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Abstract

Fatty compounds have significant industrial applications as coatings, plastics, cleaning products, emulsifiers, structuring,
and gelling agents. Due to these applications, it is important to understand their physical and chemical properties, such as
melting behavior, crystallization processes, and phase transitions, all of them related to solid-liquid equilibrium (SLE). In
this study, six binary mixtures composed of tristearin (SSS) plus fatty acids (capric acid, lauric acid, and myristic acid) and
tristearin plus fatty alcohol compounds (1-decanol, 1-dodecanol, and 1-tetradecanol) were investigated using Differential
Scanning Calorimetry (DSC) and optical microscopy analysis. The phase diagrams formed by tristearin + fatty acids presented
a monotectic behavior and the phase diagrams formed by tristearin + fatty alcohol compounds, on the other hand, exhibited a
solid solution formation on the entire composition range, although the liguidus line shape was very similar to that observed in
the systems formed by fatty acids. The liquidus line of all systems were well-described by NRTL and three-suffix Margules
models, and also by ideal assumption. The best result was observed for the three-suffix Margules model, with a root mean
square deviation (RMSD) equal to 0.26.
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Abbreviations

ARD Average relative deviation

DSC Differential scanning calorimetry
NRTL Non-random two-liquid model
RMSD Root mean square deviation

SLE Solid-liquid equilibrium

SSS Tristearin

TAG Triacylglycerols
Introduction

The worldwide production and consumption of oils and fats
are growing over the years, and they are a source of energy
and play an important role in human nutrition. Oils and fats
are a multicomponent system composed of triacylglycerols
(TAGs) and their minor constituents as free fatty acids and
fatty alcohol compounds that can affect physical properties,
such as texture, and polymorphic forms. (Wright and Maran-
goni 2005; Maximo et al. 2013; Matos et al. 2015).

TAGs are formed by a chemical bond of three fatty acids
to a molecule of glycerol. The type and positioning of fatty
acids within a TAG determines their melting behavior,
which is especially significant to food industries, since it
can affect texture and spreadability, for example (Wright
and Marangoni 2005).

Tristearin, the TAG used in this study, is one of the major
constituents of vegetable oils, readily available on high
purity. Its crystalline behavior is well known for present-
ing three major crystalline forms: a-crystallite, which is the
most prominent and kinetically stable, - and p’-crystallite,
which are thermodynamically stable (Da Silva et al. 2016).
Besides, this TAG is used as hardstock to produce trans-free
fat bases for shortenings and bakery margarines (Kellens
et al. 1991; Oh et al. 2002; Matovic et al. 2005; Webster
et al. 2018).

Fatty acids are carboxylic acids with an alkyl chain rang-
ing from four to 36 carbons (C,—C;), considered phase
change materials due to their high-energy storage density
(Wei et al. 2014; Zhao et al. 2014; Zhang et al. 2015). They
can be used in food and cosmetic formulation and also to
produce biodiesel and lubricants (Inoue et al. 2004a, b; Eck-
ert et al. 2016). Fatty alcohol compounds are classified as
long chain aliphatic alcohols, with six or more carbon atoms
(Fisk et al. 2009). Concerning their use in industry, they are
generally used to produce emulsifiers, emollients, and thick-
eners applied in food and cosmetic formulations (Johnson
1988; Kogan and Garti 2006; Pernetti et al. 2007).
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The use of fat compounds in different fields requires the
understanding of their phase and mixture phase behavior,
which is possible by the study of solid-liquid equilibrium
(SLE). SLE can provide information regarding the inter-
action between different acyl chains, helping to determine
the physical properties and the phase behavior of complex
lipids and their mixtures (Inoue et al. 2004a, b; Dorighello
Carareto et al. 2015). Thus, SLE allows the development and
validation of models for better understanding the crystalliza-
tion, fractionation, melting, and stabilization processes of
fatty mixtures (Tadie et al. 2013; Matos et al. 2015).

SLE phase diagrams of fatty mixtures can be experimen-
tally determined by several techniques, such as differential
scanning calorimetry (DSC), X-ray, and optical microscopy.
DSC determines the phase transition temperatures, which
enables the determination of eutectic and monotectic points
in phase diagram construction (Wesdorp 1990; Maximo
et al. 2014a, b; Matos et al. 2016; Pelaquim et al. 2019).
In addition, DSC is a fast, accurate, and reliable technique,
requiring small amounts of sample.

This work came to complement previous pub-
lished research that studied the SLE phase diagrams of
TAGs + (fatty acids or fatty alcohol compounds) (Maximo
et al. 2013; Matos et al. 2015, 2016; Pelaquim et al. 2019).
Thus, the SLE behavior of six different binary mixtures
measured by DSC technique are presented. Some thermal
transitions were evaluated with the aid of an optical micro-
scope linked to a temperature controller. The components
chosen were: tristearin (1) as TAG and capric acid (2), lauric
acid (3), myristic acid (4), 1-decanol (5), 1-dodecanol (6),
and 1-tetradecanol (7). The parameters of three-suffix Mar-
gules and NRTL models were adjusted to the experimental
data to describe the liquidus lines of the studied systems.

