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Abstract
Purpose of Review The purpose of this review is to describe the mechanobiological mechanisms of tendon repair as well as
outline current and emerging tools in mechanobiology that might be useful for improving tendon healing and regeneration. Over
30 million musculoskeletal injuries are reported in the US per year and nearly 50% involve soft tissue injuries to tendons and
ligaments. Yet current therapeutic strategies for treating tendon injuries are not always successful in regenerating and returning
function of the healing tendon.
Recent Findings The use of rehabilitative strategies to control the motion and transmission of mechanical loads to repairing
tendons following surgical reattachment is beneficial for some, but not all, tendon repairs. Scaffolds that are designed to
recapitulate properties of developing tissues show potential to guide the mechanical and biological healing of tendon following
rupture. The incorporation of biomaterials to control alignment and reintegration, as well as promote scar-less healing, are also
promising. Improving our understanding of damage thresholds for resident cells and how these cells respond to bioelectrical cues
may offer promising steps forward in the field of tendon regeneration.
Summary The field of orthopedics continues to advance and improve with the development of regenerative approaches
for musculoskeletal injuries, especially for tendon, and deeper exploration in this area will lead to improved clinical
outcomes.
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Introduction

Tendons are highly susceptible to injury and are difficult to
treat. Of the 33 million musculoskeletal injuries reported in
the USA per year, approximately 50% involve soft tissue in-
juries, such as tendon injury [1]. A variety of conditions are

associated with tendon injuries, from acute tendon tear to
tendinopathies to full-width tendon lacerations. Tendonitis,
characterized by inflammation or irritation of tendon, is initi-
ated by mechanical overuse and can result in pain, tenderness,
tendon damage, and collagen breakdown. Because of its hier-
archical structure, tendon inflammation can occur in the tissue
surrounding the tendon sheath (paratenon) or inside the ten-
don (intratenon) [2]. Chronic deterioration of tendon, known
as tendinosis, results from chronic overuse and is primarily
responsible for decreased strength and flexibility, as well as
pain [3]. Tendinosis results from accumulated damage initiat-
ed by structural and mechanical overuse and is most often
seen in athletic, male runners between 35 and 45 years of
age [4]. In patients with chronic Achilles pain, ~ 70% have
tendinosis [5]. The recommended time for return-to-sport is
3–6 months and dependent on rehabilitative strategies, mag-
nitude of tendon injury and pain, and level of sport perfor-
mance [4]. Achilles tendon rupture and rotator cuff tears are
the most common and detrimental tendon injuries [6, 7]. The
primary focus of this review is to improve tendon healing
following rupture, which is the most common tendon injury
that often require surgical repair.
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Increased age and participation in sports are the most com-
mon causes of tendon injuries [8]. Sports with abrupt changes
in speed and footwork are at risk for Achilles tendon rupture.
Although surgical approaches have improved in recent years
and can lead to improvements in pain management [9], there
remains a low return-to-sport rate following tendon repair.
Achilles injuries have the lowest return-to-play as well as the
worst post-operative performance compared with other ten-
don repairs following injury [10]. For example, studies of
National Basketball Association players experiencing tendon
injuries showed, on average, that return-to-sport rates were
upwards of 11 months [11]. Tendon injuries also influence
the level of competition that athletes return to following injury.
For example, athletes that experience rotator cuff tears do not
typically return to the same level as they were prior to their
injury [12]. It remains unknown what the exact type or mag-
nitude of loading leads to tendon ruptures, and the physiolog-
ical history of the tendon also predisposes tendon to damage
and injury. In this review, we examine the role that mechanical
loading plays in susceptibility for tendon injuries, such as
ruptures, and highlight current approaches for improving ten-
don healing. In addition, we discuss emerging approaches for
understanding tissue damage and remodeling from adjacent
fields that could be translated to the tendon field in the future.

