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Abstract
Extracts of Peruvian purple corn pericarp (Zea mays L.) were obtained: (1) via supercritical fluid extraction with  CO2 as sol-
vent and EtOH-H2O (70:30, v/v) as co-solvent, (2) via pressurized liquid extraction (PLE) with EtOH-H2O (70:30, v/v) and, 
(3) via two conventional extraction processes, stirred vessel and Soxhlet. The extraction yields and extract compositions were 
compared to each other. The parameters measured were the point-to-point extraction yield, the global extraction yield and 
composition of extracts regarding contents of total phenolics, total flavonoids, total anthocyanins and specific anthocyanins 
such as cyanidin-3-glucoside, peonidin-3-glucoside and pelargonidin-3-glucoside. Antioxidant activity by DPPH and in vitro 
antiproliferative activity were also evaluated considering seven cancer cell lines. High yields and higher contents of phenolic 
compounds, accompanied by a high antioxidant activity at 50 °C, were obtained for supercritical extraction at 60 °C. Anti-
oxidant activity showed good correlation with the content of phenolic compounds, but there was no antiproliferative activity.

Keywords Purple corn pericarp · Supercritical extraction · Phenolic compounds · Anthocyanins · Antioxidant activity · 
Antiproliferative activity

Introduction

Anthocyanins belong to the class of flavonoids, being 
responsible for the purple, blue and red colors. Flavonoids 
are natural compounds found in a wide variety of plant 
foods. They belong to the class of polyphenols and have 
antioxidant activity. As natural coloring, anthocyanins have 
wide application in the food, pharmaceutical and cosmetic 
industries (Reynertson et al. 2006; Castañeda-Ovando et al. 
2009). Potential risks associated with the use of synthetic 
products, combined with restrictive legislative actions, led 
to the increase of consumption of natural products (Meng 
et al. 2012; Navas et al. 2012).

The Peruvian purple corn (Zea mays L., maiz morado, in 
Spanish) is characterized by high contents of anthocyanins. 
For a long time, its extracts were used as coloring agents for 
food and beverages. The refreshing traditional drink named 
“chicha morada” is prepared by immersing the cob into boil-
ing water (Pedreschi and Cisneros-Zevallos 2006). The main 
anthocyanins found were cyanidin-3-glucoside, pelargoni-
din-3-glucoside and peonidin-3-glucoside (Jing et al. 2007; 
Ramos-Escudero et al. 2012; Monroy et al. 2016a, b).

Studies have shown that phenolic compounds, especially 
anthocyanins, have beneficial effect on health when con-
sumed frequently, preventing cell degeneration or mutation 
and thus the appearance of diseases such as heart failure, 
hypertension, obesity, colon, esophagus, lung, liver, breast 
and skin cancer, cerebrovascular disease, aneurism rupture 
and renal injury. Moreover, they have anticarcinogenic prop-
erties (Jing et al. 2008; Wang and Stoner 2008; Long et al. 
2013), antioxidant activity (Lopez-Martinez et al. 2009; 
Yang and Zhai 2010), anti-inflammatory activity (Lopez-
Martinez et al. 2009) and facile reduction of trigeminal-
associated pain in various pathological conditions (Magni 
et al. 2018).

 * Fernando A. Cabral 
 facabral@unicamp.br

1 Department of Food Engineering, University of Campinas – 
UNICAMP, Campinas, SP 13083-862, Brazil

2 Chemical Biological and Agricultural Pluridisciplinary 
Research Center (CPQBA), University of Campinas – 
UNICAMP, Campinas, SP 13083-970, Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/s43153-020-00009-x&domain=pdf