Experimental methods
Materials

High pure components (Table 1) were used to prepare the
binary mixtures without further purification. The DSC
calibration was carried out considering onset temperatures,
using a heating rate of 1 K min™' and the following stand-
ards: indium (>0.990 molar fraction, CAS number 7440-
74-6) from TA Instruments; naphthalene (>0.990 molar
fraction, CAS number 91-20-3) from Fluka Analytical
(Germany); and cyclohexane (>0.990 molar fraction, CAS
number 110-82-7) from Sigma-Aldrich (USA).
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Table 1 Sources and purities of the compounds used in this study

Chemical Name CAS number Mass frac- Source
tion purity®

Tristearin 555-43-1 >0.990 Sigma-Aldrich (USA)
Capric acid 334-48-5 >0.990 Sigma-Aldrich (USA)
Lauric acid 143-07-7 >0.990 Sigma-Aldrich (USA)
Myristic acid 544-63-8 >0.990 Sigma-Aldrich (USA)
1-decanol 112-30-1 >0.990 Sigma-Aldrich (USA)
1-dodecanol 112-53-8 >0.990 Sigma-Aldrich (USA)
1-tetradecanol 112-72-1 >0.990 Sigma-Aldrich (USA)

#As indicated by the supplier

Apparatus and procedure
Binary mixture preparation

Binary mixtures were prepared by weighting known quanti-
ties of each compound using an analytical scale with a pre-
cision of +2 x 10™* (Shimadzu AUY220, Japan), totalizing
0.50 g of each mixture, to obtain the entire range of the
phase diagram composition in increments of 0.1 or 0.2 tris-
tearin molar fractions. A Thermoprep equipment (Metrohm,
Herisau), the oven used for Karl Fischer titration, was used
to melt the samples, and ensure their complete homog-
enization under a nitrogen atmosphere. After melting, the
samples were cooled down to room temperature and kept
under refrigeration until their use in the DSC equipment.
The uncertainty obtained due to error propagation from the
weighted masses was estimated as not higher than 6 x 10~
(in molar fraction).

Differential scanning calorimetry (DSC)

SLE experimental data (melting temperatures and enthalp-
ies of fusion) of the binary mixtures were determined on a
Differential Scanning Calorimetry equipment (MDSC 2920,
TA Instruments, New Castle) equipped with a refrigerated
cooling system operated in a temperature range from 248 to
360 K; high-purity nitrogen was used as purge gas at 50 mL/
min. The melting temperature and heat flow were previously
calibrated with the primary calibration standards: indium
(certificated by TA Instruments), naphthalene (Fluka Ana-
Iytical, Germany), and cyclohexane (Sigma Aldrich, USA),
with purity greater than 0.99 mass fraction, at a heating rate
of 1 K min~! for at least three times with each calibration.
The standard deviations of the measurements ranged from
0.07 to 0.1 K.

Each sample mixture was weighed (4—7 mg) using a
microanalytical scale with 2 x 107 accuracy (AD6, Perki-
nElmer, Waltham) and sealed in aluminum pans. The
samples were submitted to a thermal treatment according

to Costa et al. (2007) to erase previous thermal histories
because of the fatty compound polymorphism effects. The
thermal treatment consisted of a heating step at 5 K min~!
from room temperature until 15 K above the melting point
of the fat compound with the highest melting point of the
mixture, followed by an isothermal time of 20 min; a cool-
ing run at 1 K min~! up to 25 K below the smaller melting
point of the fat compound with the lower melting point of
the mixture and another isothermal step of 30 min. After
this thermal treatment, the run for data acquisition was
done at a heating rate of 1 K min~".

Thermal event temperatures were analyzed using the
TA Universal Analysis software. The transitions, eutec-
tic, and melting temperatures was calculated through the
peak temperature and the enthalpy was calculated from
the area of the corresponding peak (Costa et al. 2007).
Onset temperature is more recommended to find the melt-
ing temperature due to its low dependence on heating rate
and sample parameters. However, the use of onset tem-
perature to determine the melting peak may be inaccurate
due to the influence of other peaks and overlapped peaks in
the differential thermal curve that are generally observed
in fatty compounds added to low values of heat transfer
coefficient especially observed in mixtures of organic com-
pounds (Hohne et al. 2003; Costa et al. 2007). Therefore,
in this work we used peak temperature because of better
repeatability and ease determination.

Triplicate runs were done for some selected compositions
to verify the repeatability of the temperatures attributed to
each thermal event and the reliability of the methodology
and equipment. It was observed that all the uncertainties of
fusion temperature for pure components and binary mix-
tures were below 0.30 K, indicating that the DSC equipment
presents a good reproducibility. For a better visualization,
the triplicate of SSS +C140H at x; = 0.40 are presented in
the Supplementary Information, as well as the comparison
between the peak temperature of each event (Figure S7 and
Table S1). One can observe that the results of the tempera-
tures determined for the endothermic and exothermic peaks
remain very close.

