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Abstract
This study investigates using a Monte Carlo analysis the performance of the two 
most important information criteria, such as the Akaike’s Information Criterion and 
the Bayesian Information Criterion, not only in terms of selecting the true spatial 
econometric model but also in term of detecting spatial dependence in comparison 
with the LM tests for the simple two spatial models SLM and SEM. The analysis is 
also extended by incorporating several other spatial econometric models, such as 
the SLX, SDM, SARAR and SDEM, along with heteroscedastic and non-normal 
errors. Simulation results show that under ideal conditions these criteria can assist 
the analyst to select the true spatial econometric model and detect properly spatial 
dependence.

Keywords Spatial dependence · Spatial econometric models · LM tests · 
Information criteria · Monte Carlo analysis

JEL Classification C20 · C21 · C52

1 Introduction

Spatial autocorrelation in errors is a very common problem in linear regression 
models with spatial data, which should be treated with caution, since it violates the 
assumption of the random sample, leading the analyst to ambiguous results. This 
behavior typically arises from observations corresponding to geographically proxi-
mate locations that are correlated because of their spatial dependence. As Anselin 
(1988a) has clarified, this spatial dependence along with spatial heterogeneity define 
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the concept of spatial effects. For this purpose, a set of Lagrange Multiplier (LM) 
tests, known as spatial dependence tests (see Burridge 1980; Anselin 1988b; Anse-
lin et al. 1996), have been developed in the literature to assist the analyst in terms of 
selecting and estimating the most appropriate spatial econometric model that con-
siders the presence of spatial dependence. Moreover, spatially autocorrelated errors 
can also appear in spatial regression analysis as a symptom of a false indication of 
spatial dependence due to spurious behavior, as Finglenton (1999), Mur and Trivez 
(2003) and Agiakloglou et. al. (2015) have indicated.

Nevertheless, these LM tests that have been widely used in many empirical appli-
cations contain two important drawbacks. The first one is related to the restrictive 
alternate model structure imposed by these tests and the second one is associated 
with their reliability in selecting the right model. Indeed, as it is known, these tests 
are applied exclusively to the choice between a simple econometric model and a 
spatial model with a spatial lag structure either in the dependent variable or in the 
error, whereas in several cases their application often leads to inconsistent conclu-
sions as to the choice of the right spatial econometric model, a problem that has 
been addressed by Anselin and Florax (1995). In addition, LeSage and Pace (2009) 
point out that spatial dependence tests were developed and established in the logic 
that their statistics are calculated solely from the residuals derived from the estima-
tion of the simple econometric model using least squares estimation without requir-
ing estimating the corresponding spatial econometric model. Clearly, these tests for 
spatial dependence versus the null hypothesis of no dependence do not require maxi-
mum likelihood estimation of the spatial model under the alternative hypothesis. For 
this reason and given the current availability of software, LeSage and Pace (2009) 
suggested that the selection of a spatial model should be made in the context of 
comparing the likelihoods of different models, while the analysis should start from a 
more general model that nests both the spatial lag model and the spatial error model.

Thus, it will be very interesting to investigate whether the use of any information 
criterion can help the analyst to select the true spatial econometric model, know-
ing that these criteria are usually applied to any quantitative analysis and that their 
performance has been limited explored to spatial econometric analysis. For this pur-
pose, a Monte Carlo analysis is conducted to evaluate the performance of the two 
most frequently used information criteria, such as the Akaike’s Information Crite-
rion (AIC) and the Bayesian Information Criterion (BIC), using only the three most 
important spatial econometric models, such as the SIM, SLM and SEM, suitable 
for the application of the LM tests, not only in terms of detecting spatial depend-
ence but also in terms of selecting the right spatial econometric model as a comple-
mentary approach to model selection using the LM tests for these models. Simula-
tion results show that these criteria can assist the analyst to identify the right spatial 
econometric model and spatial dependence more effectively in some cases than the 
LM tests. Note that the simulation process is conducted using rook and queen con-
struction matrices along with a real geographical structure, i.e., the spatial structure 
of Greece, which has a lot of geographical peculiarities resulting in quite asymmet-
ric spatial weights matrices. The research is also expanded, in term of selecting the 
right spatial econometric model, using the two aforementioned information criteria, 
by considering more spatial econometric models, namely the SLX, SDM, SARAR, 
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and SDEM, as well as two non-ideal situations, such as heteroscedasticity and non- 
normality, where the results vary considerably. Hence, the objective of this research 
is concentrated on selecting the best-fitted spatial econometric model given the 
weights matrix formation, rather than searching for the most appropriate weights 
matrix formation knowing the spatial econometric model, as discussed in Zhang and 
Yu (2018).

The remaining of the paper is organized as follows. Section 2 presents the three 
simple econometric models, namely the SIM, SLM and SEM, along with the SDM, 
as a special case of the SEM, the information criteria AIC and BIC and analyses 
the strategies applied for the LM tests. Section 3 describes the design of the simula-
tion process and discusses the results. Section 4 presents the extension of the Monte 
Carlo analysis with all the elements that have been added including the additional 
spatial econometric models, such as the SLX, SARAR, and SDEM, along with 
heteroscedastic and non-normal errors and discusses the results. The concluding 
remarks are included in Sect. 5.

2  The LM tests for spatial econometric models and the information 
criteria

Consider the Spatial Independent Model (SIM), also known as the Non-Spatial 
Econometric Model (NSEM), defined as:

where y is a ( n × 1 ) vector of observations of the dependent variable, Χ is a 
[ n × (k + 1) ] matrix of observations of k independent variables with values of 1 for 
its first column to include the presence of the constant term, β is the [ (k + 1) × 1) ] 
vector of coefficients of the model and ε is the ( n × 1 ) random vector following the 
standard assumptions of regression, i.e., ε ~ N(0, σ2I).

Spatial econometric models have been introduced in the literature as multidirec-
tional extensions of the time series econometric models on the geographical space, 
defining in that sense dependence for the values of a variable according to the geo-
graphical positions of its values and of the values of all independent variables in the 
model, including the error term and not according to their chronological depend-
ence. The spatial dependence is incorporated into the model by the presence of the 
spatial weights matrix W, which defines the spatial interactions between the n neigh-
boring regions and it is used in its row-standardized form.1

The two most important spatial econometric models are the Spatial Lag Model 
(SLM) defined as:

y = X� + �

y = �Wy + X� + �

1 Several criteria have been proposed in the literature for spatial weights formation including boundary 
contiguity and distance measures, as can be seen in Cliff and Ord (1981) and in Anselin (1988a).
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and the Spatial Error Model (SEM) defined as:

with

where u is a ( n × 1 ) random vector and Wy and Wε are the spatially lagged vectors 
that incorporate spatial dependence consisting of weighted averages of the values 
of the variables in the n neighboring regions, while ρ and λ are the spatial lag coef-
ficients of the dependent variable and the errors respectively. In addition, the SΕM 
model can be expressed as a spatial econometric model with spatial lags for all vari-
ables of the model, known as the Spatial Durbin Model (SDM), defined as:

where ρ = λ, −�� = � , a condition that can be tested by performing the test pre-
sented by Mur and Angulo (2006), known as a common factor test, to investigate 
whether the model is actually a spatial error model or a more general spatial model, 
and the WX is the spatial lag matrix of the independent variables. Hence, when the 
SDM is estimated, while the true generating spatial model is the SEM, one should 
expect to get the same results.

It also important to mention that the values of the coefficients ρ and λ are not 
necessarily restricted strictly to the interval (− 1, + 1), as in time series analysis. 
The estimation is implemented provided that the Jacobian matrix is non-singular, 
an outcome that is related to the eigenvalues of the spatial weights matrices. More 
specific, row-standardized spatial weights matrices have always the largest eigen-
value equals to unity, something that ensures that the upper limit of the interval will 
always be + 1, while the value of the lower limit is unknown, and several times can 
be smaller than − 1 (see LeSage and Pace 2009). Thus, if the coefficient takes values 
inside the feasible interval, corresponding to the applied weights matrix, the Jaco-
bian determinant will be positive, comforting that its logarithm exists and therefore 
the log-likelihood function will be well defined.

