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Abstract
Purpose of the Review This review aims to summarize the current knowledge of the extracellular matrix remodeling during
hepatic fibrosis. We discuss the diverse interactions of the extracellular matrix with hepatic cells and the surrounding matrix in
liver fibrosis, with the focus on the molecular pathways and the mechanisms that regulate extracellular matrix remodeling.
Recent Findings The extracellular matrix not only provides structure and support for the cells, but also controls cell behavior by
providing adhesion signals and by acting as a reservoir of growth factors and cytokines.
Summary Hepatic fibrosis is characterized by an excessive accumulation of extracellular matrix. During fibrogenesis, the natural
remodeling process of the extracellular matrix varies, resulting in the excessive accumulation of its components, mainly colla-
gens. Signals released by the extracellular matrix induce the activation of hepatic stellate cells, which are the major source of
extracellular matrix and most abundant myofibroblasts in the liver.
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Introduction

The extracellular matrix (ECM) is a complex cross-linked
network of macromolecular proteins that not only provide
structural support, but also play an essential role in the devel-
opment and maintenance of tissue homeostasis [1]. In addi-
tion, the interaction between cells and the ECM is bi-direc-
tional. Cells are constantly receiving and accepting

information from the ECM and, in turn, remodel the ECM
in which old proteins are degraded and replaced by new ones
in order to maintain the tissue homeostasis [2]. This interac-
tion is mainly mediated by cell surface receptors such as
integrins. Integrins are a large family of surface receptors that
can signal through the cell membrane in either direction [3].
As a consequence, these integrins transmit signals that regu-
late cell adhesion, migration, proliferation, apoptosis, surviv-
al, or differentiation [4–6]. The ECM proteins contain sites
responsible for binding to collagen, the most abundant protein
and main structural element of the ECM, as well as for the
cross-linking to other ECM proteins such elastin and fibronec-
tin, allowing the degradation by proteases. The common fea-
ture of fibrotic diseases is a dysregulation of the ECM com-
position due to an unbalanced chronic wound-healing process,
affecting its structure and biophysical properties [7, 8]. As a
consequence, scar formation and tissue fibrosis develop [9].

The liver has a high regenerative potential; however, when
the damage becomes persistent, this regeneration turns into
chronic diseases, such as fibrosis [10, 11]. Liver fibrosis is
usually preceded by inflammation, followed by the activation
of the main fibrotic cell type in the liver, the hepatic
stellate cells (HSCs) [12]. It has become evident that the
ECM proteins represent important mediators of the gain-
of-function properties of the HSC during the progres-
sion of liver fibrosis [13].
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Progressive liver fibrosis can be caused by chronic viral
hepatitis, alcohol abuse, non-alcoholic steatohepatitis
(NASH), autoimmune or cholestatic disorders, and metabolic
diseases [14, 15]. Cirrhosis is the terminal stage of progressive
liver fibrosis [16–18]. Hepatic fibrosis is characterized by ex-
cess accumulation of ECM [19]. Although initially beneficial,
the excessive accumulation of several extracellular proteins
leads to an unbalance in the wound-healing process, causing
fibrosis [20]. It is important to notice that liver fibrosis is not a
unidirectional process, which ultimately will lead to organ
failure, but is in principle reversible [21]. In order to monitor
the progression of liver fibrosis, there is a need to understand
the cellular and molecular mechanisms that shift the balance
from healthy to fibrotic liver and, therefore, to develop new
antifibrotic therapies in the near future. In this review, we
discuss the role of the ECM during liver fibrosis, including
the main hepatic cell types and molecular pathways involved
in this process, as well as the enzymes and ECM components
that contribute and regulate the remodeling and the physical
properties of ECM.

Cell Types Involved in Liver Fibrosis

Understanding liver fibrosis implies knowing how the ECM
proteins change during this process, as well as how the cellular
players interact with each other. The main cell types in the
liver are hepatocytes, Kupffer cells, HSC, liver sinusoidal en-
dothelial cells (LSECs), and cholangiocytes (Figure 1).