Optical microscopy

An optical microscope (Leica DM 2700 M, China) with
a temperature controller (Linkam LTS 420, United King-
dom) was used to evaluate the solid-liquid transitions of
some selected binary mixtures. The sample amount used
for this experiment was approximately 50 mg. A heating
rate of 0.1 K min~' was employed from 10 degrees under
the eutectic temperature until reaching the sample melting
temperature. Images were captured every 60 s with a mag-
nification of 10 or 20 times.
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SLE thermodynamic modelling

To describe the liguidus lines of the binary mixture, the
activity coefficient was calculated by three-suffix Margules
and NRTL models, considering the ideal behavior of the
liquid phase. The models were used in Eq. 1 as discussed
by Prausnitz et al. (1999), where the solid—solid transitions
and molar heat capacity of pure components were not con-
sidered. Moreover, the activity coefficient of component i
in the solid phase at equilibrium was replaced by the activ-
ity coefficient of the pure component (x}y; = 1), represent-
ing the immiscibility of both components in that phase.

L — Aps, i H E_]
leylL RTm,i T ’ (1)

where le is the molar fraction of component i in the liquid
(L) phase; yiL is the activity coefficient of component i also in
the liquid phase; A, ;H is the fusion enthalpy at the melting
temperature of component i; 7, ; is the melting temperature
of component i; T is the calculated temperature; and R is the
universal gas constant.

The parameters of three-suffix Margules and NRTL
models were adjusted to find the activity coefficients of
the liquid phase (Prausnitz et al. 1999). Downhill sim-
plex optimization method (Vetterling et al. 1992) was used
to determine the models’ parameters with the objective
function (S) given in Eq. 2, where (N) is the number of
experimental measurements and (o-n) is the temperature
uncertainty, as proposed by Costa et al. 2007. The root
mean square deviation (RMSD) was used to evaluate the
deviation between the calculated temperature and the
experimental ones.

Table 2 Thermal properties of tristearin: transition temperatures (7,
ture data, p=94.6 kPa

rans.

TCXP _ Tcal 2
i i

1 N

Results and discussion
Pure tristearin thermal properties

The thermal properties of fatty acids and fatty alcohol com-
pounds were previously presented (Pelaquim et al. 2019).
Thus, Table 2 shows the transition temperatures of tristearin,
which are represented by exothermic peaks or endothermic
peaks, due to events such as residual melting temperature or
polymorphs transformation; the melting temperature, which
is the endothermic peak that occurs at higher temperature;
the molar enthalpy of fusion; and the experimental standard
deviations presented in parentheses, as well as the literature
data of tristearin. These data were done in triplicate and
standard deviation was calculated according to Eq. 3.

3

where s, is the standard deviation, n is the number of data
points, x; is each of the values of the data, and x’ is the mean
value of x;.

Equation 4 was used to calculate the average relative
deviation (ARD), which consists of the deviation between
the melting temperature and molar enthalpies determined in
this study (I'ppigsruay) @nd in the literature (I't jieaure)-

); melting temperatures (7',,); molar enthalpy of fusion (AHj,); and litera-

Component  7T,,,/K T,/K AHy,J(kJ mol™)
This study Literature This study Literature This study Literature
Tristearin ~ 328.72 (+0.08) 328.27 (Costa et al. 345.86 (+0.11) 345.76 (Costa et al. 198.56 (+3.36) —
2010) 2011)
330.87* (£0.41) 329.51 (Costa et al. 345.27 (Costa et al. -
2010) 2010)
331.68 (+0.46) 332.33 (Costa et al. 346.60 (Yui et al. 2017) 195.30 (Yui et al. 2017)
2010)

345.90 (Matovic et al.
2005)

344.35 (Kellens and
Reynaers 1992)

197.55 (Matovic et al.
2005)

190.00 (Kellens and
Reynaers 1992)

Uncertainties Type A

*Temperature of exothermic transition peak
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1 Zn 'FThis study I_‘Literalure

N

ARD = x 100.

- “
I=1 I_‘This study

The ARD of melting temperature and the ARD of molar
enthalpy were 0.17% and 2.15%, respectively. Both results
show a good agreement between our experimental data
and literature data.

TAGs are well known by their ability to crystallize
under different crystal forms (Garti and Sato 1988). The
most common ones are o, ', and f forms, in which o is
the less stable and f is the most stable form (Timms 1984;
Persson 2008). The generation of tristearin f'-form is pos-
sible only under a special thermal conditioning treatment
because of the speediness of the a to f-form transforma-
tion (Singh et al. 1999).

Figure 1 compares the DSC curve of tristearin deter-
mined in this study and that the one determined by Singh
et al. 1999 using a heating rate equal to 2.5 K min~!. One
can observe that the curve determined in this study is simi-
lar to the tristearin curve from the literature, showing four
well-defined peaks (Timms 1984; Singh et al. 1999; Pers-
son 2008) despite the different heating rate and thermal
treatment used by the authors. According to the literature
(Singh et al. 1999), the first peak observed in Fig. 1 is an
endothermic peak that indicates a residual a-form melt-
ing at 328.61 K (peak number 1 indicated by the black
arrow). This endothermic peak is followed by an exother-
mic one observed at 330.42 K, which is attributed to the
transformation from a-form to p-form (peak number 2).
Peak number 2 is overlapped by peak number 3, which
is a residual B-form crystallization at 332.84 K; and peak

number 4 is related to tristearin p-form melting tempera-
ture, at 345.73 K.