238 Brazilian Journal of Chemical Engineering (2020) 37:237–248

1 3

Recently, several authors (Da Porto et al. 2014b; Garmus 
et al. 2015; Monroy et al. 2017) studied different techniques 
to obtain concentrated extracts of phenolic compounds. 
Although the extraction with supercritical carbon dioxide 
 (scCO2) is considered a promising alternative for safe and 
sustainable extraction (Vatai et al. 2009; Cavalcanti et al. 
2011), the polar nature of many bioactive compounds of 
interest such as polyphenols and anthocyanins requires addi-
tion of a co-solvent (polar) to  scCO2 (nonpolar) to increase 
the affinity (Murga et al. 2000) and solubility of polar com-
pounds, resulting in higher yield (Park et al. 2007; Zarena 
et  al. 2012). Water (polarity = 9.0) and ethanol (polar-
ity = 5.2) have been widely used as co-solvents due to their 
low cost, besides being “green solvents”, with the possibil-
ity of direct use in foods and pharmaceutical products. In 
addition, water–ethanol mixtures as co-solvents proved to 
be more effective for extracting phenolic compounds (Casas 
et al. 2009; Da Porto et al. 2014a; Reategui et al. 2014; 
Solana et al. 2015) with higher yield (Almeida et al. 2013).

Supercritical extraction has considerable advantages over 
conventional methods: the solvent is easily removed from 
the solute; little or no organic solvent is used, allowing a 
quick extraction; and it works at low temperature, favoring 
the extraction of volatile and thermolabile products (Brunner 
2005; Martinez-Correa et al. 2011).

The low stability throughout the extraction process until 
the storage of the phenolic compounds was studied by differ-
ent researchers (Qu et al. 2012; Lourith and Kanlayavattan-
akul 2013; Ardestani et al. 2016; Espada-Bellido et al. 2018; 
Rodrigues et al. 2018). Besides temperature, the anthocya-
nin extraction step is also enhanced by other factors such as 
acidic pH. Acidic (pH of approximately 1.5) conditions are 
usually preferred for the extraction of anthocyanins (Navas 
et al. 2012).

The in vitro antiproliferative activity tests, which direct 
the research to molecules with such potential action on neo-
plastic cells in culture, are the most widely used (Skehan 
et al. 1990; Holbeck 2004). This kind of analysis presents 
conditions to assess various substances in a short time, 
increasing the possibility to discover new anticancer drugs. 
Moreover, it is a relatively simple, inexpensive, reproducible 
technique and provides a potential mechanism of drug action 
(Suggit and Bibby 2005).

Thus, this study aimed to evaluate the effect of ethanol, 
water and ethanol/water mixture as co-solvents of  scCO2 
and as solvents for extraction processes with pressurized 
liquid (PL), Soxhlet (SOE) and stirred vessel (SVE) to 
obtain extracts from the purple corn pericarp, through the 
evaluation of the global extraction yield, phenolics, flavo-
noids, major anthocyanins, color, antioxidant activity and 
antiproliferative activity.

Materials and methods

Raw material and reagents

Samples of purple corn pericarp (Zea mays L.) were 
acquired in the Peruvian market. Table 1 shows the char-
acterization of ground raw material. More information on 
different methodologies and reagents for the characteri-
zation of raw material were described by Monroy et al. 
(2016b).

The following reagents were used in the extraction 
process:  CO2 purchased from White Martins Industrial 
(Campinas, Brasil, lot 113C/12) with purity of 99.5%; 
ethanol (99.8%, v/v) from Êxodo (Brasil lot AE8828RA); 
ultrapure water obtained from a Milli-Q system (Millipore 
Corporation, USA). Hydrochloric acid (HCl) (> 99.5% 
Ecibra, Santo Amaro, Brazil); potassium chloride (KCl) 
(PA-ACS, Synth, lot 116500, Diadema, São Paulo, Bra-
zil); Sodium acetate (NaC2H3O2) (PA-ACS, Ecibra, lot 
17714, Santo Amaro, São Paulo, Brazil); sodium carbon-
ate (99.5%, w/w) and sodium hydroxide (95.0%, w/w) 
(Êxodo, Brazil); Folin–Ciocalteau from Dinâmica (Brazil); 
hydrated aluminum chloride (99.0%, w/w) and sodium 
nitrite (97.0%, w/w) from Ecibra (Brazil); gallic acid 
(99.0%, w/w) from Vetec (Brazil); (+)—catechin hydrate 
(98.0%, w/w), and 1,1-diphenyl-2-picrylhydrazyl (DPPH) 
from Sigma–Aldrich, and 3 standards: cyanidin-3-glyco-
side, pelargonidin-3-glycoside and peonidin-3-glucoside 
(> 99,9%, Extrasynthèse, lot 09011533, Sigma).