Hepatocytes are the major parenchymal cell type in the
liver and account for 80–90% of the cells in the liver. As such,
they perform the majority of liver functions, including nutrient
metabolism and detoxification [22, 23]. Cholangiocytes are a
small epithelial cell population (3–5%) that lines up the bile
duct system [24]. Their role involves the secretion and absorp-
tion of water, electrolytes, and organic solutes [25, 26].
Kupffer cells are the resident macrophages of the liver and
largest resident macrophage population in the body (80–
90%) [27, 28]. They have a high endocytic and phagocytic
capacity, and they play a crucial homeostatic role in the he-
patic immune system [29]. LSECs are fenestrated and form a
permeable barrier between the blood and the hepatocytes and
HSC which facilitates the passage of molecules from the si-
nusoidal endothelium to the liver parenchyma and contributes
to the maintenance of the cellular and hemodynamic homeo-
stasis [30]. HSCs are resident liver cells located in the so-
called space of Disse between LSECs and hepatocytes
[31••]. In the healthy liver, HSCs are present in a quiescent
state, are a reservoir of retinoic acid (vitamin A), and represent
approximately 10% of the liver cell population [31••, 32].
LSECs have an important role in the maintenance of the qui-
escent state of HSCs [33, 34]. In a healthy liver, tissue homeo-
stasis is maintained by intracellular communication between

HSCs, hepatocytes, cholangiocytes, Kupffer cells, and
LSECs, mainly via cytokines/chemokines. This mechanism
is critical for maintenance of the distinct functions of the liver
resident cells [35].

Liver injury disturbs tissue homeostasis and causes cell
damage in hepatocytes, LSECs, and cholangiocytes leading
to necrosis and the release of inflammatory markers, growth
factors, reactive oxygen species, and cytokines [17, 29, 36].
Thus, tissue inflammation promotes the attraction and activa-
tion of Kupffer cells and HSCs. Although hepatocytes,
Kupffer cells, LSECs, and cholangiocytes can contribute to
the fibrogenic processes, the primary drivers of fibrosis are the
HSCs. Activated HSCs acquire proliferative, migratory, and
contractile properties and contribute to 90% of ECM while
they develop a myofibroblast-like phenotype and release in-
flammatory molecules [37].

Portal fibroblasts are another non-parenchymal hepatic cell
population and are similar to hepatic stellate cells in some
characteristics, since they are also activated in chronic liver
injury and contribute to ECM production in liver fibrosis.
However, there are also differences between these two cell
types. Portal fibroblasts play an important role in cholangitis,
since they are located close to the bile ducts [38]. Hepatic
stellate cells and portal fibroblasts can be differentiated by
their expression profiles. While hepatic stellate cells highly
express desmin and scarcely elastin, portal fibroblasts show
the opposite expression pattern [39]. The differences in cell
marker expression may be used for the research of portal fi-
broblasts, which play an inferior role in current research ef-
forts when compared to hepatic stellate cells [38].

ECM Components Implicated in Remodeling

The ECM consists of multiple proteins, such as collagens,
elastins, fibronectins, and laminins, that control the cellular
phenotype and function [40]. During the transition from
healthy to fibrotic liver, the homeostasis between all the
ECM proteins and their specific interacting partners is shifted
to cause cell inflammation and, finally, contribute to progres-
sion of liver fibrosis which in turn is associated with high
morbidity and mortality [41].

There are two types of ECM [40]. The first is the basement
membrane (BM) which separates the epithelium from the
mesenchyme and the interstitial matrix (IM), produced by
fibroblasts and surrounds cells, making up the bulk of the
ECM in the body (Figure 2). Laminins, nidogen/entactin, hep-
aran sulfate proteoglycans, and the non-fibrillar collagens, like
collagen type IV, are the most abundant components of the
BM [42]. In this regard, BM is a highly specialized type of
ECM that serves as a reservoir of growth factors that direct
cellular functions, provide cell adhesion, and control cell or-
ganization and differentiation [40, 43]. Types I, III, and V are
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the most abundant fibrillary collagens that form the IM, to-
gether with elastin, fibronectin, and tenascin [41, 44•]. Type I
collagen is the most abundant collagen that is mainly associ-
ated with collagen III [45]. Although type V collagen is also
found together with collagen I forming heterofibrils, it is not
one of the major components of this complex, but it is essen-
tial for the structure of tissue [46]. This last characteristic of
collagen V makes it unique, since it has been shown that it
enhances the stability of collagen fibrils and its gene

expression is regulated by TGF-β, ending up in activation of
HSCs [47].