Experimental SLE data

Six SLE phase diagrams were constructed in this study,
formed by tristearin + fatty acids (capric acid, lauric acid,
and myristic acid) and tristearin + fatty alcohol compounds
(1-decanol, 2-dodecanol, and 1-tetradecanol). The experi-
mental data are shown in Tables 3, 4, 5, 6, 7 and 8, where x;
corresponds to tristearin molar fraction. The thermal curves
are presented in the Supplementary Information (Figs. S1
to S6).

Phase diagrams and microscopy analysis
of tristearin +fatty acids

Figure 2 presents the phase diagram of tristearin + fatty
acids. All of these systems present a monotectic behavior
that was also observed in the literature for tristearin + rice
bran oil system (Humphrey and Narine 2005; Costa et al.
2010). All the phase diagrams presented in Fig. 2 present a
monotectic behavior; however, the exact composition of such
point is not known due to its proximity to the pure fatty acid
(Inoue et al. 2004a, b). Nevertheless, the liqguidus line cal-
culated using the ideal approach, three-suffix Margules, and
NRTL models for the tristearin (1) + myristic acid (4) system
indicated the presence of a eutectic point at 0.02 tristearin
molar fraction. The model results suggest the occurrence of
a eutectic reaction (Fig. 2C) and once more the proximity
of pure myristic acid makes its composition determination
by DSC a hard task.

Fig. 1 Tristearin differential
thermal curves — Experimental data
—— Singh, Jalali, Aldén (1999)
2
<
2
[o]
o
©
(0]
T
310 315 320 325 330 335 340 345 350 355 360
T/IK
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Table 3 Experimental solid—
liquid equilibrium data of the

tristearin (1) + capric acid (2) 0.0000 305.22 Capric acid

X Ttrans eut m

/K T./K T,/K Ttrans,purcllK Ttrans,pucm/K Tlrans,purcS/K Solid Phase

system at p=94.6 kPa (Pelaquim
etal. 2019)
0.1997 304.86  339.62 Tristearin
0.4002 304.63  342.35 Tristearin
0.5998 301.14  303.75 343.93 Tristearin
0.8010 303.53  345.20 Tristearin
1.0000 345.86 328.72 330.87° 331.68* Tristearin

Solid-solid transitions (T,,,), eutectic temperature (7,,), melting temperature (7},)), pure component tran-

sition temperatures (T s pure)

Uncertainties Type A are u(x) =0.0006, u(T)=0.3 K, and u(p)=0.3 kPa
“Temperature of exothermic peak transition

Table 4 Experimental solid—
liquid equilibrium data of the
tristearin (1) + lauric acid (3) 0.0000 318.50 Lauric acid

X Ttran s eut

/K T../K Tm/K Ttrans,pure] /K Tlrans.pureZ/K Ttrans,pure3/K Solid Phase

system at p=94.6 kPa (Pelaquim
etal. 2019)
0.1000 317.13 33585 Tristearin
0.2000 317.58  339.29 Tristearin
0.4002  344.71 317.06  342.07 Tristearin
0.6001 314.84 345.16 Tristearin
0.7994 331.45° 31657 344.23 Tristearin
1.0000 345.86 328.72 330.87* 331.68* Tristearin

Solid-solid transitions (7,
sition temperatures (7

rans)» €Utectic temperature (7)), melting temperature (7},,), pure component tran-

rans,pure)

Uncertainties Type A are u(x) =0.0006, u(T)=0.3 K, and u(p)=0.3 kPa

*Temperature of exothermic peak transition

Table 5 Experimental solid— T

liquid equilibrium data of the X trans’ K T./K T,/K Tanspure’ K Tanspure2/ K Tipans pures/ K Solid Phase
tristearin (1) + myristic acid (4) 0.0000 329.05 Myristic acid
system at p=94.6 kPa (Pelaquim
et al. 2019)
0.1001 32690 33543 Tristearin
0.1999 327.11 338.86 Tristearin
0.4001 319.10° 326.53 342.16 Tristearin
0.6001 321.22° 325.80 343.82 Tristearin
0.7999 321.05° 324.08 344.71 Tristearin
1.0000 345.86 328.72 330.87% 331.68% Tristearin

Solid-solid transitions (7,
sition temperatures (7,

), eutectic temperature (7, melting temperature (7},,), pure component tran-

rans. ut.

rans,pure)

Uncertainties Type A are u(x) =0.0006, u(7)=0.3 K, and u(p)=0.3 kPa
“Temperature of exothermic peak transition