Table 1  Characterization of 
pericarp of purple corn (Zea 
mays L.)

Properties Methodology Pericarp References

dmg: Particle diameter (mm) ASAE 0.50 A.S.A.E (1997)
Volatiles + moisture (%VU) – 15.4 ± 1.4 A.O.A.C. (1997)
Moisture (%U) Karl-Fisher 12.1 ± 2.5 A.O.C.S. (1998)
ρr: Real densities (g/cm3) Helium gas pycnometer 1.37 ± 0.01 –
ρa: Apparent densities (g/cm3) – 0.386 ± 0.006 Uquiche et al. (2004)
ε: Porosity � = 1 −

(

�
a
∕�

r

)

0.718 ± 0.006 Rahman et al. (1996)



239Brazilian Journal of Chemical Engineering (2020) 37:237–248 

1 3

Supercritical fluid (SFE) and pressurized liquid (PLE) 
extraction

The SFE process with a  CO2 mixture and co-solvent is 
shown in Fig. 1. More details can be found in previous 
studies (Monroy et al. 2016c; Corzzini et al. 2017). The 
same experimental system used for SFE was used for PLE 
experiments. In these methods, the same pump was used 
for pumping EtOH-H2O (70:30, v/v) as a solvent in PLE or 
as co-solvent of the SFE, with the non-acidified medium. 
Previously, the extraction cell was filled with ~ 5 g of 
ground pericarp and the remaining cell volume was com-
pleted with glass balls.

Figure 2 shows the scheme of the processes, using a 
mixture of EtOH-H2O (70:30, v/v) as co-solvent for SFE 
and as a solvent for PLE. The mean flow rate of  scCO2 was 
1.65 g/min and of EtOH-H2O (70:30, v/v) was 0.9 mL/
min (0.793 g/min), controlled by a high-pressure pump. 
Experiments were conducted at two temperature levels, 
50 °C and 60 °C, and one pressure level of 400 bar for an 
extraction period of 172 min.

Extractions at atmospheric pressure

Figure 3 shows the extraction scheme used for Soxhlet 
(SOE) and for stirred vessel (SVE), which were carried 
out aiming to compare with the extracts obtained via the 
high pressure processes. Stirred vessel (SV) extraction was 
conducted in a shaker, adding 2 g of ground material and 
25 mL of EtOH-H2O mixture (0:100, 10:90, 20:80, 30:70, 
40:60, 50:50, 60:40, 70:30, 80:20, 90:10 e 100:0 v/v) to 
250 mL Erlenmeyer flasks under 150 RPM and at 50 °C for 
6 h. In soxhlet extraction, ~ 5 g of the material was used with 
150 mL of the hydroalcoholic solvent in different percent-
ages of EtOH:H2O (0:100, 30:70, 50:50, 70:30 and 100:0, 
v/v), for 3 h.

Analysis of the extracts

The overall extraction yield  (X0) was used as one of the 
comparison parameters, which expresses the total mass 
proportion of extracted solute and mass of the plant matrix 
used in the extraction process. Total monomeric anthocya-
nins (TMA) was determined by a differential pH method 
with readings made at 510 nm and 700 nm (Yang and Zhai 

Fig. 1  Schematic diagram of the experimental procedure of supercritical extraction with SFE and PLE
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2010), and absorbance calculated by Eq. (1), and concentra-
tion expressed as cyanidin-3-glucoside per gram of extract 
according to Eq. (2).