The selection of the best fitted model for a given set of spatial data is typically 
made through the LM tests for spatial dependence. In particular, the LM test for 
a SEM (LM-ERR), introduced by Burridge (1980), and the LM test for a SLM 
(LM-LAG), presented by Anselin (1988b), are conducted on a SIM under the null 
hypothesis, against a SEM and a SLM under the alternative hypothesis, respectively, 
and the data contains no spatial effects if the null hypothesis is accepted by both 
tests. Issues arise when both tests reject the null hypothesis, a behavior that tends 
to appear very often in practice, as indicated by Anselin et  al. (1996), where the 
tests cannot clearly identify the type of the spatial effect, unless one test rejects and 
the other one accepts the null hypothesis. For this reason, Florax et al. (2003) pro-
posed to select the spatial econometric model for which the LM statistic will have 
the highest value, hereafter strategy I. Moreover, and as an effort to minimize this 
problematic behavior, comparable robust LM tests have been constructed by Anselin 
et. al. (1996), namely the Robust LM-Error test (LM-EL) and the Robust LM-Lag 

y = X� + �

� = �W� + u

y = �Wy + X� +WX� + �
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test (LM-LE), showing that these tests have more power in locating the correct 
spatial model than the simple LM tests. Hence, the presence of spatial dependence 
is inspected through these new tests, hereafter strategy II, and if the null hypoth-
esis is rejected by both robust LM tests, the spatial econometric model is selected 
according to the highest value of one of the two robust LM statistics. Lastly, another 
strategy has been proposed by Florax et al. (2003), known as hybrid strategy, which 
combines the classical and the robust LM tests, but it turns out that this strategy 
leads to the same results as the classical approach (strategy I), as indicated by Florax 
et al. (2003) and proved by Mur and Angulo (2009).

The choice also of the best fitted model for a given set of spatial data can also be 
conducted based on the values of a pre-selected information criterion, as this tech-
nique is typically applied in every quantitate analysis that involves model selection. 
Hence, the values of the two most often used in practice information criteria, such 
as the Akaike Information Criterion (AIC), presented by Akaike (1973), and the 
Bayesian Information Criterion (BIC), developed by Schwarz (1978), as an attempt 
to improve the performance of AIC, defined respectively as:

and

where ln L̂ is the maximized value of the log-likelihood function, p is the number of 
parameters estimated from the econometric model and n is the sample size used for 
the estimation of the model, can be computed right after the estimation of any spa-
tial model by maximum likelihood estimation and the best fitted model is selected 
according to the minimum value of that criterion, a technique that has been used 
in practice by Chi and Zhu (2008) on their empirical work for demographic data to 
select the best fitted spatial econometric model.

For this reason, it will be very interesting to study the performance of these cri-
teria for spatial data in lieu of the performance of the LM tests not only in terms of 
identifying spatial dependence but also in terms of selecting the best spatial econo-
metric model for these limited alternatively spatial models, knowing that each crite-
rion has its own penalty function and therefore different pattern for model selection. 
Indeed, as it is known, AIC has the tendency to select models with large number 
of parameters, whereas BIC typically chooses small models, as a true approxima-
tion of their unknown population behavior.2 Note that the behavior of these criteria 
has been investigated for geostatistical models by Hoeting et al. (2006) and Lee and 
Ghosh (2009) and for spatial processes by Agiakloglou and Tsimpanos (2021), but 
not for spatial econometric models.

AIC = −2 ln L̂ + 2p

BIC = −2 ln L̂ + p ln n

2 Further details regarding the properties of AIC and BIC information criteria can be found in Judge 
et al. (1985), Burnham and Anderson (2002) and in Diebold (2007).
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3  Simulation results

The performance of the two previously presented information criteria, i.e., the AIC 
and the BIC, is investigated in terms of selecting the true spatial econometric model 
among the three alternative models, namely, the SIM, the SLM and the SDM, using 
a Monte Carlo analysis, where the SEM is included as an estimated SDM. The simu-
lation process is conducted by considering only one independent variable derived 
from a uniform U(0, 10) distribution which is simulated only once and then it 
remained constant for all iterations. Thus, the matrix X has dimensions ( n × 2 ) con-
sisting of one independent variable and a column of ones to estimate the constant 
term. The vector of coefficients � with dimension (2 × 1) is assumed to take values 
of one for both of its elements. The random error vector � is derived from a N(0, I) 
distribution and it is added to the vector X� to produce the vector of the dependent 
variable y for the non-spatial econometric model.

Spatial dependence is introduced into the models by defining a row-standardized 
spatial weights matrix W with dimensions ( n × n ) which is constructed using the 
rook (four neighbors-common edge) and the queen (eight neighbors-common edge 
and vertex) contiguity definitions, over a squared regular lattice for dimensions 
10 × 10 and 20 × 20 providing samples of 100 and 400 observations. Calculation of 
the eigenvalues for the four spatial matrices shows that the lower value of the spatial 
coefficient for the rook criterion is − 1 for both sample sizes, meaning that the fea-
sible range of values that the parameter can take is (− 1, 1), whereas the lower value 
for the queen criterion is − 1.97 for sample size of 100 observations and − 1.921 
for sample size of 400 observations, leading to feasible ranges of (− 1.97, 1) and 
(− 1.921, 1) for sample sizes of 100 and 400 observations respectively (see Bivand 
et  al. 2013 and Agiakloglou and Tsimpanos 2021). In addition, the simulation 
prosses is extended by including weight matrices derived from a geographical struc-
ture of Greece at the local authority districts of Kallikrates Operational Programme 
consisting of 325 municipalities.3 The weights matrices are constructed to capture 
real geographical structure according to the 4-nearest neighbors and the 8-nearest 
neighbors definitions, based on the geographical coordinates of the centroid for each 
municipality. Therefore, the formation of the weights matrices will be considered as 
given for the whole Monte Carlo analysis, although Kelejian and Piras (2011) pro-
posed a J-test for investigating alternative spatial econometric models with different 
weights matrices under the null hypothesis of a specific spatial econometric model 
(see also Jin and Lee 2013).

The simulation process is conducted in R using the SPDEP package developed by 
Bivand (2015) to generate: a) the SIM, b) the SLM, by multiplying the right-hand 
side of the SIM by the spatial multiplier (I − �W)

−1 , that is:

y = (I − �W)
−1X� + (I − �W)

−1�

3 The Greek geographical structure is obtained from https:// geoda ta. gov. gr/ en/ datas et/ oria- demon- kalli 
krates, excluding thought the Mountain Athos region.

https://geodata.gov.gr/en/dataset/oria-demon-kallikrates
https://geodata.gov.gr/en/dataset/oria-demon-kallikrates
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c) the SEM as:

where the vector error term u with ( n × 1 ) dimensions is derived from N(0, I) distri-
bution and the spatial parameters ρ and λ can take values within the feasible range 
intervals, as previously mentioned for these spatial weights matrices formulation, 
and d) the SDM as follows:

while no restrictions are applied for the values of θ. All models are estimated by 
maximizing the log-likelihood function so that the values of both information crite-
ria can be calculated. The best fitted econometric model is selected according to the 
minimum value of the pre-defined criterion based on 1000 replications. Note that 
the SEM is not estimated directly but only indirectly as a SDM and the information 
criterion should select the SDM when the true generating model is the SEM.

Table 1 presents the percentage selection rates of both criteria when the true gen-
erating model is the SIM. As can be seen from this table, the BIC performs very 
well in terms of selecting the true model with selection rates close to 95% and 
98% for samples of 100 and 400 observations respectively, regardless of the spatial 
weights matrix formation, including the Greek weight matrices. On the other hand, 
the selection rate of the true model based on both strategies using the LM tests is 
smaller than the selection rate of BIC, as can be seen from Table 1, although the 
empirical levels of all LM tests are close to the nominal level of 5% regardless of the 
sample size and the spatial weights matrix formation, a result that can also be found 
in Anselin and Florax (1995) with two independent variables used in the regression 
analysis. Hence, the BIC, unlike the AIC, will lead the analyst to the right model 

y = X� + (I − �W)
−1u

y = (I − �W)
−1
(X� +WX� + �)

Table 1  Percentage of selections 
for all three models based on 
AIC and BIC as well as on 
LM strategies based on the 5% 
nominal level when the true 
generating model is the SIM 
using 1000 replications

