
Vol.:(0123456789)

Brazilian Journal of Chemical Engineering (2023) 40:511–520 
https://doi.org/10.1007/s43153-022-00257-z

1 3

ORIGINAL PAPER

Biodiesel production from waste cooking oil using a waste diaper 
derived heterogeneous magnetic catalyst

HongXu Chen1 · Wei Xia2 · Song Wang1 

Received: 26 March 2022 / Revised: 28 June 2022 / Accepted: 6 July 2022 / Published online: 19 July 2022 
© The Author(s) under exclusive licence to Associação Brasileira de Engenharia Química 2022

Abstract
A series of waste diaper-derived heterogeneous magnetic catalysts for the synthesis of biodiesel was developed through 
the two-step method, i.e., first wet-impregnation in nickel nitrate solution and then calcination at 700 °C. The structure and 
catalytic ability of the catalyst were characterized by SEM, FTIR, XRD, BET, VSM, and acid–base titration techniques. 
The investigation results indicated that WDHMCs were mainly composed of Ni,  Na2CO3, and carbon. With the increase in 
the ratio of nickel nitrate to waste diapers, the magnetization of the prepared catalysts increased, while the catalytic activity 
decreased. When the ratio of nickel nitrate to waste diaper was 2 mmol/g, the obtained catalyst exhibited relatively high 
catalytic activity with the biodiesel yield of 96.4% and high magnetic separation property in the transesterification reaction 
of waste cooking oil with methanol. Moreover, the prepared waste diaper-derived heterogeneous magnetic catalyst could be 
easily reused by simple magnetic separation and maintain high catalytic activity after being reused four times.
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Introduction

As a green renewable energy source, biodiesel has attracted 
more and more attention under the social background of 
the increasing demand for green energy (Ma et al. 2020; 
Liu et  al. 2021; Vahid et  al. 2017). Global biodiesel 
production is forecast to increase by 14% every year and 
the production capacity of biodiesel can reach 33 billion 
liters by 2021, which can greatly benefit the optimization of 
energy structure (Liu et al. 2021; Hajjari et al. 2017). As a 
mixture of fatty acid methyl esters (FAME), biodiesel can be 
obtained by transesterification of vegetable oil, animal oil, 
waste oil, or microbial oil with methanol. Waste cooking oil 
(WCO) is produced in food processing. Using WCO as the 
raw material to prepare biodiesel can reduce the preparation 

cost of biodiesel and benefit the waste disposal (Kulkarni 
and Dalai 2006).

During the preparation process of biodiesel, catalyst 
plays an important role. In the traditional biodiesel 
preparation process, homogeneous catalysts such as KOH 
and NaOH were used and they exhibited high catalytic 
activity. However, these homogeneous catalysts exposed 
the disadvantage of being difficult to be reused (Abdullah 
et  al. 2017; Kawashima et  al. 2009; Souza et  al. 2009; 
Zabeti et al. 2009; Liu et al. 2016). Compared with the 
traditional homogeneous catalysts, heterogeneous catalysts 
showed much better reusability. Many different types of 
heterogeneous catalysts have been developed in the past 
years, including ion exchange resin, zeolite, metal oxide, 
basic metal, and so on (Thushari and Babel 2018; Umar 
et al. 2019; Ashok et al. 2019). Most reported heterogeneous 
catalysts exhibited advantages with the respect to catalytic 
activity and reusability.

Nevertheless, the application of heterogeneous catalysts 
still has some limitations such as the high time and energy 
consumption in the separation and recovery process 
of catalyst (Lu et  al. 2007). It is important to develop 
heterogeneous catalyst which can be easily separated from 
the reaction product with low time and energy consumption 
and high catalyst recovery percentage (Zhang et al. 2014). 
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Thus, the heterogeneous magnetic catalysts were developed 
in the past years (Wang et al. 2019). For example, when ZnO/
BiFeO3 nanomagnetic catalyst was used in the synthesis of 
biodiesel, the yield of biodiesel can be higher than 92% and 
the catalyst can be recycled easily (Salimi and Hosseini 
2019). The high recovery efficiency of magnetic catalyst 
attracted more and more attention to the development of 
magnetic catalysts. However, the complex preparation 
procedure and high preparation cost made the industrial 
application of the reported heterogeneous magnetic catalyst 
difficult. It is an inevitable trend to develop high-efficiency 
and low-cost heterogeneous magnetic catalyst.