where TMA = concentration of monomeric anthocyanins 
(g/L); A = absorbance calculated from Eq. 1; MM = molar 
mass of cyanidin-3-glucoside (449.2 g.mol−1); = Coeffi-
cient of molar absorption of cyanidin-3-glucoside (26.900 
L.cm−1.mg−1); DF = dilution factor; b = length of the cuvette 
path length in the spectrophotometer (cm). Total phenolics 
(TP) were determined with the Folin-Ciocalteu reagent 
with reading at 750 nm, expressed as equivalent of Gal-
lic acid (Singleton et al. 1999). The total flavonoids (TF), 
with reading at 510 nm expressed as equivalents of catechin 
(Jia et al. 1999). For the antioxidant activity, the radical 

(1)A = (A
�max − A700 nm)pH1,0 − (A

�max − A700 nm)pH4,5

(2)TMA =
AxMMxDF

�xb

1,1-diphenyl-2-picrylhydrazyl (DPPH) was measured at 
517 nm and expressed as the effective concentration  (EC50, 
µg/mL), which represents the concentration responsible for 
a 50% decrease in the initial DPPH activity, indicating that 
the lower the  EC50 value the greater the antioxidant activ-
ity (Mensor et al. 2001). Spectrophotometric readings of 
the methodologies mentioned were conducted in a spectro-
photometer (UV–VIS lambda 40, Perkin Elmer, USA). The 
analyses were done in triplicate.

High‑performance liquid chromatography: HPLC 
for anthocyanins

Specific anthocyanins, such as cyanidin-3-glucoside (Cy-
3-Glu), peonidin-3-glucoside (Pn-3-Glu) and pelargonidin-
3-glucoside (Pg-3-Glu), were identified in a LC-DAD Waters 
Alliance chromatographic system composed of a Waters 
2695 pump, Waters 2996 detector and Empower software. 
Using the column C-18 Waters Nova-Pak (150 × 3.9 mm, 
44 μm, with pre-column), two mobile phases were selected, 

Fig. 2  Extraction process scheme for SFE (a) and PLE (b): ρ  (CO2) = 1.65 g/L, ρ (EtOH-H2O) (70:30, v/v) = 0.83 g/mL

Fig. 3  Scheme of soxhlet extraction (a) and (b) the stirred vessel process
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consisting of a mixture of 10% acetic acid (A) and methanol 
(B), with a flow rate of 0.5 mL/min. The elution gradient 
was 0-15 min, 92-75% A and 8-25% B, injection volume 
was 10 µL in conditions of 30 °C and detection at 510 nm, 
where anthocyanins were identified by retention times and 
UV spectra.

In vitro antiproliferative activity tests

The in vitro antiproliferative activity tests were conducted 
as described by Monks et al. (1991). Seven human tumor 
cell lines provided by Frederick Ma (National Cancer Insti-
tute, Bethesda, MD, EUA) were used, as listed in Table 2. 
Stock and experimental cultures were cultivated in medium 
with 5 mL of RPMI 1640 (Roswell Park Memorial Insti-
tute) (GIBCO BRL) supplemented with 5% of fetal bovine 
serum (GIBCO BRL). The penicillin/streptomycin mixture 
(1000 U/mL: 1000 lg/mL, 1 mL/L of RPMI) was added to 
the experimental cultures. The cells in 96-wells plates (100 

lL cells well1) were exposed to sample concentrations in 
DMSO/RPMI (0.25, 2.5, 25, 250 lgmL1) at 37 °C and incu-
bated in  CO2 atmosphere at 5% for 48 h, using doxorubicin 
at concentrations of 0.025; 0.25; 2.5 and 25 μg/mL (100 μL/
compartment) in triplicate as positive control.