The cross-links of the different collagens are mainly in-
volved in the progression of liver fibrosis in the BM and the
IM [48]. Due to this cross-link, an increase of up to tenfold in
the collagens I, III, and V is detected [49, 50]. Type IV colla-
gen is also increased during liver fibrogenesis, together with
laminin and nidogen [51]. The collagen formation observed
during fibrosis favors myofibroblast activation, and, although

Figure 1 Cellular alterations in liver fibrosis. The main hepatic cell types
in the liver are the hepatocytes, the hepatic stellate cells (HSCs), Kupffer
cells, and the fenestrated endothelial cells. a In a healthy liver, the space
between the hepatocytes and endothelial cells is known as the space of
Disse, which are located the HSCs. b Upon injury, the HSCs become
activated and secrete a large amount of extracellular matrix (ECM), which

results in gradual thickening of the space. The large amount of ECM,
mostly collagen, produced by the activated HSCs leads to the loss of
hepatocyte and endothelial fenestrations causing an increase in the
portal pressure. The imbalance caused by ECM production and the
gain-function of the HSCs cause liver fibrosis.

Figure 2 Schematic representation of the two types of extracellular
matrix (ECM). The ECM is divided into the loose basement membrane
and a compact interstitial matrix. The basement membrane consists in

collagen IV, laminins, nicoden, and heparin sulfate proteoglycans. The
interstitial matrix is more compact and contain the fibrillary collagens I,
III, and V, elastin, fibronectin and tenascin.
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myofibroblasts are the main ECM-producers, other hepatic
cell types, such hepatocytes and macrophages, are important
regulators of hepatic fibrogenesis and direct effectors of fibro-
sis progression. The secretion of pro-fibrotic cytokines,
chemokines, growth factors, or signaling peptides derived
from collagens has been identified as important regulators
during liver fibrosis [52].

Endostatin is a potent signaling peptide derived from the C
terminus of collagen XVIII that is located in the BM. Collagen
XVIII is primarily produced by hepatocytes and is associated
to advanced liver fibrosis [53]. In order to reverse the fibrotic
phenotype, it has been shown that endostatins ameliorate fi-
brosis by inhibiting HSC activation [54].

Type IV collagen fragments, from the BM, have been
found to have important signaling properties [55]. Six differ-
ent collagen IV chains have been described up to now
(α1–α6), arrestin, canstatin, tumstatin, tetrastatin, pentastatin,
and hexastatin [44•, 56–60]. The first three fragments have
been shown to inhibit angiogenesis in liver disease as well
as endothelial cell proliferation via inhibition of MAPK path-
ways signaling and inducing apoptosis in endothelial cells
[61]. The remaining type IV collagen chains are more limited
in distribution than the first ones [51]. Tetrastatin and
pentastatin possess similar anti-angiogenic activity and show
inhibition of endothelial cell migration [59]; hexastatin was
found to regulate endothelial cell adhesion, migration, and
proliferation [62]. All together, these signaling peptides are
attractive candidates for potential liver fibrosis therapy.

Restin, a signaling peptide of type XV collagen, another
BM collagen, is highly abundant in the portal ECM of the liver
[63, 64] and shows inhibitory effects on endothelial cell migra-
tion but not on their proliferation when the purified protein was
assayed in vitro with different endothelial cell lines [65].