Heterogeneous catalysts prepared by low-cost waste 
have attracted wide attention in the field of transesterifi-
cation reactions these years (Yang and Xie 2007; Yu et al. 
2011; Viola et al. 2012; Semwal et al. 2011; Laskar et al. 
2018; Kumar et al. 2018). Maneerung et al. found that CaO 
obtained from chicken manure can be converted into an 
active catalyst for the synthesis of biodiesel after the calci-
nation at 850 °C (Maneerung et al. 2016). Rawat et al. used 
metal oxide mixed CaO, which was derived from chicken 
eggshell, as the catalyst in the transesterification of jatropha 
oil and karanja oil with methanol to produce biodiesel 
(Rawat et al. 2018). This waste-derived catalyst provided a 
new way to obtain low-cost and high-performance hetero-
geneous catalysts.

Waste diaper is a typical municipal solid waste. In some 
countries, the amount of waste diapers even accounts for 6% 
of total municipal waste (Espinosa-Valdemar et al. 2014). 
Since the main components of the waste diaper are non-
biodegradable polymers such as sodium polyacrylate and 
polypropylene, the careless disposal of the waste diaper can 
lead to environmental problems (Cordella et al. 2015). To 
solve the problem in the field of waste diaper disposal, sev-
eral methods have been applied to the reuse of waste diapers. 
For example, after blending with the yard waste, the waste 
diaper can be made into high-quality compost (Colón et al. 
2013). Using the sodium polyacrylate in the waste diaper, 
porous material can be prepared by pyrolysis method and 
the prepared porous material can be successfully used as the 
anode material for lithium-ion batteries (Wei et al. 2018). 
Developing more ways to utilize waste diaper is conducive 
to environmental protection (Correia et al. 2014). Before 
that, our team published the research results of using waste 
diapers and  NiNO3 to prepare catalysts for the synthesis of 
glycerol carbonate. However, there is no research on the use 
of waste diapers for biodiesel (Wang et al. 2020).

In this study, waste diaper was used as the raw material to 
prepare the heterogeneous magnetic catalyst for the synthe-
sis of biodiesel by wet-impregnation and calcination method. 
Compared with other catalysts, the heterogeneous magnetic 
catalyst prepared from waste diapers and nickel nitrate solu-
tion is more environmentally friendly, highly efficient, and 

low-cost. The structure and morphology of the catalyst were 
studied by various techniques. Then the prepared catalysts 
were used in the transesterification of WCO with methanol, 
and their catalytic activity was compared. The catalyst with 
the best performance was selected to study the effect of reac-
tion conditions on biodiesel yield. Besides, the stability of 
the selected catalyst was evaluated by the reuse experiment.

Experimental section

Materials

Analytical grade reagents, including methanol and nickel 
nitrate, were bought from Damao Chemical Reagent Co., 
Tianjin, China. All the reagents were used directly without 
a purification process. Waste diapers were collected from 
the local municipal waste. Waste cooking oil (WCO) was 
obtained from our university canteen. The composition and 
properties of the WCO were presented in Table 1.

Catalyst preparation

Catalysts based on the waste diaper were prepared by the 
wet-impregnation and calcination method as reported in 
literature (Wang et al. 2018). Waste diapers were dried up 
in an oven at 120 °C to remove the absorbed water. The 
dried waste diapers (10 g) were immersed in 0.25 mol/L, 
0.5 mol/L, 0.75 mol/L, and 1 mol/L of  NiNO3 solution 
(40 ml). After being dipped for 6 h at room temperature, 
the fully impregnated waste diapers were dried at 120 °C 
for 12 h to remove the adsorbed water. The dried waste dia-
pers were carbonized in a furnace at 700 °C for 2 h under 
nitrogen gas with a flow rate of 60 mL/min. The residual 
carbon material was ground and passed through the sieve 
of 125 μm. The obtained catalyst was named as WDHMC-
X, where WDHMC presented the waste diaper derived 
heterogeneous magnetic catalyst and X indicated the ratio 
of  NiNO3 to waste diaper. For example, when the ratio of 
 NiNO3 to waste weight was 2 mmol/g (20 mmol  NiNO3 
blended with 10 g waste diaper), the obtained heterogeneous 
magnetic catalyst was named as WDHMC-2.