Results and discussion

Extraction kinetics using SFE and PLE

Figure 4 shows the extraction curves represented by the 
overall yield as a function of the ratio mass solvent and mass 
sample (S/F) and indicating the facility or difficulty with 
which the solutes are extracted, using EtOH-H2O (70:30, 
v/v) as co-solvent for SFE and as a solvent for PLE, at pres-
sure of 400 bar and temperatures of 50 and 60 °C. A higher 
yield was observed at the temperature at 60 °C for SFE with 
29.1%, followed by the extraction by SFE at 50 °C with 
25.4%. The kinetics of the extraction process indicate that 
the soluble compounds are easily removable and present 
low mass transfer resistance and high solubility (Martinez-
Correa et al. 2011). The kinetic behavior is due to the high 
density and the polarity of the mixtures, which can lead to 
solubilization of different compounds in the raw material (Li 
et al. 2003; Brunner 2005; Wang et al. 2006).

The yield results of 29 and 25% of this study are higher 
than the 23.8% obtained previously by Monroy et al. (2016a) 
for purple corn pericarp in a three step sequential extrac-
tion with  scCO2 in the first step, followed by EtOH and 
water in the second and third steps, indicating that super-
critical extraction with co-solvent is more advantageous 
than sequential extraction because it uses less solvent and 
produces higher extract yield.

For other sources of raw materials containing anthocy-
anic phenolic compounds, as in the research of Cavalcanti 

Table 2  Cell lines used in anticancer activity tests

a Inoculation density, bline that expresses resistant phenotype to mul-
tiple drugs

Cell type Code IDa 
( × 104 cells/
mL)

Lung NCI-460 4.0
Breast MCF-7 6.0
Leukemia K562 6.0
Resistant  ovaryb NCI-ADR 5.0
Colon HT-29 4.0
Prostate PC-O3 5.0
Melanoma UACC-62 5.0
Ovary OVCAR-03 7.0
Renal 786-0 4.5

Fig. 4  Kinetic curves for purple corn pericarp extraction (a) with  CO2 as solvent (SFE) and EtOH-H2O (70:30, v/v) as co-solvent, and (b) PLE 
(pressurized liquid extraction) with EtOH-H2O (70:30, v/v) as solvent at 400 bar and 50 °C and 60 °C
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et al. (2011) on the supercritical extraction of jabuticaba 
(Myciaria cauliflora), higher yields of anthocyanic com-
pounds were obtained with lower manufacture cost at 323 K 
and 200 bar using ethanol as co-solvent for  scCO2. Serra 
et al. (2010) studied the extraction of Portuguese cherries, 
at high pressure with supercritical  CO2 followed by extrac-
tion with  CO2 and ethanol at different percentages (90:10, 
v/v) under the conditions of 50 °C and 25 MPa. In the first 
step with  scCO2, low yields, low concentration of phenolic 
compounds and low antioxidant activity were obtained com-
pared to extracts obtained in the second step with  CO2 + co-
solvent. The extract obtained with  CO2:EtOH (90:10, v/v) 
showed the highest antioxidant activity (181.4 ± 23.7 μmol 
TEAC/g).

Figure 5a–d show the results obtained for the extraction 
via SFE and PLE, in which the kinetics of extraction were 
observed, with the point yield  (Y0) and contents of total phe-
nolics (TP), of total flavonoids (TF) and of total monomeric 
anthocyanins (TMA) as a function of the ratio S/F (mass of 
the solvent in each point and mass of the pericarp of purple 
corn) and of extraction time (min). High overall yields in 
the first extracts of SFE were observed, in the range of ratio 
S/F from 5 to 32 g at 50 °C and 5 g to 18 g at 60 °C. For 

the extracts obtained by PLE, high yields were observed 
in the range of S/F from 5 to 8 g at 50 °C and 60 °C with 
high contents of phenolics, followed by a small decrease 
of contents of phenolic compounds in the extracts in the 
subsequent extracts.

Regarding the extraction kinetics of phenolic compounds 
for different extracts shown in Fig. 5a–d, a similar behav-
ior was observed for all extracts, in which the first extracts 
have high contents of phenolic compounds followed by the 
decrease of such contents.