Type VI collagen is a microfibrillar collagen found between
the IM and the BM that can stimulate the proliferation of mes-
enchymal cells [66, 67]. During liver fibrosis, it has been found
that collagenVI is up to tenfold induced in liver fibrosis [68], and
its signaling peptide endotrophin plays a crucial role in fibrosis.
In vivo studies showed that in CCl4-intoxicated mice,
endotrophin was upregulated in injured hepatocytes contributing
further to their apoptosis. The inflammatory signal released from
injured hepatocytes activates HSCs, resulting in further aggrava-
tion of liver fibrosis [69, 70].

Lysyl oxidases (LOX) are the one of the family enzymes that
modify the ECM [71, 72]. LOX family enzymes catalyze the
cross-linking of collagens through oxidative deamination of ly-
sine residues for the maintenance of the tensile strength and
structural integrity of the ECM [73]. At least four different
LOX-like (LOXL) proteins (LOXL1, LOXL2, LOXL3, and
LOXL4) have been described [71]. LOXL proteins are highly
controlled during normal tissue development; however, their ab-
errant expressions have been reported in liver disease [73]. In the
liver, HSCs and portal fibroblasts are themain producers of LOX

proteins [74]. During liver fibrosis specifically, LOX and
LOXL2, which are absent in healthy tissues but strongly induced
in liver fibrosis, have been shown to be upregulated, promoting
collagen I cross-linking and its stabilization increasing its resis-
tance to proteolytic degradation,maintainingHSC in an activated
state [75]. Increased LOX activity has been detected in sera of
patients with hepatic diseases [76, 77], suggesting the LOX
family of proteins as a potential biomarker for liver fibrosis.
Different approaches have been performed in order to inhibit
the activity of this enzyme. For instance, inhibition of LOX
with b-aminopropionitrile (BAPN), a potent inhibitor of
cross-linking enzymes in the LOX family, has been shown to
affect collagen cross-linking making the progression of fibrosis
more reversible and delaying the effects of CCl4-intoxication
[78]. In mouse models of mild liver fibrosis, it has been shown
that inhibition of LOXL2 with a specific monoclonal antibody
(AB0023) prevents fibrosis [79]. Further analysis using
AB0023 showed efficient inhibition of collagen cross-linking,
suppression of fibrosis progression [80, 81•].

Transglutaminases (TGs), in addition to LOX, are a well-
characterized family of proteins that are able to covalent cross-
link several collagen types from the BM and other ECM pro-
teins like fibronectin or nicogen, increasing their resistance to
proteolytic degradation, consequently losing tissue function-
ality [82–84]. TGs are calcium-dependent enzymes that cata-
lyze the cross-linking, transamidation, or deamidation of pro-
teins [85]. TG2 is the most abundant member and the most
studied of the ninemembers of the TG family that is expressed
ubiquitously in many types of tissue, cell membrane, nucleus,
and extracellular [86]. During liver inflammation and fibrosis,
TG2 is tightly associated with soluble integrins and fibronec-
tins in both, covalently and non-covalently manner, promot-
ing the fibronectin deposition into ECM, and forming stable
complexes with both fibronectin and integrins [87]. This as-
sociation stabilizes the integrin-ECM-fibronectin interaction,
making the ECMpolymers resistant to proteolytic degradation
and therefore, contributing to the progression of fibrosis [88,
89]. In addition, it has been shown that TGF-β enhances the
binding of integrin-TG2-fibronectin in fibroblasts and ele-
vates ECM formation during fibrosis [90]. To explore the
possibility of TG2 as a target to decrease liver fibrosis, TG2
knockout mice after CCl4-induced liver damage did not show
a significant decrease in liver fibrosis when compared to wild-
type mice; however, these animals were more susceptible to
liver inflammation, which suggest a role of TG2 in control of
both inflammation and fibrosis progression [91].

Molecular Signaling Pathways Involve in Liver
Fibrosis

Growth factors, such as transforming growth factor-β
(TGF-β), platelet-derived growth factor (PDGF) and
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connective tissue growth factor (CTGF), as well as oxidative
stress are the most potent mediators of inflammatory signals to
induce fibrogenesis.