Table 1  The composition and properties of the WCO

Composition and properties of the WCO Value

Linoleic acid (%) 58.4
Oleic acid (%) 36.7
Palmitic acid (%) 4.9
Acid value (mg KOH  g−1) 2.1
Density (g·cm−3) 0.9
Viscosity (Cst at 40 °C) 38.1
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Characterization of catalysts

Functional groups of the catalysts were characterized by 
Prestige-21 FT-IR spectrometer (Shimadzu, Japan). The 
scan range was recorded between 400 and 4000  cm−1. The 
crystalline structure of the catalysts was characterized by the 
PW3040 X-ray diffraction (XRD) with a scanning speed of 
4°/min in the range of 5–80°. The surface morphology of 
the catalyst was observed by a Pro X (Phenom, Netherlands) 
scanning electron microscope (SEM). The elemental com-
position of the catalysts was recorded by energy-dispersive 
X-ray spectrum (EDS). The magnetic property of the cata-
lysts was measured by a vibrating sample magnetometer 
(VSM, Lake Shore 7410, USA). Brunauer-Emmet-Teller 
surface area measurement (BET) of the catalysts was car-
ried out by using a JW-BK122W instrument (JWGB, China). 
The basicity of the catalyst is determined according to the 
method in the literature (Li and Wang 2011).

Experimental procedure for transesterification 
reaction

A three-necked round-bottomed flask was used as the reac-
tor. The flask was equipped with a spherical condenser, a 
thermometer, and an oil bath. In a typical experiment, 10 g 
of the filtered waste cooking oil, 3.2 g of methanol, and a 
certain amount of catalyst were charged into the flask. Then 
the reaction mixture was heated to the selected temperature 
and reacted for a certain time. After the reaction, the catalyst 
was separated using a 3 × 1 × 6  cm3 rectangular magnet. The 
residual methanol in the reaction product was evaporated by 
vacuum distillation. 0.1 g of the distilled product and 0.01 g 
internal standard, methyl laurate, were dissolved in 10 ml 
n-hexane to prepare the sample for the gas chromatography 
analysis. The composition of the product was determined 
by an Agilent GC-7890A gas chromatography (HP, USA). 
The biodiesel yield was calculated according to the method 
reported in the literature (Teo et al. 2019).

Results and discussion

Catalyst characterization

Figure 1 shows the FT-IR results of the WDHMC catalysts. 
The FT-IR spectrum of the WDHMC catalysts is similar. 
Five characteristic absorption peaks were observed at 3416, 
1627, 1438, 875, and 700  cm−1. The peak at 3416  cm−1 can 
be related to O–H stretching vibrations (Shikhaliyev et al. 
2018). The peaks at 1627, 1438, 875, and 700  cm−1 can be 
assigned to the vibration of carbonate (Viriya-empikul et al. 
2010; Song et al. 2017). Thus, FT-IR investigation indicated 
that carbonate existed in the WDHMC catalysts.

To further study the structural differences of the 
WDHMC catalysts, XRD studies were performed, which 
can effectively detect crystalline structure (Liu et  al. 
2022). Figure 2 shows the XRD patterns of the WDHMC 
catalysts. Strong diffraction peaks were observed in the 
prepared catalysts, indicating that these catalysts contained 
crystalline materials. Similar XRD diffraction peaks were 
found for the WDHMC catalysts. The weak diffraction 
peaks appeared at 30.2°, 33.2°, 34.5°, 35.3°, 38.1°, 39.9°, 
41.4°, 46.6°, and 48.4° can be assigned to the diffraction 
of  Na2CO3 (JCPDS 77-2082). The strong diffraction peaks 
observed at 44.2°, 51.8°, and 76.4° demonstrated the 
existence of Ni (JCPDS87-0712). Meanwhile, there is a 
broad peak that can be observed around 20°, which proved 

4000 3500 3000 2500 2000 1500 1000 500

7001627

875

1438

d

c

b

Tr
an

sm
itt

an
ce

 (%
)

Wavenumber (cm-1)

a

3416

Fig. 1  FTIR spectra of the (a) WDHMC-1, (b) WDHMC-2, (c) 
WDHMC-3, (d) WDHMC-4

Fig. 2  XRD of the (a) WDHMC-1, (b) WDHMC-2, (c) WDHMC-3, 
(d) WDHMC-4
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the existence of carbon. XRD examination results illustrated 
that the prepared WDHMC catalysts were composites of 
 Na2CO3, nickel, and carbon.  Na2CO3 can provide sufficient 
basicity for the catalyst, nickel can provide magnetism 
for the catalyst, and carbon can stabilize  Na2CO3 and Ni 
particles, indicating that the prepared catalyst is a potential 
heterogeneous basic magnetic catalyst (Wang et al. 2019).

