katsuki D, Tutuncu AN (2018) Fracture conductiv-
ity under triaxial stress conditions. In: Yu-Shu W (ed) Hydraulic 
fracture modeling. Elsevier, Amsterdam, pp 513–525

Jiang C, Zhou H, Xia M et al (2022) Stability conditions of multiple-
relaxation-time lattice Boltzmann model for seismic wavefield 
modeling. J Appl Geophys 204:104742. https://​doi.​org/​10.​1016/j.​
jappg​eo.​2022.​104742

Ju Y, Liu P, Zhang DS et al (2018) Prediction of preferential fluid 
flow in porous structures based on topological network models: 
algorithm and experimental validation. Sci China Technol Sci 
61:1217–1227. https://​doi.​org/​10.​1007/​s11431-​017-​9171-x

Ju Y, Gong W, Chang W, Sun M (2020) Effects of pore characteristics 
on water-oil two-phase displacement in non-homogeneous pore 
structures: a pore-scale lattice Boltzmann model considering vari-
ous fluid density ratios. Int J Eng Sci 154:103343. https://​doi.​org/​
10.​1016/j.​ijeng​sci.​2020.​103343

Kang Q, Lichtner PC, Zhang D (2006) Lattice boltzmann pore-scale 
model for multicomponent reactive transport in porous media. 
J Geophys Res-Sol EA 111:1–12. https://​doi.​org/​10.​1029/​2005J​
B0039​51

Kang Q, Lichtner PC, Zhang D (2007) An improved lattice Boltzmann 
model for multicomponent reactive transport in porous media at 
the pore scale. Water Resour Res 43:1–12. https://​doi.​org/​10.​1029/​
2006W​R0055​51

Kashyap D, Dass AK (2018) Two-phase lattice Boltzmann simulation 
of natural convection in a Cu-water nanofluid-filled porous cav-
ity: Effects of thermal boundary conditions on heat transfer and 
entropy generation. Adv Powder Technol 29:2707–2724. https://​
doi.​org/​10.​1016/j.​apt.​2018.​07.​020

Kim SH, Pitsch H (2007) A generalized periodic boundary condition 
for lattice Boltzmann method simulation of a pressure driven flow 
in a periodic geometry. Phys Fluids 19. https://​doi.​org/​10.​1063/1.​
27801​94

Kozuskanich JC, Novakowski KS, Anderson BC et al (2014) Anthro-
pogenic impacts on a bedrock aquifer at the village scale. Ground-
water 52:474–486. https://​doi.​org/​10.​1111/​gwat.​12091

Ladd AJC (1994) Numerical simulations of particulate suspensions 
via a discretized boltzmann equation. Part 1. Theoretical founda-
tion. J Fluid Mech 271:285–309. https://​doi.​org/​10.​1017/​S0022​
11209​40017​71

Liu J, Ju Y, Zhang Y, Gong W (2019a) Preferential paths of air-water 
two-phase flow in porous structures with special consideration 
of channel thickness effects. Sci Rep 9. https://​doi.​org/​10.​1038/​
s41598-​019-​52569-9

Liu Q, Zhao B, Santamarina JC (2019) Particle migration and clogging 
in porous media: a convergent flow microfluidics study. JGR Solid 
Earth 124:9495–9504. https://​doi.​org/​10.​1029/​2019J​B0178​13

Lourenço RGC, Constantino PH, Tavares FW (2022) A unified inter-
action model for multiphase flows with the lattice Boltzmann 
method. Can J Chem Eng 1:1–16. https://​doi.​org/​10.​1002/​cjce.​
24604

Ma B, Liang X, Liu S et al (2017) Evaluation des voies d’écoulement 
diffuses et préférentielles des précipitations infiltrées et 
de l’irrigation à l’aide des isotopes de l’oxygène et de 
l’hydrogène. Hydrogeol J 25:675–688. https://​doi.​org/​10.​1007/​
s10040-​016-​1525-5

Mckibbin R (1998) Mathematical models for heat and mass transport 
in geothermal systems. In: Ingham DB, Pop I (eds) Transport 
phenomena in porous media. Elsevier Science Ltd, pp 131–154

Nimmo JR (2009) Vadose Water. In: Likens GE (ed) Encyclopedia of 
Inland Waters. Academic Press, pp 766–777