Mechanical Loading and Overuse Lead to Tendon
Injury

Tendons are critical for transmitting contractile forces from
muscle to bone in order to move joints as well as provide
postural stability. The structure of tendon is a hierarchical
cord-like network of aligned collagen fibers that provides a
flexible and inextensible connection for load transmission, joint
mobility, and joint stability. During growth, tendons are highly
adaptable to changes in the magnitude and direction of applied
mechanical loads [13, 14]. This adaptive response to applied
mechanical load results in tissue-scale adaptations such as in-
creased cross-sectional area, inclusion of compressive-resistant
inclusions (fibrocartilage), and tendon length. This can also
lead to changes in cellular morphology, density, and behavior,
as well as extracellular matrix composition. The developing
tendon is highly cellular and actively remodels to meet the
applied mechanical demands. During skeletal growth, the ten-
don lengthens in parallel with bone length and rapidly remodels
to accommodate forces from skeletal muscle. However, once
the skeleton stops growing, so too does the tendon, and its
ability to continuously renew dramatically slows down. This
was elegantly illustrated in work by Heinemeier and colleagues
with C14 bomb-pulse experiments of human tendons [15]. In
this study, forensic tendon samples from cadavers were ana-
lyzed from humans of varying ages that were alive between
1955 and 1963, when levels of C14 were elevated because of
nuclear bomb tests. Tendons from human cadavers that were

alive during atomic bomb testing were analyzed for radioactive
C14, and the levels of C14 in tendon were correlated with envi-
ronmental C14 levels. The tendons from humans that were <
17 years of age during this time had low levels of C14, suggest-
ing that the resident tendon cells were able to turnover the C14-
labeled tissue at young ages, whereas tendons from older hu-
man cadavers had elevated C14 levels, indicating that tendon
cores did not renew after skeletal growth commenced [15].
Although mature tendons are also capable of adapting and re-
modeling, this adaptive response is damped because the dense
connective tissue of tendon carries much of the mechanical
load, shielding the embedded stromal cells, such as tendon
fibroblasts, tendon-derived stem cells (TDSCs), and resident
inflammatory cells to such loads. The stress-shielding behavior
of matrix-dense tendon may influence the longevity of its res-
ident cell populations. In fact, bomb-pulse studies have recently
shown that adult tendon does not undergo renewal, which may
influence the inherent regenerative capacity of tendon follow-
ing injury [15].

Changes in the mechanical environment, such as overuse
and overloading, are common causes of tendinopathies in ma-
ture and aging tendons. Following overuse, the mechanical
properties of the tendons deteriorate, as collagen microtears,
inflammation, and damage accumulate and are not sufficiently
repaired [16, 17]. Adult tendon is unable to regenerate its
native structure following injury or damage accumulation,
and following injury, the mechanical properties of healed ten-
don are nearly an order of magnitude lower than the native,
healthy tendon [18]. Loading not only alters the structure and
function of tendon, it also changes the cellular phenotypes and
biological response. Increased mechanical loading leads to
increased strain and tissue/microscale damage to the structure
and organization of tendon. Tendon overloading leads to re-
duced microscale collagen alignment as well as nuclear disor-
ganization [19•]. Overuse also results in an increased density
of mast cells, which induce a focal inflammatory response and
release of prostaglandins and inflammatory cytokines [20].
Overuse leads to increased expression of mechanically in-
duced growth factors as well as proliferation of TDSCs [21].
Understanding how mechanical load plays a role in tendon
injury and repair can allow scientists and clinicians to develop
rehabilitative approaches in order to heal injured tendons.

There is a need to address tendon healing, including re-
search to understand healing as well as nonsurgical methods
to heal tendinopathies. Cells and tissues sense and respond to
mechanical and chemical cues from their surrounding extra-
cellular matrix environment, and innovative tools in
mechanobiology have emerged as potential therapeutics for
treating tendon injuries. This review will highlight current
clinical interventions as well as explore potential therapies that
could be applied to tendons, including innovative tools that
build and mechanically load tissues, guide cellular behavior,
and ultimately aim to regenerate the injured tendon.
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Current Strategies to Improve Tendon Repair

Tendon heals by forming scar tissue, and many of the current
approaches for restoring tendon function following injury aim
to intervene in the healing process of tendon [1]. Nonsurgical
treatment of tendon injury has varied success rates and depend
on the patient and their expectations of the level of functional
return that they hope to achieve. Current strategies to improve
tendon repair focus on controlling the mechanical environ-
ment, extracellular matrix, and cellular behavior of stromal
and stem cells (Fig. 1).