Bold indicates the correct model

IC Model Ν 100 400 325

Rook Queen Rook Queen Κ = 4 Κ = 8

AIC SIM 75.70 76.40 79.40 78.50 81.10 77.50
SLM 15.30 14.50 12.00 12.90 12.00 14.20
SDM 9.00 9.10 8.60 8.60 6.90 8.30

BIC SIM 94.90 95.50 98.10 97.90 98.70 97.80
SLM 4.50 3.60 1.60 1.70 1.20 2.20
SDM 0.60 0.90 0.30 0.40 0.10 0.00

Strategy
I SIM 89.60 91.60 91.10 91.00 92.40 90.20

SLM 5.80 5.00 4.30 4.50 4.00 5.70
SEM 4.60 3.40 4.60 4.50 3.60 4.10

II SIM 89.70 91.20 90.40 91.50 91.20 90.30
SLM 5.40 4.40 4.80 4.30 5.10 5.60
SEM 4.90 4.40 4.80 4.20 3.70 4.10
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selection with confidence slightly larger than any of the LM tests strategy, especially 
for large sample sizes. The selection rates for all three econometric models based on 
both information criteria when the true generating model is the SLM are reported 
on Table 2. As can be seen from this table, the selection rate of the true model by 
both criteria is not affected by the value and by the sign of the spatial autoregres-
sive parameter ρ, including the extreme case of a negative value smaller than -1 for 
the queen formation, as well as by the spatial matrix formation. The performance 
of both criteria is determined mainly by the sample size, i.e., the AIC selects the 
true model at a rate of 82% and 84% for sample sizes of 100 and 400 observations 
respectively, while the BIC selects the true model more accurate at rates of 96% and 
99%, respectively. Hence, the BIC outperforms the AIC, as in the previous case, in 
terms of selecting the right spatial econometric model, for every given value of the 
spatial autoregressive parameter and sample size reaching levels close to certainty. 
It is also important to indicate that the SIM is not selected at all by both criteria, 
except for small values of ρ and small sample size at a very low rate. Furthermore, 
the spatial dependence as well as the right spatial econometric model are also rec-
ognized successfully by the LM tests, since one of the two the LM tests is designed 
for this alternative model structure. In that sense the LM tests using both strategies 
select the true model, i.e., the SLM, with more confidence than the BIC, reaching 
very frequently levels of certainty, as can be seen from Table 3, regardless of the 
matrix formation.4

Table 4 reports the selection rates for all three econometric models by both infor-
mation criteria when the true generating model is the SEM. As can be seen from 
this table, both criteria select the true model in its equivalent form, i.e., the SDM, 
more aggressively than the previous case, reaching very frequently levels of 100%. 
However, the performance of both criteria is strongly affected by the absolute value 
of the spatial error parameter λ, by the sample size and by the weights matrix forma-
tion, unlike the previous case. The true model is selected more frequently by both 
criteria as the absolute value of λ increases, regardless of the weights matrix for-
mation, reaching the level of certainty for large absolute values of the spatial error 
parameter. For small absolute values of λ the SDM is not selected with certainty, 
simply because the spatial effects of a spatial error model are not significant and 
therefore, they appear in regression analysis as nuisance. This symptom is observed 
more rigorously for small sample sizes by both criteria and especially by the BIC 
using the queen formation or the K = 8 matrix formation where the selected best fit-
ted model is the SIM. Unlike the previous case, the performance of both criteria is 
strongly affected by the formation of the weights matrices with the rook formation 
giving better results. In general, the AIC performs better than the BIC for this case, 
for every given value of the spatial error parameter, sample size and weights matrix 
formation, except for cases where both criteria select the right model with certainty. 
In addition, the presence of spatial error dependence is also identified by the LM 
tests, since one of them is specifically designed for this alternative spatial model 

4 An abnormal behavior of the LM-EL test for the queen weights matrix formation and for small sample 
size is observed.
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Table 2  Percentage of selections for all three models based on AIC and BIC when the true generating 
model is the SLM for various values of ρ using 1000 replications

Ν IC Model ρ

− 1.4 − 0.9 − 0.8 − 0.5 − 0.2 0.2 0.5 0.8 0.9

100 AIC SIM Rook
0.00 0.00 0.00 1.70 2.90 0.00 0.00 0.00

SLM 80.90 82.10 83.00 81.30 80.10 81.40 81.10 81.60
SDM 19.10 17.90 17.00 17.00 17.00 18.60 18.90 18.40

BIC SIM 0.00 0.00 0.00 8.20 11.00 0.00 0.00 0.00
SLM 96.70 97.00 96.90 88.80 85.70 95.70 96.10 95.50
SDM 3.30 3.00 3.10 3.00 3.30 4.30 3.90 4.50

AIC SIM Queen
0.00 0.00 0.00 0.00 15.00 18.40 0.00 0.00 0.00

SLM 81.80 84.30 83.50 83.50 68.90 64.70 82.10 82.70 81.80
SDM 18.20 15.70 16.50 16.50 16.10 16.90 17.90 17.30 18.20

BIC SIM 0.00 0.00 0.00 0.00 39.70 42.00 0.00 0.00 0.00
SLM 96.90 96.10 96.20 96.20 57.80 54.80 95.70 95.80 96.20
SDM 3.10 3.90 3.80 3.80 2.50 3.20 4.30 4.20 3.80

400 AIC SIM Rook
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLM 86.00 85.50 85.50 84.60 83.00 81.90 83.00 84.00
SDM 14.00 14.50 14.50 15.40 17.00 18.10 17.00 16.00

BIC SIM 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00
SLM 98.20 98.80 98.40 98.00 98.90 98.40 98.40 98.20
SDM 1.80 1.20 1.60 1.90 1.10 1.60 1.60 1.80

AIC SIM Queen
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLM 82.80 82.70 82.60 82.60 83.70 83.00 84.00 84.50 84.90
SDM 17.20 17.30 17.40 17.40 16.30 17.00 16.00 15.50 15.10

BIC SIM 0.00 0.00 0.00 0.00 1.80 1.60 0.00 0.00 0.00
SLM 98.10 98.70 98.70 98.70 96.70 97.10 98.80 98.80 98.40
SDM 1.90 1.30 1.30 1.30 1.50 1.30 1.20 1.20 1.60
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structure. The LM tests will eventually select the true model using both strategies 
with slightly less certainty than the AIC, also reaching levels of 100%, as can be 
seen from Table 5.

Table 6 presents the selection rates of both information criteria when the true gen-
erating process is the SDM. The objective in this case is to investigate the perfor-
mance of the information criteria in terms of selecting a more complicated spatial 
econometric model, which is equivalent to SEM under certain restrictions, an action 
that cannot be implemented directly by the LM tests, since these tests have not been 
constructed for this spatial model structure. As can be seen from this table, which 
reports simulation results for values of ρ and θ equal to 0.2, 0.5 and 0.8, based on 
1000 replications, the performance of both information criteria is extremely very 
good in terms of selecting the true model.5 Moreover, none of the two criteria ever 
selects the SIM, indicating that the spatial dependence is clearly recognized either 
by the true model or alternatively by the SLM for cases where the values of both 
parameters are small or just one of them. However, even in the case where the SLM 

Table 2  (continued)

Bold indicates the correct model

5 Simulation trials have also been conducted for negative values of θ as well as for absolute values of 
θ greater than 1 using positive values of ρ. The results obtained for negative values of θ are identical to 
the positive ones, except for small values of θ, where the percentage rates are typically smaller, while the 
results, obtained for absolute values of θ greater than one, are the same as the largest positive value of θ. 
Similar results are also obtained in general for negative values of ρ with some minor differences.

Ν IC Model ρ

− 1.4 − 0.9 − 0.8 − 0.5 − 0.2 0.2 0.5 0.8 0.9

325 AIC SIM K = 4
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLM 84.30 84.10 84.10 84.80 86.40 85.50 84.70 84.80 84.00
SDM 15.70 15.90 15.90 15.20 13.60 14.50 15.30 15.20 16.00

BIC SIM 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00
SLM 98.00 97.90 98.00 98.20 98.40 98.80 98.30 98.90 98.50
SDM 2.00 2.10 2.00 1.80 1.50 1.20 1.70 1.10 1.50

AIC SIM K = 8
0.00 0.00 0.00 0.00 0.80 0.10 0.00 0.00 0.00

SLM 83.60 84.20 84.30 83.60 82.90 84.70 85.00 84.70 84.20
SDM 16.40 15.80 15.70 16.40 16.30 15.20 15.00 15.30 15.80

BIC SIM 0.00 0.00 0.00 0.00 7.20 5.20 0.00 0.00 0.00
SLM 98.40 98.60 98.30 98.30 91.60 93.60 98.90 98.30 98.20
SDM 1.60 1.40 1.70 1.70 1.20 1.20 1.10 1.70 1.80
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Table 3  Percentage of selections for all three models based on LM strategies at the 5% nominal level 
when the true generating model is the SLM for various values of ρ using 1000 replications