The ideal model underestimated the liquidus line for =~ The phase diagrams also show that the solid—liquid region
all three phase diagrams but follow the same trend of the = decreases with the fatty acids chain length increase. Thus,
experimental data. Three-suffix Margules, and NRTL mod-  tristearin (1) + capric acid (2) system presented the bigger
els presented a much better match with the liquidus line, in solid-liquid region and tristearin (1) + myristic acid (4)
which the lines almost overlapped the experimental dots. system the smaller region. Concerning the phase diagrams
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1Tiz ':'iz ;ﬁﬁﬁﬁﬁljﬁﬁe x| T/K To/K T/K Tramspud®  Toamspue?/®  Tanspues/K Solid Phase
tristearin (1) + 1-decanol (5) 0.0000 279.84 1-decanol
system at p=94.6 kPa (Pelaquim
etal. 2019)
0.1001 279.76  338.20 Tristearin
0.2001 278.62  339.17 Tristearin
0.3996 322.82° 276.52 342.06 Tristearin
0.6010 274.62 34431 Tristearin
0.7989  328.28 345.55 Tristearin
1.0000 345.86 328.72 330.87% 331.68% Tristearin

Solid-solid transitions (T,,), eutectic temperature (7,), melting temperature (7},)), pure component tran-

sition temperatures (7, pure)

Uncertainties Type A are u(x) =0.0006, u(7)=0.3 K, and u(p)=0.3 kPa

#Temperature of exothermic peak transition

Table 7 Experimental solid—

Jiquid equilibrium data of the X T../K T/K T cans pure’ K Tians pure2/ K Tians pures’ K Solid Phase

tristearin (1) + 1-dodecanol (6) 0.0000 297.78 (Pelaquim 1-dodecanol

system at p =94.6 kPa et al. 2019)
0.1000 296.50 337.38 Tristearin
0.1998 296.45 339.57 Tristearin
0.4002 295.16 341.19 Tristearin
0.5995 295.49 343.17 Tristearin
0.8001 296.39 344.56 Tristearin
1.0000 345.86 328.72 330.87¢ 331.68% Tristearin

Solid-solid transitions (7,
sition temperatures (7,

rans.

rans,pure)

), eutectic temperature (7,,,), melting temperature (7,,), pure component tran-

Uncertainties Type A are u(x) =0.0006, u(T)=0.3 K, and u(p)=0.3 kPa

#Temperature of exothermic peak transition

Table 8 Experimental solid-liquid equilibrium data of the tristearin (1) + 1-tetradecanol (7) system at p=94.6 kPa

X Tiand K Tians2’K T../K T, /K Tmnsvpurc/K Ttrans_pmz/K Tﬁmsipm\g/K Solid Phase
0.0000 310.71 (Pelaquim 1-tetradecanol
et al. 2019)
0.1000 311.03 337.48 Tristearin
0.1999 309.60 312.70 310.88 339.21 Tristearin
0.4004 308.84 312.52 310.51 341.87 Tristearin
0.5999 309.73 311.66 343.41 Tristearin
0.7997 321.06° 344.86 Tristearin
1.0000 345.86 328.72 330.87* 331.68° Tristearin
Solid-solid transitions (7y,,,), eutectic temperature (7,,), melting temperature (7',,), pure component transition temperatures (7, pure)

Uncertainties Type A are u(x) =0.0006, u(T)=0.3 K, and u(p)=0.3 kPa

#Temperature of exothermic peak transition

regions, in Fig. 2C is possible to identify the region 1
above of liquidus line composed by a liquid phase, region
2 that is a solid-liquid equilibrium domain composed by
solid tristearin with a liquid phase, region 3 below of the
solidus line formed by a solid mixture of both components

and region 4 formed by a solid solution of the mixture
components.

To better understand and evaluate this behavior and the
transitions, optical microscope images were captured at
0.2000 and 0.9000 tristearin molar fractions of tristearin
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Fig.2 SLE phase diagram of the A tristearin (1) + capric acid (2) sys-
tem; B tristearin (1) + lauric acid (3) system; C tristearin (1) + myris-
tic acid (4) system: (filled circle) melting temperature; (filled square)
eutectic reaction temperature; (filled diamond) exothermic transition
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temperature; (filled diamond) melting process from optical micros-
copy; (*) pure component transition temperature; (grey line) ideal
model; (red line) three-suffix Margules; (blue line) NRTL; (dashed
line) guide to the eyes

Fig.3 Optical micrographs of the tristearin (1) +lauric acid (3) system at x;=0.2000 with A 315.15 K; B 317.15 K; C 320.45 K; D 345.65 K.

Magnification of 20 X

(1) +lauric acid (3) system, presented in Figs. 3 and 4, and
at 0.6000 and 0.7999 tristearin molar fractions of tristearin
(1) + myristic acid (4) system, presented in Figs. 5 and 6.
Figure 2C, tristearin (1) + myristic acid (4) system,
also shows exothermic events observed in DSC curves at
tristearin molar fractions of 0.4001, 0.6001, and 0.7999,
approximately. The exothermic peaks around 320 K prob-
ably indicate the a-form crystallization of tristearin (Kellens,

@ Springer ﬂ[%::ﬁjﬂ ABEQ &siiedting

Reynaers 1992). Besides, tristearin (1) +myristic acid (4)
and tristearin (1) + lauric acid (3) systems present a solid
solution starting at about 0.7999 molar fraction. Optical
microscope images were captured to better explain this
behavior (Figs. 5 and 6).