Figure 6 shows the HPLC chromatogram obtained at 
510 nm for a sample corresponding to the original extract of 
Pericarp corn. Figure 6 shows the chromatogram obtained at 
510 nm by HPLC for a sample corresponding to the original 
extract of Pericarp corn, identifying and quantifying three 
specific anthocyanins, Cy-3-Glu, Pn-3-Glu and Pg-3-Glu, 
with retention times of 7.512 min, 9.903 min and 11.473 min 
respectively. These main anthocyanins were also found by 
several researchers (Jing et al. 2007; Ramos-Escudero et al. 
2012; Monroy et al. 2016a, b; Lao et al. 2017; Paucar-Men-
acho et al. 2017; Lao and Giusti 2018)). Figure 7 shows the 
behavior of specific anthocyanins content with the extraction 
times, detecting that Cy-3-Glu is the most abundant with the 

Fig. 5  Point yield of extracts, phenolic compounds (ATM, TP and TF) to SFE (a, b) and PLE (c, d) at 50 °C and 60 °C, and constant pressure of 
400 bar of extracts of pericarp of purple corn
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highest values in the first extracts, obtaining values greater 
than 40 mg/g extract. The amount of anthocyanin extracted 
decreases with increasing extraction time or with the ratio of 
S/F (Mass solvent/Mass pericarp). As shown in Table 3, the 
contents range from 24.1 to 26.8 mg/g extract for Cy-3-Glu, 
from 4.3 to 5.4 mg/g extract for Pn-3-Glu and from 4.4 to 
5.1 mg/g extract for Pg-3-Glu in different extracts obtained 
via SFE and PLE.

For Santos et al. (2012) the kinetic behavior in jabuticaba 
skins extraction using PLE shows that, at the beginning of 
the extraction procedure, the amount of anthocyanins and 
total phenolic compounds extracted increases with increas-
ing extraction time. The presence of ethanol in the medium 

facilitates anthocyanin and especially proanthocyanidin 
extraction (Canals et al. 2005).

The high content of total phenolic compounds, about 
400  mg/g in the SFE and PLE extracts, as shown in 
Fig. 8a–d, contributed to the high antioxidant activity, with 
EC50 values less than 50 µg/mL In the study of six dif-
ferent corn varieties from China, Zhu et al. (2014) dem-
onstrated that there were positive correlations  (R2 = 0.9911 
and  R2 = 0.9873) between anthocyanins and elimination 
activity of superoxide anion radicals or power of reduction, 
respectively. Othman et al. (2017) evaluated the antioxidant 
capacity of the banana cultivar ‘Nipah’ (Musa acuminate 
balbisiana) extracted with different solvents, demonstrating 
that high phenolic content determines the high antioxidant 
capacity of the fruit.

Extraction in stirred vessel and in soxhlet

Results of extractions conducted at atmospheric pressure in 
a stirred vessel (SVE) and soxhlet extractor (SOE) obtained 
using different proportions of ethanol/water mixture are 
shown in Fig. 9, which present values of extraction yield, 
contents of phenolic compounds (TP, TF and TMA) and spe-
cific anthocyanins (Cy-3-Glu, Pn-3-Glu e Pg-3-Glu). The SV 
extracts had high yield in the range of EtOH-H2O (40:60-
70:30, v/v) concentration and high contents of phenolic 

Fig. 6  Chromatograms obtained at 510 nm by HPLC

Fig. 7  Specific anthocyanins found in extracts of pericarp of purple corn, from extracts obtained via SFE (a, b) and PLE (c, d) at 50 °C and 
60 °C
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Table 3  Concentration and 
yields of TP, TF, TMA and AA 
 (EC50/DPPH) of extracts from 
pericarp of purple corn (Zea 
mays L.) via different extraction 
methods

X0 extraction yield (%, d.m.), C1 concentration (mg GAE/g extract), C2 concentration (mg EC/g extract), 
C3 concentration (mg C3G/g extract), C4 effective concentration  EC50/DPPH (µg/mL), R yield (mg/g peri-
carp)