Controlled Mechanical Loading
Through Immobilization

Immobilization is a common strategy used in most treatment
protocols for tendinopathy. However, its efficacy in tendon
healing is debated. A framework has been prescribed by the
American Shoulder and Elbow Therapists for a rehabilitation
strategy of a short-term (2 weeks) strict immobilization period
following arthroscopic rotator cuff repair [22]. Following im-
mobilization, controlled loading is often beneficial for pro-
moting healing and reintegration of tendon back to its bony
footprint [23]. Yet for chronic rotator cuff tears, there remains
no clear advantage or disadvantage for implementing passive
mobility as a therapy regime following rotator cuff tendon
repair [24]. Early mobility (at ~ 8 weeks post-repair in
humans) following immobilization with a cast or boot is typ-
ically considered beneficial following Achilles tendon rupture
regardless of the tendon underwent surgically repaired [25] as

it can reduce complication rates and improve return-to-
function [26]. The prescribed time of immobilization varies
across treatment protocols and the type of tendon injury. In
addition, immobilization may only be beneficial until a certain
point, after which its prolonged effects can be detrimental. In
animal models of tendon rupture, prolonged immobilization
can limit return of function and lead to impaired biomechan-
ical properties similar to that of native tendon following rup-
ture [27, 28]. Thus, as a strategy to improve tendon repair,
long-term immobilization may not be preferred. The healing
process following tendon injury can be delayed with immobi-
lization, as nerve regeneration, blood circulation, and tissue
regeneration surrounding the injury site are inhibited [27]. In
basic science studies that use external structures or wire fram-
ing to immobilize the rat Achilles tendon, the healing tendon
repairs with inferior tensile strength, reduced failure load, and
decreased stiffness [29, 30]. Immobilization using casting had
similar outcomes, as well as increased collagen degradation
and decreased collagen mass in the injured tendon/ligament
[31]. Additionally, rigid immobilization may lead to atrophy
of the surrounding muscle, posing a risk for potential re-
rupture [31].

The prescribed implementation and duration of immobili-
zation depend on injury and tendon type. A short bout of
immobilization following injury can limit gap formation and
improve reintegration between injured tendon stumps [32].
The effects of tendon immobilization on healing also have
varying, age-depending effects. For example, following flexor
tendon rupture, immobilization and early remobilization of
neonatal tendons did not have differential impacts on range
of motion, re-rupture, or risk of adhesion, which differs from
adult tendons that benefit from early mobilization [33]. Thus,
depending on the tendon type, immobilization may be detri-
mental to the healing process, leading to detrimental changes
in the structural integrity of the surrounding muscle and bone.

Surgical Repair and Reattachment of Tendons
Post-injury

Surgical treatment of tendon injuries is dependent on the age
and health of the patient and the type of tendon tear and in-
volves both surgical approach and post-operative rehabilita-
tion [34]. For young adults, surgical repair remains the main
treatment plan given a limited success with nonsurgical inter-
vention without rehabilitation [35]. Surgical approach is large-
ly more successful than a nonsurgical approach alone.
Nonsurgical treatment of acute Achilles tendon ruptures,
followed by functional rehabilitation, maintained an equiva-
lent rate of re-rupture with surgical treatment [35]. Surgical
repair can also reduce the rate of return to work [34].
However, these approaches are not without its limitations
and complications. Surgical interventions increase the risk of
complications and the risk of infection, nerve injury, and deep

Fig. 1 Tendon repair is mediated by the mechanical environment, native
and extrinsic cell behavior, and the structural and material properties of
the extracellular matrix (ECM)
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vein thrombosis are significantly increased after operation
[36]. Surgical repair procedures, in addition to increased risk
of complication, may also not be the logical choice depending
on the type of injury, especially not for large and massive
tears. For example, success rates, classified by ultrasound or
magnetic resonance imaging, of outcomes following rotator
cuff repair differ depending on the tear size. Small to medium
(1–3 cm) tear repairs typically have high success rates, while
the success rates of large tear (3–5 cm) and massive tear (2 or
more tendons) repairs are substantially lower [37]. Depending
on the size of the tear, variability in repair approach and out-
comes can vary. A need exists for post-operative or nonsurgi-
cal early intervention [38] and protecting the repaired tendon
following repair.