Ν Str Model ρ

− 1.4 − 0.9 − 0.8 − 0.5 − 0.2 0.2 0.5 0.8 0.9

100 I SIM Rook
0.00 0.00 0.00 6.10 8.30 0.00 0.00 0.00

SLM 100.00 100.00 100.00 91.10 89.30 100.00 100.00 100.00
SEM 0.00 0.00 0.00 2.80 2.40 0.00 0.00 0.00

II SIM 0.00 0.00 0.00 11.90 14.20 0.00 0.00 0.00
SLM 100.00 100.00 100.00 86.60 84.60 100.00 100.00 100.00
SEM 0.00 0.00 0.00 1.50 1.20 0.00 0.00 0.00

I SIM Queen
0.00 0.00 0.00 0.00 36.80 30.90 0.00 0.00 0.00

SLM 100.00 100.00 100.00 100.00 58.70 62.70 99.50 99.90 100.00
SEM 0.00 0.00 0.00 0.00 4.50 6.40 0.50 0.10 0.00

II SIM 0.00 0.00 0.00 0.20 47.80 39.80 0.00 0.00 0.00
SLM 100.00 100.00 100.00 99.80 50.70 56.90 99.50 99.90 100.00
SEM 0.00 0.00 0.00 0.00 1.50 3.30 0.50 0.10 0.00

400 I SIM Rook
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLM 100.00 100.00 100.00 99.80 100.00 100.00 100.00 100.00
SEM 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00

II SIM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SLM 100.00 100.00 100.00 99.80 100.00 100.00 100.00 100.00
SEM 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00

I SIM Queen
0.00 0.00 0.00 0.00 0.80 0.70 0.00 0.00 0.00

SLM 100.00 100.00 100.00 100.00 98.60 97.90 99.90 100.00 100.00
SEM 0.00 0.00 0.00 0.00 0.60 1.40 0.10 0.00 0.00

II SIM 0.00 0.00 0.00 0.00 2.10 1.20 0.00 0.00 0.00
SLM 100.00 100.00 100.00 100.00 97.70 97.40 99.90 100.00 100.00
SEM 0.00 0.00 0.00 0.00 0.20 1.40 0.10 0.00 0.00
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is selected, although it is not the true model, the miss-selection problem is mitigated, 
since this model contains a spatial lag of the dependent variable. In general, the selec-
tion rate of the true model increases as sample size increases as well as the absolute 
values of both parameters increase reaching levels of certainty very quickly even for 
small sample sizes regardless of the weights matrix formation. For given sample size 
and value of θ (ρ) the performance of both criteria increases as the value of ρ (θ) 
increases. Finally, the AIC has an overall better performance than the BIC, since the 
true model contains more parameters regardless of the weights matrix formation.

The presence of spatial dependence along with the selection of the true model 
are also investigated by the LM tests, knowing that these tests are not suitable for 
this spatial model structure. The effort of this attempt is to examine their behavior 
for a realistic condition, where the limitation of the two simple spatial econometric 
models is relaxed, since there is a variety of spatial econometric models that can be 
considered, and more importantly that the spatial structure will not a priori be given. 
The good news is that spatial dependence is detected by all LM tests with certainty, 
with some minor abnormal behaviors, although the results are not reported. How-
ever, both strategies select with certainty the SLM, when the values of ρ and θ have 
the same sign regardless of their magnitude, as can be seen from Table  7, which 

Table 3  (continued)

Bold indicates the correct model

Ν Str Model ρ

− 1.4 − 0.9 − 0.8 − 0.5 − 0.2 0.2 0.5 0.8 0.9

325 I SIM K = 4
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLM 100.00 100.00 100.00 100.00 99.90 99.70 100.00 100.00 100.00
SEM 0.00 0.00 0.00 0.00 0.10 0.30 0.00 0.00 0.00

II SIM 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00
SLM 100.00 100.00 100.00 100.00 99.90 99.70 100.00 100.00 100.00
SEM 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.00 0.00

I SIM K = 8
0.00 0.00 0.00 0.00 4.40 1.20 0.00 0.00 0.00

SLM 100.00 100.00 100.00 100.00 95.20 95.90 99.50 99.40 100.00
SEM 0.00 0.00 0.00 0.00 0.40 2.90 0.50 0.60 0.00

II SIM 0.00 0.00 0.00 0.00 6.70 3.00 0.00 0.00 0.00
SLM 100.00 100.00 100.00 100.00 93.20 94.30 99.50 99.40 100.00
SEM 0.00 0.00 0.00 0.00 0.10 2.70 0.50 0.60 0.00
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Table 4  Percentage of selections for all three models based on AIC and BIC when the true generating 
model is the SEM for various values of λ using 1000 replications

Ν IC Model λ

− 1.4 − 0.9 − 0.8 − 0.5 − 0.2 0.2 0.5 0.8 0.9

100 AIC SIM Rook
0.00 0.00 1.30 47.40 51.10 3.00 0.00 0.00

SLM 0.00 0.00 1.50 14.60 13.40 2.40 0.00 0.00
SDM 100.00 100.00 97.20 38.00 35.50 94.60 100.00 100.00

BIC SIM 0.00 0.00 12.10 83.90 86.10 17.60 0.10 0.00
SLM 0.00 0.00 4.50 7.30 6.20 4.20 0.00 0.00
SDM 100.00 100.00 83.40 8.80 7.70 78.20 99.90 100.00

AIC SIM Queen
0.00 0.00 1.00 17.10 60.50 64.70 11.80 0.10 0.00

SLM 0.00 0.10 0.80 6.70 13.30 15.10 9.70 0.50 0.00
SDM 100.00 99.90 98.20 76.20 26.20 20.20 78.50 99.40 100.00

BIC SIM 0.00 5.90 12.90 57.90 90.70 90.10 36.90 0.50 0.00
SLM 0.00 1.00 1.90 4.50 4.60 6.90 12.30 2.10 0.10
SDM 100.00 93.10 85.20 37.60 4.70 3.00 50.80 97.40 99.90

400 AIC SIM Rook
0.00 0.00 0.00 10.80 12.60 0.00 0.00 0.00

SLM 0.00 0.00 0.00 4.10 7.30 0.00 0.00 0.00
SDM 100.00 100.00 100.00 85.10 80.10 100.00 100.00 100.00

BIC SIM 0.00 0.00 0.00 59.60 63.40 0.10 0.00 0.00
SLM 0.00 0.00 0.00 6.10 6.10 0.00 0.00 0.00
SDM 100.00 100.00 100.00 34.30 30.50 99.90 100.00 100.00

AIC SIM Queen
0.00 0.00 0.00 0.20 32.90 30.50 0.00 0.00 0.00

SLM 0.00 0.00 0.00 0.20 9.80 13.10 0.00 0.00 0.00
SDM 100.00 100.00 100.00 99.60 57.30 56.40 100.00 100.00 100.00

BIC SIM 0.00 0.00 0.00 6.30 87.30 80.20 0.50 0.00 0.00
SLM 0.00 0.00 0.00 0.90 3.50 8.10 0.20 0.00 0.00
SDM 100.00 100.00 100.00 92.80 9.20 11.70 99.30 100.00 100.00
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reports simulation results only for both positive values.6 For alternate sign of the 
two parameters the strategies tend to select the SEM instead of the SLM, especially 
when the absolute values of ρ and θ are equal (or close) to each other, perhaps due to 
the common factor, as in this case the SDM is indeed the SEM. Hence, the LM tests 
should be used with caution simply because they cannot recognize any other type of 
a spatial econometric model other than the SLM or the SEM, even in the case of the 
SDM which approximates the SEM, as opposed to the information criteria that can 
easily identify a more complicated spatial econometric structure. In fact, our results 
confirm the findings of Elhorst and Halleck Vega (2017) that the classical LM tests 
or the Robust LM tests are not suitable for the SDM case. In general both the infor-
mation criteria and the strategies of the LM tests can help the analyst to detect suc-
cessfully the true simple spatial econometric model.

Table 4  (continued)

Bold indicates the correct model

6 Simulation trials have also been conducted for positive values of ρ and absolute values of θ greater 
than one, as well as for negative values of ρ and for all other values of θ including values greater than one 
in absolute terms. The results obtained for negative values of ρ are identical to the positive ones, except 
for small values of θ, where the percentage rates are typically smaller, whereas the results, obtained for 
absolute values of θ greater than one, are the same as those for the positive value of θ for both positive 
and negative values of ρ.