In Fig. 3A, the mixture of tristearin (1) + lauric acid (3)
is in a solid phase at 315.15 K. With the increase of tem-
perature, the mixture starts to melt at 317.15 K, as shown
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Fig.4 Optical micrographs of the tristearin (1) +lauric acid (3) system at x;=0.9000 with A 313.35 K; B 314.05 K; C 317.35 K; D 330.95 K; E

346.65 K; F 347.45 K. Magnification of 20 X

by the white arrows (Fig. 3B), indicating that solid lauric
acid coexists with the liquid mixture. The mixture remains
in both solid and liquid phases, almost without change until
320.45 K, where the melting process became noticeable
again (Fig. 3C). This behavior indicates the occurrence of
a monotectic behavior. After that, the temperature increase
promotes the complete melting of the mixture at 345.65 K
(Fig. 3D).

Initially, the tristearin (1) + lauric acid (3) system at
0.9000 tristearin molar fraction was in solid phase at
313.35 K, as indicated by Fig. 4A. Increasing the tempera-
ture up to 314.05 K, it is easy to note the brightness loss
of the sample, as indicated by the white arrows in Fig. 4B.

This phenomenon can be explained by a recrystallization
probably due to a change in the crystal form of the mix-
ture. This process continues until 317.35 K. The mixture
remains in a solid phase (Fig. 4C) up to almost 330.95 K.
This behavior can be related to tristearin polymorphism.
When the temperature reaches 330.95 K, the mixture starts
the melting process, which is perceptible by the increase in
sample brightness in Fig. 4D, and the melting process only
stops with the complete sample melting at 347.45 K. The
fact that a liquid and a solid phase coexistence was not seen
from 317 K in this mixture indicates the presence of a solid
solution in the tristearin-rich region of the phase diagram,
as shown in Fig. 2 (B) by the dotted lines (guide to the eyes).
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Fig.5 Optical micrographs of the tristearin (1) +myristic acid (4) system at x; =0.6000 with A 318.15 K; B 318.45 K; C 326.95 K; D 34445 K;

E 345.65 K; F 346.35 K. Magnification of 20 x

Some images were also captured for tristearin (1) 4+ myris-
tic acid system and are presented in Fig. 5. The image taken
at 318.15 K shows the sample in a solid state (Fig. 5A); the
temperature increase at 318.45 K makes it possible to note
that the crystals became darker, indicating a recrystallization
process into a new solid phase through which it is more diffi-
cult to pass light (Fig. 5B). This transition was also observed
in the differential thermal curves at 321.22 K (Fig. S3 in
the Supplementary Information), and it was plotted in the
phase diagram (Fig. 2C), represented by the dark diamond

@ Springer <%;W ABEQ ieieiine

symbol. The melting process begins at 326.95 K, as shown
in Fig. 5C, and, at this composition and temperature, liquid
myristic acid coexists with a solid phase mixture. The melt-
ing process continues with the temperature increase until
total sample melting at 346.35 K (Fig. 5SD-F).

In Fig. 6B, one can observe the recrystallization discussed
before. The temperature increase made the sample become
darker, which is very clear in Fig. 6A-C, from 318.15 up
to 344.45 K. However, at this sample composition, the
melting process does not start at about 327 K, but only
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Fig.6 Optical micrographs of the tristearin (1) +myristic acid (4) system at x;=0.7999 with A 318.15 K; B 326.15 K; C 344.45 K; D 346.35 K.

Magnification of 20 X

at 344.45 K, approximately 18 degrees above the thermal
events observed by DSC, and the sample is totally melted at
346.35 K (Fig. 6D). Thus, the images confirm the formation
of a solid solution in the extreme of the phase diagram that
is rich in tristearin, since it was not observed a coexistence
of a liquid + solid phase from 327 K, approximately, which
is the assumed eutectic reaction temperature.

To understand the behavior of different TAGs on SLE
phase diagram with fatty acids, the liquidus line deter-
mined in this study containing tristearin (1) + myristic acid
(4) was plotted with three liquidus lines previously deter-
mined, containing tripalmitin 4+ myristic acid (Pelaquim et al.
2019), trilaurin + myristic acid (Matos et al. 2016), and tri-
olein + myristic acid (Matos et al. 2015), as shown in Fig. 7.

Considering the melting point of myristic acid, one can
observe two different behaviors of the liguidus line. The first
one is observed for tristearin or tripalmitin + myristic acid
systems (Fig. 7A), in which the eutectic point moves from
Xmyristicacid = 0-90 10 Xpyrigiicacia = 1.00, a monotectic point.
The second one is observed for trilaurin or triolein + myristic
acid systems (Fig. 7B); in this case, the eutectic point moves
from X, riiicacia = 0-50 0 Xy rigticacia = 0-00, a monotectic
point. The eutectic point moves in the direction of the pure

compound with the smaller melting temperature, in the case
of saturated TAGs in the direction of the smaller carbon
chain length TAG, as previously reported for systems formed
by triolein and trilaurin + fatty alcohol compounds or fatty
acids (Maximo et al. 2019).