Due to the decomposition of the waste materials during 
the carbonization process, their morphology can be changed 
considerably (Chen et al. 2022). Figure 3 shows the changes 
in the surface morphology of the catalysts prepared with 
different  NiNO3 ratios. It can be observed that all the 
prepared catalysts exhibited similar morphology. Irregular 

holes and small particles can be observed on the catalyst 
surface. Since the  NiNO3 ratio used during the catalyst 
preparation process was different, the element content of 
the catalyst must be different.

EDS date of the WDHMC catalysts is presented in 
Table 2. EDS analysis was performed to verify the elemental 
composition of the WDHMC catalysts. Na, Ni, C, and O 
are the main element of the WDHMC catalysts. Meanwhile, 
with the  NiNO3 ratio in the WDHMC catalysts increased, the 
weight percentage of Ni element in the catalyst increased, 
and the weight percentage of Na element decreased. Usually, 
the content of Na element is related to the catalyst basicity 
and the content of Ni element is related to the catalyst 

Fig. 3  Surface images of the (a) 
WDHMC-1, (b) WDHMC-2, 
(c) WDHMC-3, (d) WDHMC-4

Table 2  Elemental composition 
of the WDHMC catalysts

Sample Na (%) Ni (%) C (%) O (%) Cl (%) K (%) N (%)

WDHMC-1 31.9 21.8 13.2 30.3 0.2 0.5 2.1
WDHMC-2 28.4 25.5 12.8 29.9 0.2 0.8 2.4
WDHMC-3 19.5 35.4 14.5 28.3 0.4 0.6 1.3
WDHMC-4 14.1 45.7 11.6 25.8 0.7 0.3 1.8
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magnetic property. The different content of Na and Ni in 
the catalyst can affect the catalytic and separation properties 
of the WDHMC catalysts.

The magnetic properties of the WDHMC catalysts were 
studied at room temperature, and the results are shown in 
Fig. 4. The shapes of the four catalysts hysteresis loop are 
similar. The magnetic strengths of WDHMC-1, WDHMC-
2, WDHMC-3, and WDHMC-4 are 4.2, 7.9, 9.7, and 12.1 
 Am2/kg, respectively. Since the magnetic strength can 
affect the separation property of the WDHMC catalysts, 
the magnetic separation experiment using a 3 × 1 × 6 
 cm3 rectangular magnet was carried out and the result is 
shown in Fig. 5. When WDHMC-1 was used, the magnetic 
separation of the catalyst was not good. The used catalyst 
cannot be totally absorbed by a magnet (Fig. 5a). WDHMC-
2, WDHMC-3, and WDHMC-4 exhibited good magnetic 
separation properties because they can be totally absorbed 
by magnet (Fig. 5b–d). The investigation on the magnetic 
properties of the WDHMC catalysts indicated that, when 
the magnetic strength of the catalyst was higher than 7.9 

 Am2/kg, the prepared WDHMC catalyst showed good 
magnetic separation property. WDHMC-2, WDHMC-3, 
and WDHMC-4 can be used as magnetic catalyst for the 
synthesis of biodiesel.

Textural and basic properties of the WDHMC catalysts 
are presented in Table 2. WDHMC1 showed the highest 
BET surface area and total basicity among the prepared 
catalysts. However, the magnetic separation property 
of WDHMC1 is poor (Fig.  5a), making it unsuitable 
for the application as a magnetic catalyst. The basicity 
of the catalyst can directly affect its catalytic activity in 
the reaction between methanol and waste cooking oil. To 
illustrate the catalytic activity of the WDHMC catalysts, 
the prepared catalysts were applied in the synthesis of 
biodiesel. The comparison experiment was carried out 
under the reaction condition with the methanol to WCO 
molar ratio of 9:1 and 4 wt% of catalyst at 65 °C for 6 h. 
It can be observed from Fig.  6 that only WDHMC-1 
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Fig. 4  Hysteresis loops of the (a) WDHMC-1, (b) WDHMC-2, (c) 
WDHMC-3, (d) WDHMC-4