Ν IC Model λ

− 1.4 − 0.9 − 0.8 − 0.5 − 0.2 0.2 0.5 0.8 0.9

325 AIC SIM K = 4
0.00 0.00 0.00 0.00 25.40 25.00 0.00 0.00 0.00

SLM 0.00 0.00 0.00 0.00 7.00 8.70 0.00 0.00 0.00
SDM 100.00 100.00 100.00 100.00 67.60 66.30 100.00 100.00 100.00

BIC SIM 0.00 0.00 0.00 1.00 80.80 76.20 0.00 0.00 0.00
SLM 0.00 0.00 0.00 0.00 3.20 5.20 0.00 0.00 0.00
SDM 100.00 100.00 100.00 99.00 16.00 18.60 100.00 100.00 100.00

AIC SIM K = 8
0.00 0.00 0.00 1.90 45.20 45.20 0.30 0.00 0.00

SLM 0.00 0.00 0.00 0.80 10.50 14.10 0.20 0.00 0.00
SDM 100.00 100.00 100.00 97.30 44.30 40.70 99.50 100.00 100.00

BIC SIM 0.00 0.20 1.00 29.20 92.20 87.60 3.40 0.00 0.00
SLM 0.00 0.00 0.00 1.90 3.10 5.50 1.70 0.00 0.00
SDM 100.00 99.80 99.00 68.90 4.70 6.90 94.90 100.00 100.00



1 3

Evaluating the performance of AIC and BIC for selecting spatial… Page 15 of 35 2

Table 5  Percentage of selections for all three models based on LM strategies at the 5% nominal level 
when the true generating model is the SEM for various values of λ using 1000 replications

Ν Str Model λ

− 1.4 − 0.9 − 0.8 − 0.5 − 0.2 0.2 0.5 0.8 0.9

100 I SIM Rook
0.00 0.00 3.00 60.90 66.00 4.90 0.00 0.00

SLM 0.30 0.70 4.40 7.10 6.50 3.30 0.30 0.00
SEM 99.70 99.30 92.60 32.00 27.50 91.80 99.70 100.00

II SIM 0.00 0.00 5.70 66.20 71.10 9.40 0.00 0.00
SLM 0.30 0.70 3.50 5.00 5.30 2.30 0.30 0.00
SEM 99.70 99.30 90.80 28.80 23.60 88.30 99.70 100.00

I SIM Queen
0.00 1.40 3.20 33.10 80.60 73.40 14.50 0.10 0.00

SLM 0.50 1.80 2.70 4.90 4.60 7.20 7.50 1.00 0.40
SEM 99.50 96.80 94.10 62.00 14.80 19.40 78.00 98.90 99.60

II SIM 0.00 6.40 12.80 49.70 86.10 76.10 19.60 0.30 0.00
SLM 0.50 1.10 1.10 1.70 3.30 5.60 5.30 1.00 0.40
SEM 99.50 92.50 86.10 48.60 10.60 18.30 75.10 98.70 99.60

400 I SIM Rook
0.00 0.00 0.00 13.60 17.40 0.00 0.00 0.00

SLM 0.00 0.00 0.00 4.40 5.30 0.00 0.00 0.00
SEM 100.00 100.00 100.00 82.00 77.30 100.00 100.00 100.00

II SIM 0.00 0.00 0.00 22.10 26.50 0.00 0.00 0.00
SLM 0.00 0.00 0.00 2.30 2.50 0.00 0.00 0.00
SEM 100.00 100.00 100.00 75.60 71.00 100.00 100.00 100.00

I SIM Queen
0.00 0.00 0.00 0.30 46.80 38.10 0.10 0.00 0.00

SLM 0.00 0.00 0.00 0.90 6.00 6.60 0.10 0.00 0.00
SEM 100.00 100.00 100.00 98.80 47.20 55.30 99.80 100.00 100.00

II SIM 0.00 0.00 0.00 1.00 58.60 47.30 0.00 0.00 0.00
SLM 0.00 0.00 0.00 0.80 3.00 3.50 0.10 0.00 0.00
SEM 100.00 100.00 100.00 98.20 38.40 49.20 99.90 100.00 100.00
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4  Further simulation results

The Monte Carlo analysis is extended by considering several other spatial economet-
ric models as an effort to eliminate the restrictions imposed by the LM tests and to 
evaluate the performance of the information criteria as far as selecting the right model 
among a larger variety of spatial econometric models. The models are:

(a) the Spatial AutoRegressive AutoRegressive (SARAR) model, also known as 
Spatial Autoregressive Combined Model (SACM):

  with

(b) the Spatial Lag X (SLX) model:

and c) the Spatial Durbin Error Model (SDEM):

y = �Wy + X� + �

� = �W� + u

y = X� +WX� + �

y = X� +WX� + �

Table 5  (continued)

Bold indicates the correct model

Ν Str Model λ

− 1.4 − 0.9 − 0.8 − 0.5 − 0.2 0.2 0.5 0.8 0.9

325 I SIM K = 4
0.00 0.00 0.00 0.00 35.50 27.70 0.00 0.00 0.00

SLM 0.00 0.00 0.00 0.10 4.50 5.90 0.10 0.00 0.00
SEM 100.00 100.00 100.00 99.90 60.00 66.40 99.90 100.00 100.00

II SIM 0.00 0.00 0.00 0.10 44.10 36.30 0.00 0.00 0.00
SLM 0.00 0.00 0.00 0.10 2.40 3.10 0.10 0.00 0.00
SEM 100.00 100.00 100.00 99.80 53.50 60.60 99.90 100.00 100.00

I SIM K = 8
0.00 0.00 0.00 5.90 65.00 53.80 0.20 0.00 0.00

SLM 0.00 0.10 0.30 2.60 5.50 6.40 0.20 0.00 0.00
SEM 100.00 99.90 99.70 91.50 29.50 39.80 99.60 100.00 100.00

II SIM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SLM 0.00 0.00 0.00 0.10 2.40 3.10 0.10 0.00 0.00
SEM 100.00 100.00 100.00 99.80 53.50 60.60 99.90 100.00 100.00
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Table 6  Percentage of selections for all three models based on AIC and BIC when the true generating 
model is the SDM for various values of ρ and θ using 1000 replications

Ν IC ρ 0.2 0.5 0.8

Model / θ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

100 AIC SIM Rook
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLM 41.20 0.10 0.00 29.30 0.00 0.00 15.60 0.00 0.00
SDM 58.80 99.90 100 70.70 100 100 84.40 100 100

BIC SIM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SLM 67.10 1.30 0.00 55.40 0.30 0.00 36.10 0.00 0.00
SDM 32.90 98.70 100 44.60 99.70 100 63.90 100 100

AIC SIM Queen
0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLM 57.10 10.70 0.00 53.40 5.10 0.00 41.70 0.90 0.00
SDM 42.70 89.30 100 46.60 94.90 100 58.30 99.10 100

BIC SIM 1.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SLM 81.30 30.60 1.70 79.50 20.20 0.40 71.50 5.80 0.00
SDM 17.00 69.40 98.30 20.50 79.80 99.60 28.50 94.20 100

400 AIC SIM Rook
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLM 6.30 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00
SDM 93.70 100 100 100 100 100 99.90 100 100

BIC SIM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SLM 30.80 0.00 0.00 0.00 0.00 0.00 2.80 0.00 0.00
SDM 69.20 100 100 100 100 100 97.20 100 100

AIC SIM Queen
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLM 25.80 0.10 0.00 17.00 0.10 0.00 6.00 0.00 0.00
SDM 74.20 99.90 100 83.00 99.90 100 94.00 100 100

BIC SIM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SLM 67.10 0.80 0.00 56.90 0.20 0.00 33.00 0.00 0.00
SDM 32.90 99.20 100 43.10 99.80 100 67.00 100 100
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with

and they have been generated as:

(a) the SARAR model as:

(b) the SLX model as:

(c) the SDEM as:

using the same simulation process.
Table 8 presents the percentage selection rates of both criteria when the true 

generating model is the SIM based on several other spatial econometric models. 
As can be seen from this table, the performance of both criteria remained almost 
unchanged as that obtained with fewer spatial econometric models and reported 

� = �W� + u

y = (I − �W)
−1X� + (I − �W)

−1
(I − �W)

−1u

y = X� +WX� + �

y = X� +WX� + (I − �W)
−1u

Table 6  (continued)

Bold indicates the correct model

Ν IC ρ 0.2 0.5 0.8

Model / θ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

325 AIC SIM K = 4
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLM 16.20 0.00 0.00 8.20 0.00 0.00 2.00 0.00 0.00
SDM 83.80 100 100 91.80 100 100 98.00 100 100

BIC SIM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SLM 51.30 0.00 0.00 33.20 0.00 0.00 10.40 0.00 0.00
SDM 48.70 100 100 66.80 100 100 89.60 100 100

AIC SIM K = 8
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLM 36.70 0.30 0.00 28.00 0.00 0.00 12.20 0.00 0.00
SDM 63.30 99.70 100 72.00 100 100 87.80 100 100