The transforming growth factor-β (TGF-β) signaling is
known as the pathway that most hepatic cell types are suscep-
tible to. Three TGF-β isoforms are known in humans, two are
fibrogenic, and one seems to have antagonistic properties.
While TGF-β1, the major isoform in the liver, is associated
with HSC activation and ECM production in liver fibrosis in
general and TGF-β2 is associated with biliary liver disease,
TGF-β3 might inhibit TGF-β1 and TGF-β2 expression
[92–94]. However, data on the role of TGF-β3 in liver fibrosis
is scarce.

TGF-β1 signaling is considered one of the main pathways
driving HSC activation and the most potent fibrogenic cyto-
kine in the liver [95, 96]. Furthermore, the correlation of
TGF-β1 with the severity of liver fibrogenesis demonstrates
its importance for liver fibrosis [97]. TGF-β1 is synthesized as
a latent precursor with its prodomain and stored in the ECM as
part of a large complex [98]. It is activated by mechanical
force to induce the conformational changes of the latent com-
plex and release of active TGF-β. Increased contractility by
activated HSCs and increased mechanical resistance by higher
liver stiffness due to accumulated ECM are the two necessary
components to promote TGF-β activation and release [99].
Integrins transmit the force of actin cytoskeleton contractility
to the prodomain of the large latent TGF-β complex in the
ECM. The linkage of ECM and cytoskeleton via integrins
favors the release of TGF-β from the latent TGF-β binding
protein complex [100]. Integrins are composed of two sub-
units, α and β, and each combination has its own binding
specificity and signaling properties [95, 101–103]. Although
in general the integrinsαvβ3,αvβ5,αvβ6, andαvβ8 can bind
this specific sequence of the latent TGF-β1, in liver fibrosis,
mainly αvβ3 and αvβ6 play a role [104].

While αvβ6 is barely expressed in normal liver, it is highly
expressed in fibrosis [105]. Chemical inhibition of αvβ6 results
in downregulation of pro-fibrotic and upregulation of fibrolytic
genes in experimental fibrosis [106]. Several studies have shown
in vitro that cells expressing αvβ6 integrin activate TGF-β1, and
this interaction can be inhibited by blocking the integrins
expressed in the myofibroblasts with antibodies, and thus reduc-
ing the fibrotic process [104]. Activated HSCs express αvβ3,
which seems to regulate cell proliferation [107].
Pharmacological inhibition of this integrin resulted in significant
collagen reduction mediated by decreased HSC activity [108].

Once activated, TGF-β1 signals by binding to the trans-
membrane TGF-β type II receptor (TβRII), which recruits
and phosphorylates TGF-β type I receptor (TβRI). This pro-
cess transmits the extracellular TGF-β1 signal towards the
intracellular receptor part where the substrates SMAD2 and
SMAD3 can bind. SMAD2/3 is activated by phosphorylation
and translocates to the nucleus to regulate the transcription of

genes maintaining the fibrotic and contractile state of HSCs
[109]. TGF-β activation ultimately drives fibrogenesis and
ECM production. Specifically, ECM components fibronectin
and collagen types I, III, and IV are regulated by TGF-β1
signaling [97, 110]. Increased activation of HSC mediated
by TGF-β1 results in proliferation of activated cells and there-
by increases the amount of contractile cells which, in turn,
promote activation and release of TGF-β1. Therefore, the in-
teraction between HSC and TGF-β1 in fibrogenesis can lead
to a vicious cycle of a paracrine activation of HSC. The situ-
ation in portal fibroblasts is contrary to HSC. TGF-β1 and
TGF-β2 are also produced by portal fibroblasts [111, 112].
While TGF-β1 and TGF-β2 promote HSC proliferation, they
inhibit proliferation of portal fibroblast. Overall, this mecha-
nism might provide a growth advantage to HSC over portal
fibroblasts [94].