Pan C, Luo LS, Miller CT (2006) An evaluation of lattice Boltzmann 
schemes for porous medium flow simulation. Comput Fluids 
35:898–909. https://​doi.​org/​10.​1016/j.​compf​luid.​2005.​03.​008

Parlange JY, Hill DE (1976) Theoretical analysis of wetting front 
instability in soils. Soil Sci 122:236–239. https://​doi.​org/​10.​1097/​
00010​694-​19761​0000-​00008

Parvan A, Jafari S, Rahnama M et al (2020) Insight into particle reten-
tion and clogging in porous media; a pore scale study using lattice 
Boltzmann method. Adv Water Resour 138. https://​doi.​org/​10.​
1016/j.​advwa​tres.​2020.​103530

Rothman DH (1988) Cellular-automaton fluids: a model for flow in 
porous media. Geophysics 53:509–518. https://​doi.​org/​10.​1190/1.​
14424​82

Sharma KV, de Araujo OMO, Nicolini JV et al (2018) Laser-induced 
alteration of microstructural and microscopic transport properties 
in porous materials: experiment, modeling and analysis. Mater 
Des 155:307–316. https://​doi.​org/​10.​1016/j.​matdes.​2018.​06.​002

Sharma KV, Straka R, Tavares FW (2019) Lattice Boltzmann Methods 
for Industrial Applications. Ind Eng Chem Res 58:16205–16234. 
https://​doi.​org/​10.​1021/​acs.​iecr.​9b020​08

Sharma KV, Straka R, Tavares FW (2020) Current status of Lattice 
Boltzmann Methods applied to aerodynamic, aeroacoustic, and 
thermal flows. Prog Aerosp Sci 115:100616. https://​doi.​org/​10.​
1016/j.​paero​sci.​2020.​100616

Shen J, Ni R (2017) Experimental investigation of clogging dynamics 
in homogeneous porous medium. Water Resour Res 53:1879–
1890. https://​doi.​org/​10.​1002/​2016W​R0194​21

Takhanov D (2011) Forchheimer Model for Non-Darcy Flow in Porous 
Media and Fractures

Viberti D, Peter C, Borello ES, Panini F (2020) Pore structure charac-
terization through path-finding and lattice Boltzmann simulation. 
Adv Water Resour 141. https://​doi.​org/​10.​1016/j.​advwa​tres.​2020.​
103609

Wang Y, Bradford SA, Šimůnek J (2014) Physicochemical factors 
influencing the preferential transport of Escherichia coli in soils. 
Vadose Zo J 13:1–10. https://​doi.​org/​10.​2136/​vzj20​13.​07.​0120

https://doi.org/10.1016/j.jcis.2022.02.127
https://doi.org/10.1016/j.jcis.2022.02.127
https://doi.org/10.1016/j.geoderma.2020.114386
https://doi.org/10.1016/j.geoderma.2020.114386
https://doi.org/10.1007/s11242-013-0205-3
https://doi.org/10.1007/s11242-012-0043-8
https://doi.org/10.1103/PhysRevE.66.036304
https://doi.org/10.1103/PhysRevE.66.036304
https://doi.org/10.1016/j.jhydrol.2019.124019
https://doi.org/10.1016/j.jhydrol.2019.124019
https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.135
https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.135
https://doi.org/10.1209/0295-5075/9/4/008
https://doi.org/10.1209/0295-5075/9/4/008
https://doi.org/10.2118/102715-PA
https://doi.org/10.2118/102715-PA
https://doi.org/10.1016/j.jappgeo.2022.104742
https://doi.org/10.1016/j.jappgeo.2022.104742
https://doi.org/10.1007/s11431-017-9171-x
https://doi.org/10.1016/j.ijengsci.2020.103343
https://doi.org/10.1016/j.ijengsci.2020.103343
https://doi.org/10.1029/2005JB003951
https://doi.org/10.1029/2005JB003951
https://doi.org/10.1029/2006WR005551
https://doi.org/10.1029/2006WR005551
https://doi.org/10.1016/j.apt.2018.07.020
https://doi.org/10.1016/j.apt.2018.07.020
https://doi.org/10.1063/1.2780194
https://doi.org/10.1063/1.2780194
https://doi.org/10.1111/gwat.12091
https://doi.org/10.1017/S0022112094001771
https://doi.org/10.1017/S0022112094001771
https://doi.org/10.1038/s41598-019-52569-9
https://doi.org/10.1038/s41598-019-52569-9
https://doi.org/10.1029/2019JB017813
https://doi.org/10.1002/cjce.24604
https://doi.org/10.1002/cjce.24604
https://doi.org/10.1007/s10040-016-1525-5
https://doi.org/10.1007/s10040-016-1525-5
https://doi.org/10.1016/j.compfluid.2005.03.008
https://doi.org/10.1097/00010694-197610000-00008
https://doi.org/10.1097/00010694-197610000-00008
https://doi.org/10.1016/j.advwatres.2020.103530
https://doi.org/10.1016/j.advwatres.2020.103530
https://doi.org/10.1190/1.1442482
https://doi.org/10.1190/1.1442482
https://doi.org/10.1016/j.matdes.2018.06.002
https://doi.org/10.1021/acs.iecr.9b02008
https://doi.org/10.1016/j.paerosci.2020.100616
https://doi.org/10.1016/j.paerosci.2020.100616
https://doi.org/10.1002/2016WR019421
https://doi.org/10.1016/j.advwatres.2020.103609
https://doi.org/10.1016/j.advwatres.2020.103609
https://doi.org/10.2136/vzj2013.07.0120