BIC SIM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SLM 77.40 4.10 0.00 70.50 0.70 0.00 48.60 0.00 0.00
SDM 22.60 95.90 100 29.50 99.30 100 51.40 100 100
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Table 7  Percentage of selections for all three models based on LM strategies at the 5% nominal level 
when the true generating model is the SDM for various values of ρ and θ using 1000 replications

Ν Str ρ 0.2 0.5 0.8

Model / θ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

100 I SIM Rook
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLM 100 100 100 100 100 100 100 100 100
SEM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

II SIM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SLM 100 100 100 100 100 100 100 100 100
SEM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

I SIM Queen
1.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLM 98.60 100 100 100 100 100 100 100 100
SEM 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

II SIM 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SLM 99.00 100 100 100 100 100 100 100 100
SEM 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

400 I SIM Rook
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLM 100 100 100 100 100 100 100 100 100
SEM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

II SIM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SLM 100 100 100 100 100 100 100 100 100
SEM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

I SIM Queen
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLM 100 100 100 100 100 100 100 100 100
SEM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

II SIM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SLM 100 100 100 100 100 100 100 100 100
SEM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 7  (continued)

Ν Str ρ 0.2 0.5 0.8

Model / θ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

325 I SIM K = 4

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLM 100 100 100 100 100 100 100 100 100

SEM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

II SIM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLM 100 100 100 100 100 100 100 100 100

SEM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

I SIM K = 8

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLM 100 100 100 100 100 100 100 100 100

SEM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

II SIM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLM 100 100 100 100 100 100 100 100 100

SEM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 8  Percentage of selections 
for all six models based on 
AIC and BIC when the true 
generating model is the SIM 
using 1000 replications

Bold indicates the correct model

IC Model Ν 100 400 325

Rook Queen Rook Queen K = 4 K = 8

AIC SIM 72.00 72.30 75.70 75.30 77.80 74.60
SLM 9.90 11.00 9.30 9.00 7.10 10.20
SDM 3.00 3.30 2.30 2.00 1.60 2.70
SARAR 2.40 2.00 2.20 2.50 2.50 1.90
SLX 10.30 8.30 8.70 9.00 9.40 8.80
SDEM 2.40 3.10 1.80 2.20 1.60 1.80

BIC SIM 94.10 94.00 97.50 97.10 97.80 96.90
SLM 3.10 3.30 1.10 1.30 0.50 1.40
SDM 0.10 0.30 0.00 0.10 0.00 0.00
SARAR 0.10 0.00 0.20 0.10 0.00 0.00
SLX 2.50 2.00 1.10 1.30 1.60 1.70
SDEM 0.10 0.40 0.10 0.10 0.10 0.00

on Table 1. However, the selection rates are slightly smaller for both criteria since 
more models are considered with the BIC outperforming the AIC, but still having 
very high rates for selecting the true model.
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Table 9  Percentage of selections for all six models based on AIC and BIC when the true generating 
model is the SLM for various values of ρ using 1000 replications

Bold indicates the correct model

Ν IC Model ρ

0.2 0.5 0.8 0.9 0.2 0.5 0.8 0.9

100 AIC SIM Rook Queen
2.80 0.00 0.00 0.00 15.10 0.00 0.00 0.00

SLM 59.90 69.10 69.20 68.50 45.40 68.50 70.40 69.00
SDM 3.40 11.50 16.20 16.60 2.10 6.40 13.70 15.60
SARAR 4.30 10.80 14.50 14.90 3.60 11.00 14.50 15.20
SLX 24.70 0.10 0.00 0.00 30.30 4.40 0.00 0.00
SDEM 4.90 8.50 0.10 0.00 3.50 9.70 1.40 0.20

BIC SIM 9.50 0.00 0.00 0.00 37.40 0.00 0.00 0.00
SLM 65.00 92.10 93.20 92.50 38.40 86.70 92.50 92.80
SDM 0.60 2.20 3.70 4.40 0.10 0.50 3.40 3.40
SARAR 0.30 2.10 3.10 3.10 0.40 2.50 3.50 3.70
SLX 24.00 0.90 0.00 0.00 23.40 8.10 0.00 0.00
SDEM 0.60 2.70 0.00 0.00 0.30 2.20 0.60 0.10

400 AIC SIM Rook Queen
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLM 74.40 75.30 72.80 72.00 73.00 74.10 74.40 73.50
SDM 4.90 13.20 14.10 13.60 3.50 10.50 12.30 13.20
SARAR 6.10 10.30 13.10 14.40 3.50 9.90 13.30 13.30
SLX 4.00 0.00 0.00 0.00 15.20 0.00 0.00 0.00
SDEM 10.60 1.20 0.00 0.00 4.80 5.50 0.00 0.00

BIC SIM 0.00 0.00 0.00 0.00 1.50 0.00 0.00 0.00
SLM 91.80 96.70 96.90 96.90 81.20 96.90 97.50 97.20
SDM 0.20 1.20 1.50 1.70 0.70 1.00 0.90 1.50
SARAR 0.50 1.40 1.60 1.40 0.20 1.00 1.60 1.30
SLX 7.10 0.00 0.00 0.00 16.30 0.00 0.00 0.00
SDEM 0.40 0.70 0.00 0.00 0.10 1.10 0.00 0.00

325 AIC SIM K = 4 K = 8
0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00

SLM 75.00 77.20 74.40 72.80 68.30 73.90 73.00 71.60
SDM 4.40 11.40 12.60 14.00 2.50 10.10 13.20 13.90
SARAR 5.20 10.50 13.00 13.20 3.10 12.00 13.80 14.50
SLX 8.40 0.00 0.00 0.00 22.40 0.00 0.00 0.00
SDEM 7.00 0.90 0.00 0.00 3.60 4.00 0.00 0.00

BIC SIM 0.00 0.00 0.00 0.00 3.90 0.00 0.00 0.00
SLM 88.80 97.20 97.90 97.70 72.40 97.30 96.80 96.50
SDM 0.40 1.20 1.00 1.40 0.20 0.70 1.50 1.80
SARAR 0.00 1.20 1.10 0.90 0.20 0.90 1.70 1.70
SLX 10.40 0.00 0.00 0.00 23.00 0.30 0.00 0.00
SDEM 0.40 0.40 0.00 0.00 0.30 0.80 0.00 0.00
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Things changed when the true model is the SLM especially for the AIC, as can 
be seen from Table 9, relatively to results reported on Table 2, where now the pres-
ence of the SARAR model forces the AIC to select less frequently the true model 
by a reduction rate approximately 10%.7 The BIC, on the other hand, kept the same 
selection rate of the true model, slightly smaller than before, due to the presence of 
more spatial econometric models, but still very high at the 95% area, regardless of 
the sample size and the weights matrix formation. Contrary, the results became very 
complicated when the true model is the SEM, as can be seen from Tables 4 and 10. 
Both criteria behave very similarly by selecting around 40% the true model, instead 
of 100% that was before, 32% the SARAR model and 28% the SDEM for moderate 
and large values of the parameter, whereas for small values both criteria select the 
SIM failing to detect the presence of spatial dependence. Hence, the existence of 
more spatial econometric models damaged the good image of both criteria obtained 
with fewer models when the true spatial econometric model is the SEM. Lastly, 
Table 11 reports the selection rates of both criteria for the SLX model among all 
six spatial econometric models, whereas Table 12 reports the section rates only for 
the generated models SDM, SARAR and SDEM that have two parameters. For the 
SLX case the selection rates of the true model increase as the value of the param-
eter increases and/or the sample size with the BIC outperforming AIC and reporting 
very high rates. Similarly, for the other models the selection rates increase as the 
values of both parameters increase and/or as the sample size increases regardless of 
the weights matrix formation reaching levels of certainty.8

The simulation process is extended by considering two non-ideal situations, such 
as the case of a non-constant variance of the error term and non-normality, as in 
Mur and Angulo (2009), although these conditions are not taken into account in 
the calculation of both criteria and therefore they are not expected to improve their 
behavior. The heteroscedasticity is incorporated into the model by assuming that the 
error term is defined as:

where dr is the distance of the centroid of each cell r from the centroid of the 
upper left cell of the grid. Of course, there are several other ways of modeling heter-
oscedasticity, as for example considering dr to be the distance of the centroid of each 
cell r from the centroid of the central or the lower left cell of the grid (see for exam-
ple Mur and Angulo, 2009), including the possibility of employing Bayesian analy-
sis even for the case of selecting spatial econometric models under different weights 
matrix formations (see for example Lesage and Parent, 2007; Crespo Cuaresma and 
Feldkircher, 2013, Debarsy and Lesage, 2022 and Fernandez et al., 2001). However, 
the purpose of this research is focused on the influence of heteroscedasticity in the 