Potential Tools to Guide Mechanobiology
During Tendon Repair

The transfer of loads from tissues to cellular and intracellular
compartments can dramatically influence how cells respond
and adapt to physical cues. Cells convert physical cues into
biochemical signals, changes in gene expression, and altered
interactions with neighboring cells. In addition, physical de-
formation of intracellular organelles, such as nuclear compres-
sion, can have a significant influence on gene transcription by
changing the physical positioning or stretching of genes as
well as altering the transport of transcription factors across
the nuclear envelope [39–41]. Tissue remodeling in response
to applied mechanical loads also relies on plasma membrane
integrity and transport. Fibroblasts, which are phenotypically
similar to resident tendon cells, transport collagen fibrils
across the plasma membrane using nonmyosin II-powered
transport [42] and cell surface-directed steps of collagen
fibrillogenesis [43, 44].

Stem Cell Populations that Guide Extracellular Matrix
Composition and Scar Remodeling

Tendon stem/progenitor cells (TSPCs) are responsible for
maintaining tendon cell populations throughout life and
replenishing the tissue-resident cell pool following injury.
TSPCs have universal stem cell characteristics with capacity
to form clonal populations, undergo multipotent differentia-
tion, and self-renew [45]. This stem/progenitor pool is orga-
nized by its surrounding extracellular matrix (ECM), and the
fate of these cells depends on cues from the ECM niche, such
as biglycan and fibromodulin [45]. Recently, unique markers
of stem/progenitor cells in tendon that contribute to regenera-
tion have been identified using sophisticated approaches, in-
cluding single-cell RNA sequencing and lineage tracing ap-
proaches [46]. Stem cell-mediated regeneration is dependent
on cells that express both tubulin polymerization-promoting

protein family member 3 (Tppp3+) and platelet-derived
growth factor receptor alpha (Pdgfra+), and cells that are
Tppp3− contribute to injury-associated fibrosis [46].
Previously, cell-surface markers of TSPCs included Sca1+

(marker of stem cells), Cd90+ and Cd44+ (markers of fibro-
blasts), Cd18− (marker of leukocyte), Cd34− (marker of
vascular/hematopoietic cells), Cd106− (marker of endothelial
cells), and Cd133− (marker of perivascular cells) [47, 48].
Historically, TDSCs enhance tendon healing following injury
in small animal models, but the role that these cells play in scar
formation and remodeling following injury still remains un-
known. Conversely, S100 calcium-binding protein a4
(S100a4+) has emerged as a potential marker for a large pro-
portion of tendon resident cells that contribute to scar forma-
tion during healing [49, 50]. The discrete populations of cells
that are differentially marked by Scx and S100a4 suggest that
there likely exists a discrete population of cells that may con-
tribute to either regenerative or scar-mediated healing of ten-
don following injury [50].

Recapitulating the Mechanobiology of Development
for Stem Cell Differentiation

Mechanical load is necessary for proper development of the
musculoskeletal system [51–53]. Tendon development is bi-
phasic: muscle must first anchor to tendon and then the at-
tached muscle can apply mechanical force for tendon elonga-
tion [54]. Myogenic signals from the developing skeletal mus-
cle also promote tendon development [55] and coordinate the
formation of preliminary matrix of fibronectin, laminin, and
decorin from tendon progenitor cells [56, 57]. Both Scleraxis
(Scx) and Mohawk (Mkx) promote collagen production, the
major component of the tendon ECM, and these transcription
factors also promote differentiation of stem-like cells to the
tendon progenitor cell fate [58–64]. Tendon ECM is rich in
structural proteins that become cross-linked into a lattice to
surround fibrils [65] and fibril-associated collagens with
interrupted triple helices (FACIT) stabilize the ECM and its
interaction with cellular integrins [66]. Proteoglycan bridges
composed of decorin, fibromodulin, and biglycan are integral
for transmitting and resisting tensile stress and collagen main-
tenance in tendon [59, 65, 67, 68].