Phase diagrams and microscopy analysis
of tristearin + fatty alcohol compounds

DSC curves and phase diagram of tristearin (1) + 1-tetrade-
canol (7) system are presented in Figs. 8 and 9, respectively.
Figure 8 shows that the DSC curves for the mixtures present
at least two thermal events. The first thermal event, around
310 K, is attributed to the start of the phase change process,
and the second, at highest temperature, represents the full
sample melting. The TAG composition increase promotes a
severe increase in the second endothermic peak and a sig-
nificantly decrease in the first endothermic peak. As gener-
ally observed for fat systems (Carareto et al. 2014; Matos
et al. 2015), here it is also note the occurrence of overlapped
peaks at 0.1999, 0.4004, 0.5999, and 0.7997 tristearin molar
fractions, at lower temperature (first peak), as indicated by
the black arrows in Fig. 8. The overlapped peaks can be
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Fig.8 Tristearin (1)+ 1-tetradecanol (7) system DSC curves

related to the melting of tristearin polymorphs, and the small
spread exothermic peak at the 0.7997 tristearin molar frac-
tion is probably due to tristearin a-form crystallization (Kel-
lens and Reynaers 1992). Even though the peaks are over-
lapped, the most pronounced peak observed at 311 K has its
intensity increased with the rise in tristearin molar fraction,
as it happens for eutectic systems (Inoue et al. 2004a, b).

Associagéo Brasiira
deEngenhariaQuinica
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According to the literature (Craven and Lencki 2011), in this
case the phase diagram is apparently considered to present a
monotectic behavior (Fig. 9). Thus, to better understand and
evaluate this behavior, microscope optical images were taken
at 0.1999 and 0.7997 tristearin molar fractions.

Initially, the binary mixture of tristearin (1) + 1-tetra-
decanol (7) at 0.1999 tristearin molar fraction is solid at
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Fig.9 SLE phase diagram of the tristearin (1)+ 1-tetradecanol (7)
system: (filled circle) melting temperature; (filled square) solid transi-
tion temperature; (filled diamond) exothermic transition temperature;
(triangle) solid transition temperature; (*) pure component transition
temperature; (®) solid-liquid transition temperature determined by
optical microscope (black line) ideal model; (red line) three-suffix
Margules; (blue line) NRTL; (dashed line) guide to the eyes of solid
solution formation according to microscope results

305.25 K (Fig. 10A). With the temperature increase, we can
note the progress of the crystallization process at 310.55 K
(Fig. 10B), as observed for the previous systems The crystal-
lization process continues until 312.65 K and is perceptible
due to brightness loss of the images from Fig. 10A to C. This
process is confirmed by DSC curves in the region with the
overlapped peaks around 311 K (Fig. 8). The peak tempera-
tures of each overlapped peak were also plotted in the phase
diagram using the A symbol (Fig. 9). Contrary to expecta-
tions, the solid phase remained up to 332.65 K (Fig. 10D),
30 degrees above the supposed solid-liquid transition tem-
perature, as can be seen in the phase diagram presented in
Fig. 9. A liquid phase in equilibrium with a solid phase can
be clearly observed only at 332.65 K in Fig. 9E, represented
by the ® symbol in the phase diagram (Fig. 9). Finally, at
344.05 K, the mixture is completely melted (Fig. 10F). This
behavior agrees with the peak obtained by the DSC experi-
ments, the peak observed at higher temperature. Thus, these
images indicate that the tristearin (1) + 1-tetradecanol (7)
system does not obey the description of a simple eutectic
system. The images confirm the formation of a solid solu-
tion in all composition range, and as was observed, this solid
solution goes through some changes in its solid phase due
to a crystal restructuring (polymorphic change), clearly per-
ceptible because of the crystal darkness with the temperature
increase, as can be better seen in the gif 1 at the Supplemen-
tary Information. A better understanding of such behavior
requires the use of other analysis techniques, such as x-ray
diffraction, and it is not the main goal of this study.

The same behavior observed for the 0.1999 tristearin molar
fraction was observed for the 0.7997 tristearin molar fraction
of the same system (Fig. 11), i.e., a recrystallization process
takes place at 316.35 K (Fig. 11B) and the melting process
started at 345.85 K (Fig. 11C), very close to the liguidus line
temperature. This result corroborates the previously discussed
behavior and can be better seen in the gif 2 at the Supplemen-
tary Information.

Figure 12 shows the phase diagrams of tristearin
(1) + 1-decanol (5) and tristearin (1)+ 1-dodecanol (6) sys-
tems. One can observe that both systems present, according
to the experimental data and microscopy analysis, the same
characteristics of the previously discussed system. Therefore,
these systems might also present a solid solution region in all
molar fraction composition range.