The platelet-derived growth factor (PDGF) signaling path-
way functions include regulation of cellular proliferation, cell
migration, and stimulation of synthesis of the major compo-
nents of the ECMs, such as collagen [113]. During liver fibro-
sis, the PDGF signaling plays an important role in activating
HSCs and portal fibroblasts [114]. Among the four secreted
cellular PDGF ligands, A-D, PDGF-B, and –D are the most
effective in stimulating HSCs and portal myofibroblast prolif-
eration [115]. The biological effects of PDGF are exerted
through its ligands, which bind to their receptors, PDGFR-α
and PDGFR-β, and therefore inducing proliferation, migra-
tion, and cell survival [116]. It has been shown that HSCs
express both PDGF receptors; however, only β is upregulated
during its activation in vivo and in vitro specifically in liver
injury [114]. In contrast to the β isoform, the α isoform ex-
pression remained unchanged after liver injury. Given the im-
portance of PDFG signaling in HSC activation during liver
fibrosis, much efforts have been taken in order to pharmaco-
logically inhibit the interaction between the ligand and the
receptor [117]. There are multikinase inhibitors, sorafenib,
which targets tyrosine kinase associated with PDGFR-β,
showing downregulation of collagen expression in the livers
of fibrotic rats [118, 119].

The connective tissue growth factor (CTGF) is a multi-
functional protein which is highly overexpressed during liver
fibrosis. CTGF regulates many cellular functions including
increased cell proliferation, differentiation, migration, adhe-
sion, and ECM synthesis, and it plays a direct role by
interacting with matrix components [120, 121]. CTGF binds
integrins, heparin sulfate proteoglycans, and tyrosine kinase
receptors that may be located in the matrix or on the cell
surface modulating signal transduction into cells [122, 123].
CTGF is a downstream effector of TGF-β [124], and its inhi-
bition has been shown to suppress the TGF-β-dependent in-
duction of ECM proteins, such as collagen and fibronectin
[125, 126]. Activated HSCs are the most important source of
CTGF, although hepatocytes, portal fibroblast, and
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cholangiocytes can also contribute to its production [127,
128]. The role of CTGF in liver fibrosis has been studied
in vitro using human biopsies from various chronic liver dis-
eases, as well as in activation of HSCs, showing in both cases
a strong correlation of CTGF production during liver fibrosis.
These results were further confirmed in vivo in CCl4-treated
and bile duct–ligated (BDL) animals to study liver fibrosis
[128]. BDL is an experimental model for cholestatic liver
disease which mimics the human primary biliary cirrhosis,
and CCl4 induces toxic liver fibrosis [129].

Reactive oxygen species (ROS), mediating oxidative
stress, are potent pro-fibrotic mediators released mostly by
hepatocytes, HSCs and Kupffer cells, that stimulate the pro-
duction of collagen, acting as a mediator of the fibrogenic
action of TGF-β [130, 131]. In liver fibrosis, NADPH oxi-
dases (NOX) are described to be the major sources of ROS
[132]. Studies have shown in vivo that NOX1, NOX2, and
NOX4 are increased in two models of fibrotic mice, the BDL
treatment and the CCl4 intoxication. The knockout of NOX1
and NOX4 in these animals resulted in decreased ECM syn-
thesis and overall ROS production. As a consequence, these
knockout animals showed a reduction of liver fibrosis, inflam-
mation, and HSC proliferation [133, 134].

The renin-angiotensin system (RAS) is one of the main
drivers of HSC activation [135–137, 138•]. RAS is known
to be one of the most complex hormonal systems and interplay
among its multiple enzymatic peptide and receptor constitu-
ents [139]. In the classical RAS, the enzyme renin cleaves its
substrate angiotensinogen forming angiotensin I that is in turn,
cleaved by angiotensin-converting enzyme (ACE) to produce
the angiotensin II (Ang II), the biologically active peptide of
the system [139]. In the classical RAS, Ang II activates the
Ang II type I receptor (AT1R) to induce, among other biolog-
ical processes, vasoconstriction. However, an alternative arm
of the RAS cleaves Ang II by ACE homologue ACE2 to
Angiotensin- [1–7] and stimulates the proto-oncogen Mas re-
ceptor cascade (MasR) causing vasodilation that generally
opposes the actions of Ang II via AT1R [140, 141]. It is
well-known that Ang II is the central effector that stimulates
HSCs to produce pro-fibrotic cytokines, such as TGF-β1 and
CTGF, which further increases hepatic resistance to portal
flow and enhanced matrix formation [138•, 142••, 143–145].
However, ACE2 is also the major cellular entry receptor for
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) as a cellular receptor to infect alveolar epithelial cells,
causing the severe respiratory disease Coronavirus disease
2019 (COVID-19) in humans [146, 147].