Dynamic changes in ECM stiffness and alignment during
tendon development influence the behavior and mode of cell
proliferation, recruitment, and migration, the latter of which
may be mediated by actomyosin contractility [69]. Tendon
elongation depends on the recruitment and migration of mes-
enchymal progenitor cells via Scx [70••]. Differentiation of
mesenchymal progenitors is mediated by transforming growth
factor (TGF)-β and fibroblast growth factor signaling [71,
72•, 73]. Tendon elongation occurs in parallel with skeletal
growth once skeletal muscle is anchored to tendon [13, 74].
Applied mechanical loading from contractile muscle leads to
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reorganization of collagen fibrils into parallel and hierarchical
fiber structures [65, 67]. Under strain, collagen fibril size and
volume fraction increase in developing tendons in accordance
with Wolff’s Law to generate tendon of higher tissue strength
and stiffness [75–77]. Increased size of collagen fibers during
modeling requires remodeling of nascent tissues through ma-
trix metalloprotease (MMP) that unwind and break collagen
fibrils [78–80]. Mature collagen fibrils harbor functional
integrin-binding sites called latency-associated peptides
(LAP) structures [81] that also release TGFβ [82]. TGFβ
activates Smad2/3 signaling pathways to promote the addi-
tional release of TGFβ from the ECM, and this release de-
creases with increasing magnitudes of mechanical load
[83–85]. Larger, highly organized collagen fibrils provide ten-
don with a capacity to handle increased tensile loads [86].
Collagen remodeling relies on active matrix metalloproteinase
(MMP) activity [87, 88], and a balance between collagen ma-
trix production and breakdown is important during the healing
process. The dynamic change in matrix stiffness during devel-
opment can guide stem-like cells towards a fibroblastic cell
fate [89]. Collagen synthesis in biological and synthetic ECM,
such as scaffolds, can be fine-tuned with localized growth
factor signaling, such as platelet-derived growth factor
(PDGF) receptor or PDGF-BB [90, 91] and insulin-like
growth factor (IGF-1) [90, 92].

Biomimetic Scaffolds for Guided Tendon Repair

The use of scaffolds to bridge tendon defects, guide remodel-
ing, and accelerate healing has been a promising approach for
preclinical studies but has demonstrated mixed results for im-
proving patient outcomes when translated to the clinic. In fact,
there are few long-term studies that have supported the use of
various scaffolds for tendon repair. Nonetheless, scaffolds of-
fer a mechanical advantage over more simple reattachment
repair approaches, especially for rotator cuff repair [93–95].
In addition, over 50,000 patches derived from extracellular
matrix derivatives (e.g., dermis, amniotic membrane) are used
in the clinic each year to repair soft tissue injuries [37].
However, although some biologically (ECM)-derived scaf-
folds enhance cell attachment and new tissue formation, these
benefits come at the cost of mechanical integrity and durabil-
ity. A balance is needed in the design of biomimetic scaffolds
to not only providemechanical strength and durability but also
to promote stem cell differentiation, stromal migration, and
limit scarring and immunogenic responses.

The most common sources of naturally derived ECM used
for tendon-mimetic scaffolds include small intestine submu-
cosa, amniotic membrane [96], collagen [97], gelatin (dena-
tured collagen) [98], glycosaminoglycans [97], silk [99],
hyaluronic acid, and fibrin (described inmore detail in a recent
review by Freedman and Mooney [100]). Additionally, syn-
thetic ECM has also been used for developing scaffolds for

tendon repair, including poly(glycolic acid) (PGA),
poly(lactic acid) (PLA), poly(ethylene glycol) (PEG) [100],
poly(ε-caprolactone) (PCL) [101], and combinations of these
(e.g., poly(l-lactide-co-ε-caprolactone) (PLCL) [102]), as well
as polyacrylamide [100]. The selection of ECM-derived and
synthetic materials for use in tendon repair depends on the
wide range of mechanical properties both in tension and com-
pression of these materials. Additionally, each material pos-
sesses different microscale interactions of cells with ECM,
and these properties can be exploited depending on the cell
type, density of ECM and cells, and processing used for
manufacturing the scaffolds. Rigorous in vitro and preclinical
testing of the ECM scaffolds are essential for each iteration of
scaffold design.

Cell adhesion, migration, and proliferation are critical for
regenerating and revitalizing tissue replacements, and these
processes are mediated by cell-cell and cell-matrix interac-
tions. These cellular behaviors are also dependent on the me-
chanical and biological properties of two- and three-
dimensional substrates upon which the cells reside. Cells
sense mechanical loads from their surrounding ECM via
integrins [83, 84]. Two- and three-dimensional microenviron-
ments, both from synthetic and biologically derived sources,
have been used to identify and exploit the cell-cell and cell-
matrix interactions. For example, integrin binding sites (e.g.,
RGD) are commonly used in synthetic materials, such as
hydrogels, to promote cell adhesion and invasion in otherwise
biologically inert substrates [103]. Cell morphology and dif-
ferentiation depend on these binding sites, as well as matrix
compliance [103, 104]. Factors that should be considered
when using stem cells in conjunction with biomimetic scaf-
folds include stem cell priming (i.e., potential benefits and
costs of pre-implantation differentiation towards a tenogenic
cell fate) and temporal exposure to binding sites that promote
proliferation, differentiation, and ECM production.