In general, solid solution phase may be occur in binary solid
mixtures, when the two components are miscible in all propor-
tions in a liquid state. The solid solution changes the behavior
of the melting profile of the systems, especially the begin-
ning of the melting temperature which difficult its identifica-
tion by using DSC data (Maximo et al. 2019). In addition, the
increase of the triacylglycerol carbon chain and the increase
of the difference between the melting temperatures of the pure
components leads to a larger solid solution region (Maximo
etal. 2014a, b).

As for the systems with fatty acids, the ideal behavior
underestimates the liquidus line of mixtures composed by tri-
stearin + fatty alcohol compounds and three-suffix Margules
and NRTL presented a good match. In Fig. 12A it is possi-
ble to observe the 3 regions composed by this kind of phase
diagram: region 1 is formed by a liquid phase, region 2 is
a solid-liquid equilibrium area composed by solid tristearin
with a liquid phase and region 3 is the solid solution of both
components.

Thermodynamic modeling of SLE data

The adjusted parameters obtained by three-suffix Margules and
NRTL are presented in Table 9. One can observe that the root
mean square deviation (RMSD) values for all the systems stud-
ied are low, which means that all models describe the experi-
mental data in a good way, including the ideal assumption,
which needs a smaller computational effort. Besides, in this
thermodynamic study, the solid phase was considered ideal,
and, for all the systems, including those that presented a solid
solution in all the composition range, the models described
very well the liquidus line.

N TiCXP_Tical 2
RMSD = | )" — )
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Fig. 10 Optical micrographs of the tristearin (1)+ 1-tetradecanol (7) system at x,=0.1999 with A 305.25 K; B 310.55 K; C 312.65 K; D

320.85 K; E 332.65 K; F 344.05 K. Magnification of 20 X

Conclusion

The DSC technique was used to determine the phase dia-
gram of the studied systems and it is considered an effi-
cient and reliable method to study the SLE behavior of
fatty mixtures. In this study, the melting temperature of
pure tristearin was determined, and this property agrees
very well with the data found in the literature. The study
of the solid-liquid equilibrium (SLE) of fatty mixtures is
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essential for the improvement and optimization of the pro-
cessing of fatty based products. Due to the high complex-
ity of the melting profile of fatty compounds and their
mixtures, as tristearin + fatty acids and tristearin + fatty
alcohol compounds, critical thermodynamic evaluation
is important for process design and industrial quality
requirements of products.

The phase diagrams of tristearin + fatty acids presented
a monotectic behavior. Moreover, the tristearin (1) 4+ lauric
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Fig. 11 Optical micrographs of the tristearin (1)+ 1-tetradecanol (7) system at x;=0.7997 with A 305.15 K; B 316.35 K; C) 345.85 K; D

347.45 K. Magnification of 20 X
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Fig.12 SLE phase diagram of the A tristearin (1)+ l-decanol (5)
system; B tristearin (1)+ 1-dodecanol (6) binary system: (filled cir-
cle) melting temperature; (filled square) solid transition temperature;
(filled diamond) exothermic transition temperature; (*) pure compo-

acid (3) and tristearin (1) + myristic acid (4) systems pre-
sented a solid solution close to the pure triacylglycerol
molar fraction, according to optical microscope images.

350

(8) —e

340
330
320
310
300

290
280

270
00 01 02 03 04 05 06 07 08 09 10

X, . .
tristearin

nent transition temperature; (black line) ideal model; (red line) three-
suffix Margules; (blue line) NRTL; (dashed line) guide to the eyes of
solid solution formation

The systems formed by tristearin + fatty alcohol compounds
seem to exhibit a solid solution formation in all the molar
fraction composition range.
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Table 9 Three-suffix Margules and NRTL adjusted parameters

Systems Three-suffix Margules NRTL (ay,=0.30) RMSD*
Ajdmol™)  Aydmol™)  Agy(dmol™)  Agz(Jmol™)  Three-suffix ~ NRTL Ideal
Margules

Tristearin (1) + capric acid (2) 1011.7330 1838.9685 3676.0776 —1430.0823 0.1165 0.1091 0.3103
Tristearin (1) + lauric acid (3) 166.9548 2401.7323 7145.3008 —2872.4968 0.5289 0.5223 0.3487
Tristearin (1) + myristic acid (4) 127.0978 1387.0495 5111.0434 —2654.4704 0.0810 0.1066 0.1721
Tristearin (1) + 1-decanol (5) 2188.4278 1135.3711 —2327.2022 5909.0658 0.5587 0.5234 0.5240
Tristearin (1) + 1-dodecanol (6) 2503.7680 —735.9480 —3242.3642 7869.6661 0.1101 0.1767 0.4050
Tristearin (1) + 1-tetradecanol (7)  2124.2343 151.4973 —2825.5039 6535.4144 0.1822 0.1248 0.3966
Average of RMSD 0.2629 0.2605 0.3594

All the six studied systems were modeled using the ideal
assumption, three-suffix Margules, and NRTL models. All
models were able to describe the liguidus line. However, the
three-suffix Margules and NRTL models presented the best
results, since they are more complex than ideal assumption.
Thus, both models, three-suffix Margules can be considered
thermodynamic.
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