� ∼ N
(

0, �2dr�
)

7 Note that only results for positive values of the parameters are reported since the negative values gave 
the same results.
8 The simulation results for the real geographical structure of Greece are not reported for spacing issues 
and simply because they are very similar with the results of Table 12 obtained by the other two weights 
matrices formation.
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Table 10  Percentage of selections for all six models based on AIC and BIC when the true generating 
model is the SEM for various values of λ using 1000 replications

Bold indicates the correct model

Ν IC Model λ

0.2 0.5 0.8 0.9 0.2 0.5 0.8 0.9

100 AIC SIM Rook Queen
48.70 2.80 0.00 0.00 60.90 11.20 0.10 0.00

SLM 10.90 2.10 0.00 0.00 12.00 8.70 0.50 0.00
SDM 14.20 43.50 45.10 45.60 8.80 35.70 46.00 45.70
SARAR 10.00 29.20 31.60 32.10 4.50 23.10 29.00 30.70
SLX 6.20 0.10 0.00 0.00 8.20 2.70 0.00 0.00
SDEM 10.00 22.30 23.30 22.30 5.60 18.60 24.40 23.60

BIC SIM 84.40 16.90 0.10 0.00 88.20 35.10 0.50 0.00
SLM 5.40 4.20 0.00 0.00 5.80 11.40 1.90 0.10
SDM 3.10 34.80 45.00 45.60 1.90 22.30 44.60 45.60
SARAR 1.90 24.10 31.60 32.10 0.60 16.30 28.70 30.70
SLX 2.40 0.20 0.00 0.00 2.80 2.40 0.00 0.00
SDEM 2.80 19.80 23.30 22.30 0.70 12.50 24.30 23.60

400 AIC SIM Rook Queen
12.30 0.00 0.00 0.00 28.80 0.00 0.00 0.00

SLM 6.50 0.00 0.00 0.00 11.70 0.00 0.00 0.00
SDM 34.20 42.30 40.30 39.80 23.00 41.00 40.00 39.90
SARAR 25.70 32.10 32.40 32.00 19.10 33.10 32.50 32.00
SLX 0.60 0.00 0.00 0.00 3.20 0.00 0.00 0.00
SDEM 20.70 25.60 27.30 28.20 14.20 25.90 27.50 28.10

BIC SIM 62.90 0.10 0.00 0.00 79.40 0.50 0.00 0.00
SLM 5.50 0.00 0.00 0.00 7.80 0.20 0.00 0.00
SDM 13.00 42.20 40.30 39.80 4.30 40.70 40.00 39.90
SARAR 10.20 32.10 32.40 32.00 4.20 33.00 32.50 32.00
SLX 0.30 0.00 0.00 0.00 0.90 0.00 0.00 0.00
SDEM 8.10 25.60 27.30 28.20 3.40 25.60 27.50 28.10

325 AIC SIM K = 4 K = 8
23.20 0.00 0.00 0.00 42.90 0.30 0.00 0.00

SLM 7.60 0.00 0.00 0.00 11.70 0.10 0.00 0.00
SDM 25.40 40.80 39.60 39.10 16.10 39.80 40.10 40.90
SARAR 23.40 33.80 33.70 33.50 11.30 30.80 31.10 31.10
SLX 2.30 0.00 0.00 0.00 6.10 0.00 0.00 0.00
SDEM 18.10 25.40 26.70 27.40 11.90 29.00 28.80 28.00

BIC SIM 75.50 0.00 0.00 0.00 86.60 3.20 0.00 0.00
SLM 5.20 0.00 0.00 0.00 5.30 1.60 0.00 0.00
SDM 5.90 40.80 39.60 39.10 3.00 37.90 40.10 40.90
SARAR 7.00 33.80 33.70 33.50 2.00 29.30 31.10 31.10
SLX 0.30 0.00 0.00 0.00 1.30 0.00 0.00 0.00
SDEM 6.10 25.40 26.70 27.40 1.80 28.00 28.80 28.00
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Table 11  Percentage of selections for all six models based on AIC and BIC when the true generating 
model is the SLX for various values of θ using 1000 replications

Bold indicates the correct model

Ν IC Model θ

0.2 0.5 0.8 0.9 0.2 0.5 0.8 0.9

100 AIC SIM Rook Queen
3.90 0.00 0.00 0.00 22.10 0.00 0.00 0.00

SLM 22.30 0.50 0.00 0.00 18.70 5.90 0.10 0.00
SDM 5.50 10.40 13.30 13.90 5.60 7.50 10.40 11.60
SARAR 3.90 3.50 0.00 0.00 3.60 7.50 4.50 2.60
SLX 60.10 74.20 74.00 73.40 44.30 69.50 70.80 70.90
SDEM 4.30 11.40 12.70 12.70 5.70 9.60 14.20 14.90

BIC SIM 15.50 0.00 0.00 0.00 52.30 0.10 0.00 0.00
SLM 19.20 1.60 0.00 0.00 12.00 7.80 1.00 0.20
SDM 1.00 2.30 3.10 3.30 0.90 2.40 1.80 2.20
SARAR 0.90 1.10 0.00 0.00 0.80 1.70 1.60 1.30
SLX 62.70 92.60 94.20 94.00 32.90 85.60 91.90 92.40
SDEM 0.70 2.40 2.70 2.70 1.10 2.40 3.70 3.90

400 AIC SIM Rook Queen
0.00 0.00 0.00 0.00 0.30 0.00 0.00 0.00

SLM 6.00 0.00 0.00 0.00 12.90 0.20 0.00 0.00
SDM 5.10 11.00 13.20 13.40 5.60 9.50 12.10 11.70
SARAR 8.90 1.00 0.00 0.00 5.70 5.70 0.10 0.00
SLX 74.10 77.10 74.80 74.50 72.10 75.00 76.20 76.20
SDEM 5.90 10.90 12.00 12.10 3.40 9.60 11.60 12.10

BIC SIM 0.00 0.00 0.00 0.00 5.70 0.00 0.00 0.00
SLM 7.50 0.00 0.00 0.00 12.70 0.50 0.00 0.00
SDM 0.20 0.90 1.50 1.70 0.20 0.40 0.90 0.80
SARAR 0.30 0.20 0.00 0.00 0.30 0.80 0.10 0.00
SLX 91.80 98.00 97.60 97.40 80.80 97.70 98.10 98.20
SDEM 0.20 0.90 0.90 0.90 0.30 0.60 0.90 1.00

325 AIC SIM K = 4 K = 8
0.00 0.00 0.00 0.00 1.20 0.00 0.00 0.00

SLM 9.20 0.00 0.00 0.00 16.40 0.70 0.00 0.00
SDM 5.20 9.30 10.50 11.00 5.30 8.40 10.30 11.40
SARAR 7.50 2.80 0.00 0.00 6.90 7.70 0.60 0.20
SLX 75.30 78.80 78.60 77.90 67.70 73.50 77.50 76.50
SDEM 2.80 9.10 10.90 11.10 2.50 9.70 11.60 11.90

BIC SIM 0.30 0.00 0.00 0.00 10.60 0.00 0.00 0.00
SLM 9.80 0.10 0.00 0.00 14.60 1.80 0.00 0.00
SDM 0.80 1.30 1.30 1.20 0.70 0.70 1.00 0.90
SARAR 0.60 0.30 0.00 0.00 0.50 1.30 0.30 0.10
SLX 88.40 97.60 97.70 97.80 73.40 95.20 97.30 97.50
SDEM 0.10 0.70 1.00 1.00 0.20 1.00 1.40 1.50
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model selection process by AIC and BIC and not on the form of its appearance and 
that is why only one case is considered.