Fig. 5  Magnetic separation 
of the (a) WDHMC-1, (b) 
WDHMC-2, (c) WDHMC-3, 
(d) WDHMC-4

WDHMC-1 WDHMC-2 WDHMC-3 WDHMC-4
0

20

40

60

80

100

B
io

di
es

el
 y

ie
ld

 (%
)

Catalyst

98.1 97.3

83.1

65.2

Fig. 6  Comparison of the catalytic activity of the WDHMC catalysts



516 Brazilian Journal of Chemical Engineering (2023) 40:511–520

1 3

and WDHMC-2 showed high catalytic activity with the 
biodiesel yield higher than 95%. Therefore, in terms of the 
consideration of catalytic activity and magnetic separation 
performance, WDHMC-2 was selected as the suitable 
catalyst for the synthesis of biodiesel and applied in the 
following studies on the effect of the reaction parameters 
on the biodiesel yield (Table 3).

Effect of the transesterification reaction parameters 
on biodiesel yield

Sufficient reaction time is an important factor to achieve 
a high biodiesel yield (Amani et al. 2014b, a). Figure 7a 
shows the effect of the reaction time on biodiesel yield. 
The result indicated that the reaction time has an obvious 
effect on biodiesel yield. When the reaction time was 1 h, 
the biodiesel yield only reached 26.9%. With the increase of 
the reaction time, the biodiesel yield increased significantly. 
Biodiesel yield reached 96.4% when the reaction time was 
4 h. When the reaction time was further prolonged, the 
biodiesel yield did not change obviously.

Lots of comparative investigation on the heterogeneous 
base catalysts in the synthesis of biodiesel proved that the 
biodiesel yield is greatly affected by the content of catalyst 
amount (Ngamcharussrivichai et al. 2010). Figure 7b shows 
the effect of catalyst amount on biodiesel yield. When the 
catalyst amount was only 1 wt%, the biodiesel yield reached 

Table 3  BET, basicity, and magnetization of the WDHMC catalysts

Catalyst BET surface 
area  (m2/g)

Total basicity 
(mmol/g)

Magnetiza-
tion  (Am2/
kg)

WDHMC-1 128.6 7.4 4.2
WDHMC-2 59.9 4.7 7.9
WDHMC-3 38.9 3.1 9.7
WDHMC-4 23.8 2.3 12.1
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Fig. 7  (a) Biodiesel yield as a function of reaction at different times, 
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yield as a function of reaction at 4 h, 65 °C, different oil to methanol 
molar ratio, and 4 wt% of catalyst; (d) Biodiesel yield as a function of 
reaction at 4 h, different temperature, 9:1 oil to methanol molar ratio, 
and 4 wt% of catalyst



517Brazilian Journal of Chemical Engineering (2023) 40:511–520 

1 3

35.2%. As the catalyst amount increased, the biodiesel yield 
increased simultaneously. When the catalyst amount was 4 
wt%, the biodiesel yield was up to 96.4%. A high catalyst 
amount can lead to the increase of biodiesel yield due to 
the increase of the active site in the reaction system. How-
ever, the biodiesel yield declined slightly when the catalyst 
amount exceeded 4 wt%. This was due to the poor diffusion 
between the reagent and catalyst in the case of a high catalyst 
amount (Nizah et al. 2012).

Since the transesterification of methanol with WCO is 
a reversible reaction, methanol must be used excessively 
to achieve a high biodiesel yield (Wong et al. 2015). With 
the increase of the methanol to WCO molar ratio from 3:1 
to 9:1, the biodiesel yield increased from 16.2 to 96.4% as 
illustrated in Fig. 7c. However, when the methanol to WCO 
molar ratio exceeded 9:1, the biodiesel yield decreased. 
This is because that excessive methanol can promote the 
dissolution of glycerol in the WCO and subsequently lead 
to a decrease of biodiesel yield (Jo et al. 2013).

Transesterification of WCO with methanol is an endother-
mic reaction. The increase of reaction temperature is benefi-
cial to the reaction. Figure 7d shows the effect of reaction 
temperature on biodiesel yield. When the temperature was 
50 °C, the biodiesel yield reached 38.2%. As the temperature 
increased, the biodiesel yield increased. When the reaction 
temperature was 65 °C, the biodiesel yield was up to 96.4%. 
With the further increase of reaction temperature, biodiesel 
yield decreased slightly, which was caused by the evapora-
tion of methanol and the decrease of the actual methanol to 
WCO molar ratio (Tang et al. 2020).