Given the high expression of ACE2 in the liver, specifically in
cholangiocytes, resident liver cells located in the bile duct, and at
lower levels in hepatocytes, it has been found that a significant
number of COVID-19 patients showed abnormal liver test re-
sults. Using human organoids as a tool to investigate the SARS-
CoV-2 infection, it confirmed that cholangiocytes are the liver

cells that express the receptor markers for being infected [148].
Downregulation of ACE2 upon binding of SARS-CoV-2 in-
creases Ang II levels and, consequently, ECM synthesis by acti-
vated HSCs. Since SARS viruses are already known to promote
pulmonary fibrosis [149], it seems very likely that the same
mechanisms can lead to fibrogenesis in the liver too. In this
regard, a recently published article supports this hypothesis by
analysis in different infected patients and showed that the death
of cholangiocytes is induced by SARS-CoV-2. As a conse-
quence, hepatocytes release proinflammatory cytokines that can
easily produce liver injury [150, 151].

Matrix Stiffness and Inflammation

One of the characteristic events as the liver becomes fibrotic is
that the ECM stiffness increases by an extensive deposition of
their extracellular proteins, including fibrillar and membrane
collagens, affecting the cellular behavior [152]. The concept
of stiffness has been analyzed years ago [153] and, nowadays,
it is well-known that it can contribute to the mechanical prop-
erties of the ECM proteins. Matrix stiffness affects the behav-
ior of the HSCs, including growth, motility, adhesion, and
differentiation into myofibroblasts [154].

Fibrosis is associated with an increasedmatrix stiffness as a
consequence of excessive collagen deposition and cross-
linking [155]. This stiffness is detected by HSC surface recep-
tors, the integrins, allowing the HSC activation [156]. It has
been shown that the ECM components are responsible for
increased matrix stiffness and, as a consequence, promotes
HSC activation via cytoskeleton modulation [157•]. An im-
portant aspect concerning matrix stiffness during liver fibrosis
progression is the imbalance of the main enzymes implicated
in the ECM degradation, such as the matrix metalloprotein-
ases (MMPs) and their inhibitors. This family of proteins in-
cludes the tissue inhibitors of metalloproteinases (TIMPs)
[158, 159]. Up to now, 25 different MMPs have been identi-
fied that regulate the degradation of most ECM proteins [160].
In a normal liver, MMPs are capable to degrade any protein
from the ECM in order to maintain tissue homeostasis [161].
However, when HSCs are activated and collagen accumulates
excessively, the matrix regeneration fails, leading to an in-
crease in the stiffness [162]. In this regard, in vitro studies
using HSCs cultured on different substrates of varying rigid-
ity, that mimics healthy and fibrotic liver tissue, have shown
that increasing fibrotic matrix stiffness downregulatesMMP-9
gene expression. As a consequence, this increase in rigidity
promotes the secretion of TIMP-1 which inhibits permanently
the MMP activity to degrade ECM, promoting fibrosis
perpetuation [152]. In addition, other in vitro studies
using activated HSCs showed that activation of the
HSCs is associated as well with increased MMP-2 and
MMP-14 protein expression [163].
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Inflammation is a crucial mechanism promoting liver fibro-
sis by initiation of a protective response to tissue injury [164,
165]. The components of the ECM are the main regulators of
tissue inflammation [166]. More specifically, the ECM-
derived damage-associated molecular patterns (DAMPs) acti-
vate Toll-like receptors (TLRs) and the inflammasome in or-
der to induce tissue inflammation [167, 168]. ECM proteogly-
cans and their fragments, such as biglycan and decorin, are the
most prominent and well-characterized ECM-derived
DAMPs [169–171]. Both can interact with TLR2 and TLR4
inducing pro- and anti-inflammatory effects and recruiting
macrophages [172, 173]. Macrophages sense changes in ma-
trix stiffness through mechanotransduction and respond by
regulating the TLR-mediated inflammatory signal. In this con-
text, the release of the proinflammatory cytokine TNF-α,
mainly involved in liver inflammation leading to fibrosis, is
increased in response to TLR4 and TLR9 stimulation [174].