Type of extraction X0: Overall 
yield (%)

TP TF TMA

C1 R1 C2 R2 C3 R3

High pressure extraction
 SFE (50 °C) 25.4 405 ± 14 103 ± 4 113 ± 10 29 ± 3 81 ± 9 21 ± 2
 SFE (60 °C) 29.1 373 ± 19 109 ± 5 110 ± 7 32 ± 2 74 ± 6 22 ± 2
 PLE (50 °C) 21.7 404 ± 9 88 ± 2 99 ± 9 21 ± 2 75 ± 7 16 ± 2
 PLE (60 °C) 24.3 361 ± 16 88 ± 4 82 ± 6 20 ± 1 61 ± 7 15 ± 2

Low pressure extraction
 SOE 70:30 22.3 100 ± 7 22 ± 2 70 ± 7 16 ± 2 22 ± 3 5 ± 1
 SVE 70:30 20.4 207 ± 10 42 ± 2 121 ± 8 25 ± 2 34 ± 5 7 ± 1
 Type of extraction AoA Cy-3-Glu Pn-3-Glu Pg-3-Glu

C4 R4 C5 R5 C6 R6
High pressure extraction
 SFE (50 °C) 8.1 26.8 ± 5.3 6.8 ± 1.3 5.1 ± 0.4 1.3 ± 0.1 4.4 ± 0.6 1.1 ± 0.1
 SFE (60 °C) 8.5 25.7 ± 5.2 7.5 ± 1.5 4.3 ± 0.4 1.3 ± 0.1 4.6 ± 0.8 1.3 ± 0.2
 PLE (50 °C) 9.8 26.1 ± 5.6 5.7 ± 1.2 5.2 ± 0.6 1.1 ± 0.1 5.1 ± 0.1 1.1 ± 0
 PLE (60 °C) 10.3 24.1 ± 5.5 5.9 ± 1.3 5.4 ± 0.6 1.3 ± 0.1 4.6 ± 0.8 1.1 ± 0.2

Low pressure extraction
 SOE 70:30 15.5 24.9 ± 2.6 5.5 ± 0.6 1.6 ± 0.1 0.4 ± 0 6.2 ± 0.3 1.4 ± 0.1
 SVE 70:30 17.2 16.8 ± 0.8 3.4 ± 0.2 2.2 ± 0.3 0.4 ± 0.1 5.6 ± 0.8 1.1 ± 0.2

Fig. 8  Comparison of antioxidant activity expressed as  EC50 and total phenolics (TP) for extracts via SFE (a, b) and via PLE (c, d), of the peri-
carp of purple corn
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compounds in the range of EtOH-H2O (70:30-100:0, v/v), 
while for the specific compounds in the range of EtOH-H2O 
(60:40-90:10, v/v). For the extracts obtained via SO using 
EtOH-H2O (70:30 e 100:0, v/v), high yields, high contents 
of phenolic compounds and of specific compounds were 
obtained.

Ramos-Escudero et al. (2012) evaluated different percent-
ages of methanol:water MeOH:H2O acidified with HCl at 
1% in the conventional extractions, finding high contents 
of phenolic compounds when the MeOH:H2O 80:20 mix-
ture was used. Stojiljkovic et al. (2016) obtained extracts at 
atmospheric pressure of wild apple fruit from Serbia with 
different solvents; the extracts obtained using ethanol and 
distilled water as solvents contained the highest amount of 
polyphenolic compounds and demonstrated the best anti-
oxidant activity.