Reusability of the WDHMC catalyst

Compared with homogeneous catalysts, heterogeneous 
catalysts can be reused, which can decrease the preparation 
cost and simplify the purification process of the product. 
To examine the reusability of the prepared WDHMC 
catalyst, the magnetically separated catalyst was washed 
with methanol, dried in an oven at 110 °C for 2 h, and 
reused in the next cycle. Figure 8 shows the reusability of 
the WDHMC catalyst. It can be seen from Fig. 8 that the 
biodiesel yield decreased to 62.4% after the WDHMC-2 was 
used for four cycles. To find out the reason for the reduction 
of catalytic activity of the WDHMC catalyst, XRD analysis 
was used to compare the structure difference between the 
fresh WDHMC catalyst and the reused WDHMC catalyst. 
Figure 9 shows the XRD analysis result. It can be observed 
that, after the WDHMC-2 was used four cycles, the peak 
intensity of  Na2CO3 decreased, while the peak intensity of 
Ni changed little. This result demonstrated that the content 
of  Na2CO3 in the WDHMC-2 decreased and the content of 
Ni unchanged. Since  Na2CO3 provides sufficient basicity for 

the catalyst, the leaching of  Na2CO3 can lead to the reduction 
of the catalyst activity.

Comparison of WDHMC‑2 with the reported 
catalysts

Finding suitable material and preparation methods to 
prepare heterogeneous catalysts is an important research 
topic in the field of biodiesel synthesis. Due to the high 
separation efficiency, the heterogeneous magnetic catalyst 
has drawn more and more attention. A lot of heterogeneous 
magnetic catalysts have been prepared in the past years. As 
a heterogeneous magnetic catalyst, to evaluate the quality of 
the WDHMC-2, a comparison between the WDHMC-2 and 
some reported heterogeneous magnetic catalysts was carried 
out. The comparison result is shown in Table 4. All these 
catalysts presented high catalytic activity with the biodiesel 
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yield higher than 80%. However, their catalytic stability, 
preparation cost, and separation efficiency were different. 
In terms of catalyst stability, most of these catalysts exposed 
the problem of the decrease of the catalytic activity. The 
biodiesel yield decreased to 53.8% when CaO was used for 
three cycles. In terms of catalyst preparation cost, CBPA, 
CaO, and WDHMC-2 showed an obvious advantage because 
these catalysts were prepared by waste materials with 
negligible cost. In terms of catalyst separation efficiency, 
 Fe3O4/ZnMg(Al)O,  Na2SiO3@Ni/C, and WDHMC-2 can be 
separated from the reaction media by a magnet, indicating 
the high separation efficiency of these catalysts. Thus, from a 
comprehensive perspective, WDHMC-2 is a low preparation 
cost, high separation efficiency, and good catalytic activity 
catalyst, which has potential application in the future.

Conclusion

A series of waste diaper-derived heterogeneous magnetic 
catalysts were prepared using nickel nitrate and waste 
diaper as raw material. The level of Ni in the catalysts 
can greatly affect the magnetization and catalytic activity 
of the prepared catalysts. As the level of Ni increases, the 
magnetization increases, but the yield of biodiesel reduces 
probably caused by the alkalinity reduction. When the 
catalyst with the ratio of nickel nitrate to waste diaper at 
2 mmol/g was applied in the biodiesel synthesis, under the 
reaction condition with the methanol to WCO molar ratio of 
9:1 and the reaction temperature of 65 °C, the biodiesel yield 
reached 96.4% within 4 h in the presence of 4 wt% of the 
catalyst. Compared with the reported heterogeneous catalyst, 
the prepared waste diaper-derived heterogeneous magnetic 
showed advantages in the respects of catalytic stability, 
preparation cost, and separation efficiency. Therefore, 
with the improvement of the law on the recovery and reuse 
of biological contaminated materials, the waste diaper 
derived heterogeneous magnetic catalyst has great potential 

application in the transesterification reaction of WCO with 
methanol. This study not only provided a new method to 
prepare heterogeneous catalyst used in biodiesel synthesis, 
but also explored a new way to utilize diaper waste, which is 
beneficial to waste management and resource conservation.
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