Biophysical Mechanisms of ECM Stiffness
Sensing

ECM stiffness does not remain unrecognized by adjacent cells. It
has been reported that fibroblasts tend to move from softer to
stiffer regions [175]. This directed migration is called durotaxis,
and the underlying mechanisms are less well-understood than in
chemotaxis in which specific cell membrane receptor sense is a
gradient in a soluble factor. To detect a gradient in stiffness, cells
need to actively apply a pulling force to the substrate. Pulling
forces are generated by the actomyosin cytoskeleton, and they
can be transmitted to integrins through specific protein complexes
called focal adhesions [176]. Focal adhesions contain
mechanosensitive proteins such as talin and vinculin. Talin links
the cytoskeleton to ECM via intregrins and vinculin shows in-
creased binding to focal adhesion complexes with applied force.
The interaction of both proteins is important to sense forces.
Under force, the talin structure unfolds to exposemultiple binding
sites for vinculin. Without an applied force, the talin structure
contains less vinculin binding site [177]. The dynamics of the
linear physical connection between the actomyosin cytoskeleton
and the ECM has been understood through the so-called clutch
models [178]. In their simplest form, these models include the
deformability of the matrix, the on and off rates of the different
integrins and adaptor molecules that connect the actomyosin cy-
toskeleton and the ECM, and the physical relation that links force
and velocity generated by myosin motors [179]. The force gen-
erated by the actomyosin cytoskeleton is contractile and results in
a flow of actin towards the center of the cell, called retrograde
flow. In general, this flow is inversely proportional to the traction
force exerted by the cell migrating on the ECM [178].

When actomyosin-generated forces build up at focal adhe-
sions, two main outcomes are possible depending on the rigidity
of the substrate [180•]. On soft substrates, force builds up slowly

and integrins unbind from the ECM before talin unfolds,
resulting in rapid actin retrograde flow. By contrast, on stiff sub-
strates force builds up fast and talin unfolds before integrins
unbind, resulting in slow actin flow. Talin unfolding on stiff
substrates triggers a reinforcement feedback loop by which vin-
culin is recruited to focal adhesions. Downstream of vinculin
binding to talin, both actin and integrins are recruited to focal
adhesions andmediate their reinforcement [180•]. Clutchmodels
thus provide a conceptual framework that explains how rigidity
sensing can be tuned through the regulation of vinculin and talin
binding rates, activation of mechanochemical switches, and
changes in cellular contractility. This mechanism has also been
suggested to explain durotaxis, i.e., the ability of single cells and
cell collective to migrate from soft to rigid ECM [181].

Concluding Remarks

In this review, we clearly point out the prime importance of the
complex interplay between distinct cells and the ECM for health
and disease in the liver, where TGF-β occupies an outstanding
position as a key mediator of this interaction. ECM not only
plays an important role as the framework of the liver, but it also
participates actively in the cellular processes aswell as in the cell-
cell communication. ECM components and properties modulate
physiological and pathological processes in the liver. ECM re-
search remains a dynamic field, and recent findingsmight help to
fight contemporary health threats like COVID-19. The complex
interaction of ECMwith the surrounding cells and compartments
needs to be taken into account when designing diagnostic tools
and therapeutical antifibrotic strategies.
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