Comparison between extraction methods

Table 3 shows, for the SFE, PLE, SV and SO extracts, the 
overall yield (X0), total yield and concentration of pheno-
lics (TP), flavonoids, total monomeric anthocyanins (TMA), 
cyanidin-3-glucoside (Cy-3-Glu), peonidin-3-glucoside (Pn-
3-Glu), pelargonidin-3-glucoside (Pg-3-Glu) and antioxidant 
activity values expressed as EC50 (µg/mL). Contents of 

phenolic compounds of SFE and PLE extracts were consid-
ered to be the mean of values obtained point-to-point for the 
kinetics shown in Figs. 5 and 7 at both temperatures. For the 
extracts obtained via SV and SO, values using EtOH-H2O 
(70:30, v/v) as solvent were considered, which were shown 
in Fig. 9. It is observed that all types of extraction shown 
in Table 3 have high overall yields between 20 and 29%, 
but the extracts obtained at high pressure by supercritical 
or pressurized liquid extraction had higher contents of phe-
nolic compounds and anthocyanins and consequently higher 
antioxidant activities. However, when Farias-Campomanes 
et al. (2013) performed grape bagasse extractions at high and 
low pressures, they found that the highest extraction yields 
were observed for processes that used conventional extrac-
tion techniques; however, the results indicated that, in the 
case of phenolic compounds recovery from a Pisco bagasse, 
the SFE process was the most efficient. In the extraction 
comparison of SFE and PLE from Asparagus officinalis L, 
Solana et al. (2015) demonstrated that the presence of water 
and ethanol is essential to obtain a phenolic enriched extract 
with high antioxidant activity. Operating conditions influ-
ence the extraction yield, however the phenolic composi-
tion of the extract does not vary significantly. Extraction of 
quinic acid (main phenolic acid) was more efficient by PLE 
than by SFE and Soxhlet.

Fig. 9  Global yield of extracts (a, d), TP, TF and ATM concentrations (b, e), specific anthocyanins concentration (c, f) of the extracts obtained 
via stirred vessel (a, b, c) and via soxhlet (d, e, f) of the pericarp of purple corn
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In vitro antiproliferative activity of extracts 
of pericarp of purple corn

Figure 10a shows the action of the chemotherapy drug 
doxorubicin in human tumor cell culture and relates the 
percentage of cell growth with chemotherapy drug con-
centration. Figure 10b shows the extracts of pericarp of 
purple corn obtained via SFE at 50 °C and 400 bar which 
were evaluated considering the same cells.

Dose–response analysis of cell growth inhibition by the 
pericarp extract demonstrated no activation for the lines. 
Some studies with vegetable extracts rich in anthocyanins 
have shown antiproliferative activity: the purple potato 
had in vitro (Madiwale et al. 2011) and in vivo (Lim et al. 
2013) antiproliferative activity; the aronia had antiprolif-
erative activity in cervical tumor cell lines, (Rugina et al. 
2012), Serra et al. (2010) demonstrated that, in cherry 
extracts obtained with  CO2:EtOH (90:10, v/v), there was 
higher antioxidant activity and it was the most effective 
in inhibiting the growth of human colon cancer cells 
(ED5096h = 0.20 ± 0.02 mg/mL).

Several studies showed good antiproliferative activity, 
which may depend on the extraction method and the tumor 
cell lines used. Long et al. (2013) reported the inhibition 
of cell proliferation in a tumor line of prostate cancer, 
through inhibition of the Gap 1 (G1) stage of the cell 
cycle, Fukamachi et al. (2008) reported inhibition of cell 
proliferation of breast cancer; the levels of RAS proteins 
(protein important to control cell multiplication and dif-
ferentiation) were reduced in tumor cells. Purple corn may 

have good antiproliferative activity depending on the con-
ditions of extraction and the tumor lines used.

Conclusion

Considering the hydroalcoholic extracts, the general extrac-
tion yield and the phenolic content of supercritical and 
hydroalcoholic extracts were strongly influenced by the use 
of EtOH-H2O (70:30, v/v mixture) as co-solvent for SFE and 
as solvent for PLE. Concentration of phenolic compounds 
and antioxidant activity of the extracts obtained via PLE 
were slightly lower than those obtained via SFE. However, 
because the PLE process is more inexpensive, faster and also 
has the main advantages of SFE (environmentally friendly 
at moderate temperatures), it can be considered as a good 
alternative to extract bioactive compounds of the pericarp 
of purple corn.
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