774	 Brazilian Journal of Chemical Engineering (2023) 40:759–774

1 3

Weiler M (2017) Macropores and preferential flow—a love-hate rela-
tionship. Hydrol Process 31:15–19. https://​doi.​org/​10.​1002/​hyp.​
11074

Xiao K, Wilson AM, Li H, Ryan C (2019) Crab burrows as prefer-
ential flow conduits for groundwater flow and transport in salt 
marshes: a modeling study. Adv Water Resour 132. https://​doi.​
org/​10.​1016/j.​advwa​tres.​2019.​103408

Yao C, Zhao Y, Lei G et al (2017) Inert carbon nanoparticles for the 
assessment of preferential flow in saturated dual-permeability 
porous media. Ind Eng Chem Res 56:7365–7374. https://​doi.​org/​
10.​1021/​acs.​iecr.​7b001​94

Yeates C, Youssef S, Lorenceau E (2020) Accessing preferential foam 
flow paths in 2D micromodel using a graph-based 2-parameter 
model. Transp Porous Med 133:23–48. https://​doi.​org/​10.​1007/​
s11242-​020-​01411-2

Zhang D, Zhang R, Chen S, Soll WE (2000) Pore scale study of flow 
in porous media: scale dependency, REV, and statistical REV. 

Geophys Res Lett 27:1195–1198. https://​doi.​org/​10.​1029/​1999G​
L0111​01

Zhang L, Zhang C, Zhang K et al (2019) Pore-scale investigation 
of methane hydrate dissociation using the Lattice Boltzmann 
method. Water Resour Res 55:8422–8444. https://​doi.​org/​10.​
1029/​2019W​R0251​95

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1002/hyp.11074
https://doi.org/10.1002/hyp.11074
https://doi.org/10.1016/j.advwatres.2019.103408
https://doi.org/10.1016/j.advwatres.2019.103408
https://doi.org/10.1021/acs.iecr.7b00194
https://doi.org/10.1021/acs.iecr.7b00194
https://doi.org/10.1007/s11242-020-01411-2
https://doi.org/10.1007/s11242-020-01411-2
https://doi.org/10.1029/1999GL011101
https://doi.org/10.1029/1999GL011101
https://doi.org/10.1029/2019WR025195
https://doi.org/10.1029/2019WR025195

	Finding preferential paths by numerical simulations of reactive non-darcy flow through porous media with the Lattice Boltzmann method
	Abstract
	Introduction
	Theoretical background
	Physical properties
	Governing equations in porous media
	Lattice Boltzmann method (LBM)
	LBM for fluid flow
	LBM for mass transport

	Heterogeneous reactions
	Volume of pixel (VOP)
	Boundary conditions

	Methodology
	Porous media construction
	Preferential paths in a single-component fluid flow
	Preferential paths with reactive-mass transport

	Results and discussion
	Preferential paths in a single-component fluid flow
	Flow in the original porous media
	Flow with clogging

	Preferential paths with reactive-mass transport
	Porosity evolution in the original porous matrix
	Porosity evolution in an obstructed porous matrix


	Conclusion
	Acknowledgements 
	References