The development of custom-built bioreactors has helped to
define how various parameters of dynamic stretch (e.g., am-
plitude, frequency, and duration) influence cellular behaviors
and phenotypes of tendon fibroblasts and stem cells in vitro
[105–108]. Various approaches have been used to build ten-
don mimics, including directed self-assembly of dermal fibro-
blasts [106] or primary tendon fibroblasts [109] or contraction
of fibrin gels [110].

Bioelectricity

Aside from clinical diagnosis of tendinosis, tendon damage is
not well described. However, the ability of tendon-resident
cells to sense and respond to mechanical forces, including
the cell-scale response to tendon overuse, is a potential target
for abrogating the accumulation of damage and improving
healing outcomes. A major process of mechanobiology across
all tissues, including tendon, relies on membrane permeability
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to ions and early intracellular communication [111]. Typically,
neurons and myocytes are considered “activatable” cells as
they respond to suprathreshold changes in the transport of ions
across the membrane via action potentials. However, other
cells types, including those found in musculoskeletal tissues,
also respond to changes in membrane potential by changes in
gene transcription, receptor/protein phosphorylation, and
changes in mitochondrial function. Ion transport across the
plasma membrane is controlled in part via plasma membrane
integrity and has been identified in vivo as an important pro-
cess for bone cell (e.g., osteocyte) mechanosensation [112••].
Plasmamembrane disruptions can regulate expression of early
response proteins, such as c-fos, in various cell types,
supporting the “damage sensor” hypothesis that can explain
how cells initiate adaptative responses to injurious but not
lethal mechanical stress [112••, 113]. This hypothesis poses
that transient plasma membrane stretch that induces small
breaks or tears in the plasma membrane can induce a
mechanosensitive cascade of cell signaling if the number or
magnitude of tears is large enough. While some plasma dis-
ruptions may be beneficial for driving adaptation in response
to mechanical load, a threshold likely exists that, when
exceeded, results in cell death if the plasma membrane disrup-
tion is not repaired. This damage threshold reduces in disease
and in aging, which is postulated to increase risk of unrecov-
erable injury in diseased or aged tissues, such as muscle and
bone. Potential therapeutics for maintaining or repairing plas-
ma membrane integrity include antioxidant treatment (e.g.,
vitamin E [114] or vitamin C [112••]), fetuin A treatment
[115], or surfactant poloxamers (such as P-188) [116, 117],
and these treatments show promise in maintaining cell viabil-
ity for muscle, bone, or cartilage following tissue- or cell-scale
damage. Although the damage sensing mechanisms in osteo-
cytes and skeletal myocytes have been translated and validat-
ed in vivo, it has yet to be demonstrated as a model of
mechanobiology in tendon.

In addition to membrane integrity, voltage-gated transport
of ions across the membrane (e.g., transient receptor potential
cation channel subfamily V member 4, TRPV4; voltage-
operated calcium channel, VOCC) may also be controlled
via mechanical stress and/or extracellular stiffness [118,
119]. In nonmusculoskeletal cells (e.g., cardiomyocytes), fi-
broblast growth factor homologs modulate the trafficking of
calcium and sodium ion channels to the plasma membrane,
which suggests a coordinated role maintaining homeostasis in
act iva table (and perhaps previous ly cons idered
“nonactivatable”) cells [120].

Conclusions

The progress towards improving tendon healing with translat-
able therapeutics is promising, and control of cellular and

extracellular processes may provide useful and effective treat-
ments for improving repair outcomes. Engineered materials
from natural or synthetic sources may be useful for guiding
cellular remodeling and improving biomechanical reintegra-
tion of ruptured tendon. The incorporation of biological cues
that mimic development may be useful for guiding differenti-
ation of stem cells towards a tenogenic fate and accelerate
tendon healing. The control of biological processes (e.g., bio-
electricity) could potentially be leveraged to encourage tendon
regeneration driven by tendon-resident stromal cells. The field
of orthopedics continues to advance and improve with the
development of regenerative approaches for musculoskeletal
injuries, especially for tendon, and deeper exploration in this
area will lead to improved clinical outcomes.
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