Indeed, as can be seen from Table 13, which reports the selection rates only for 
the generated models with one parameter, the behavior of both criteria has changed, 

Table 13  Percentage of 
selections only for the generated 
models SIM, SLM, SEM and 
SLX under heteroskedasticity 
based on AIC and BIC for 
various values of ρ, λ and θ 
using 1000 replications

Ν IC True model ρ, λ, θ

0.0 0.2 0.5 0.8 0.9

100 AIC SIM Rook
61.10

SLM 37.00 70.40 59.70 55.20
SEM (SDM) 5.00 11.30 14.60 15.40
SLX 11.70 15.50 21.80 24.60

BIC SIM 88.00
SLM 26.00 86.40 90.70 87.70
SEM (SDM) 0.50 3.60 6.00 7.30
SLX 3.20 4.80 7.60 9.30

AIC SIM Queen
57.80

SLM 27.50 63.10 60.90 55.40
SEM (SDM) 4.20 11.10 16.30 16.90
SLX 12.50 13.00 15.30 16.30

BIC SIM 92.80
SLM 16.90 69.10 90.40 88.00
SEM (SDM) 0.30 1.30 5.40 6.50
SLX 3.20 3.90 5.60 6.40

400 AIC SIM Rook
58.50

SLM 64.70 66.00 57.90 56.20
SEM (SDM) 8.10 10.90 12.60 13.00
SLX 13.30 15.00 20.00 22.20

BIC SIM 88.70
SLM 61.50 96.00 94.10 93.00
SEM (SDM) 0.60 1.90 3.20 3.50
SLX 2.00 3.20 5.40 6.10

AIC SIM Queen
60.10

SLM 53.40 73.10 61.20 59.10
SEM (SDM) 5.50 9.80 11.50 12.90
SLX 10.30 12.10 14.60 15.80

BIC SIM 92.70
SLM 37.30 95.20 94.40 93.00
SEM (SDM) 0.10 1.40 1.80 2.10
SLX 1.50 2.20 2.80 3.20
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either partially or significantly, under heteroscedasticity.9 For the SIM and the SLM 
cases, the selection rate has decreased by a small percentage using the BIC and by 
a large percentage, close to 15%, using the AIC, while for the SEM and the SLX 
cases both criteria fail to detect the true model. In fact, the best-fitted model for the 
SEM case is the SLM having the highest selection rate, although it is not reported, 
whereas, respectively, for the SLM model is the SIM, where in this case both cri-
teria fail to detect spatial dependence under heteroscedasticity. The selection fail-
ure of both criteria appears also for the SDM and SDEM under heteroscedasticity, 
unlike the SARAR model which is selected even with certainty in some cases, as 
can be seen from the Table 14, which reports the selection rates only for the gener-
ated model. Although it is not reported, both criteria prefer to select either the SLM 
or the SARAR model when the true generated model is either the SDM or SDEM.

Normality, on the other hand, seems not to be a very important issue since the 
selection behavior of both criteria did not change drastically, as can be seen from 
Tables 15 and 16 that report results for models with one and two parameters respec-
tively, assuming that the errors are generated from a log-normal distribution. Indeed, 
the selection rates are slightly smaller than those obtained under normality and iden-
tical under student t distribution, although these results are not reported.

5  Concluding remarks

The identification of a model that most spatially expresses the spatial dependence 
on a given data set is a matter of paramount importance for every researcher in any 
spatial econometric analysis. The models that are typically considered to express 
spatial dependence in empirical applications are usually the SLM and the SEM, due 
to the fact that these two models can be identified by the existing spatial dependence 
tests, while other more general or more complicated spatial models that could bet-
ter express the form of spatial dependence are less frequently considered. For this 
reason, this study examines the behavior of the two most important information cri-
teria, i.e., the AIC and the BIC, in terms of detecting the true spatial econometric 
model not only in lieu with the existing LM tests for the two simple spatial models 
but also for more spatial econometric models that their existence cannot be identi-
fied by these tests. Simulation results show that these criteria contribute significantly 
and more effectively than the existing LM tests to the selection process of the true 
spatial econometric model for the simple two models the SLM and the SEM.

For the case of more spatial econometric models such as the SLX, SDM, SARAR 
and SDEM that have been considered additionally in this simulation process the 
results are mixed. For most of the spatial econometric models the BIC had incred-
ible selection behavior with the AIC having typically, but not always, smaller selec-
tion rates of the true model. Exception of this statement is the SEM where both 

9 Note that the simulation results for the real geographical structure of Greece are not included due to 
many instability problems that arose during the simulation process, while in general, the behavior of both 
criteria was similar as in the cases of the other two weights matrices formation.
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criteria select this model at a low rate, close to 40%, picking very frequently its rela-
tive models the SARAR and the SDEM.

The simulation process is extended under heteroscedasticity and non-normality, two 
non-ideal conditions that produced smaller selection rates of the true model by both 

Table 15  Percentage of 
selections only for the generated 
models SIM, SLM, SEM and 
SLX under Log-normal errors 
based on AIC and BIC for 
various values of ρ, λ and θ 
using 1000 replications

Ν IC True Model ρ, λ, θ

0.0 0.2 0.5 0.8 0.9

100 AIC SIM Rook
71.70

SLM 50.10 68.80 68.40 68.70
SEM (SDM) 8.80 34.30 39.30 38.40
SLX 42.70 73.10 77.30 77.80

BIC SIM 93.60
SLM 37.80 92.20 91.50 91.70
SEM (SDM) 2.00 25.40 38.50 38.30
SLX 29.00 81.80 92.50 93.20

AIC SIM Queen
74.40

SLM 34.40 74.60 71.70 70.30
SEM (SDM) 4.90 26.90 37.20 38.00
SLX 25.80 62.10 72.70 73.50

BIC SIM 93.70
SLM 22.50 87.00 93.50 93.00
SEM (SDM) 1.10 14.20 34.50 36.20
SLX 12.40 59.10 86.80 89.00

400 AIC SIM Rook
73.60

SLM 77.20 70.60 71.90 71.70
SEM (SDM) 22.80 22.80 36.40 36.60
SLX 69.20 78.70 81.20 80.70

BIC SIM 94.20
SLM 88.20 95.90 96.30 96.20
SEM (SDM) 6.10 6.10 36.40 36.60
SLX 59.10 96.00 97.50 97.40

AIC SIM Queen
72.00

SLM 72.90 72.30 73.40 73.10
SEM (SDM) 13.80 35.30 35.90 36.60
SLX 52.00 73.90 78.30 78.80

BIC SIM 93.90
SLM 61.50 96.90 96.40 96.50
SEM (SDM) 2.90 31.80 35.90 36.60
SLX 31.40 93.40 97.10 97.40
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criteria, with AIC having a larger decrease. However, heteroscedasticity for the gen-
erated models SEM, SLX, SDM and SDEM strongly influence the selection process 
leading to similar or relative models but not to the true and in some cases failing even 
to recognize spatial dependence. On the other hand, things did not change drastically 
under the relaxation of normality. Indeed, smaller selection rates of the true model are 
obtained under log-normal distribution, without observing any abnormal behaviors, 
whereas under student t distribution the selection rates were almost the same.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s43071- 022- 00030-x.

Acknowledgements We are indebted to the editor Giuseppe Arbia and to the two anonymous referees 
for their useful comments and suggestions that improved the overall research and the presentation of this 
manuscript.

Funding Open access funding provided by HEAL-Link Greece.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

Agiakloglou C, Tsimpanos A (2021) Evaluating information criteria for selecting spatial processes. Ann 
Reg Sci 66:677–697

Agiakloglou C, Tsimbos C, Tsimpanos A (2015) Is spurious behaviour an issue for two independent sta-
tionary spatial autoregressive SAR(1) processes? Appl Econ Lett 22:1372–1377

Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov 
BN, Csaki F (eds) Proceedings of the second international symposium of information theory. Aca-
demia Kiado, Budapest, pp. 267–281

Anselin L (1988a) Spatial econometrics: methods and models. Kluwer Academic Publishers, Dordrecht
Anselin L (1988b) Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. 

Geogr Anal 20:1–17
Anselin L, Florax RJ (1995) Small sample properties of tests for spatial dependence in regression mod-

els: Some further results. In: Anselin L, Florax RJ (eds) New directions in spatial econometrics. 
Springer-Verlag, Berlin, pp 21–74

Anselin L, Bera A, Florax R, Yoon M (1996) Simple diagnostic tests for spatial dependence. Reg Sci 
Urban Econ 26:77–104

Bivand R, Hauke J, Kossowski T (2013) Computing the jacobian in Gaussian spatial autoregressive mod-
els: an illustrated comparison of available methods. Geogr Anal 45:150–179

Bivand R (2015) Spdep: spatial dependence: weighting schemes. Statistics and models. R package ver-
sion 0.5-82. http:// CRAN.R- proje ct. org/ packa ge= spdep

Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-
theoretic approach, 2nd edn. New York, Springer

Burridge P (1980) On the cliff-ord test for spatial correlation. J R Stat Soc B 42:107–108
Chi G, Zhu J (2008) Spatial regression models for demographic analysis. Popul Res Policy Rev 27:17–42
Cliff AD, Ord JK (1981) Spatial processes: models and applications. Pion Ltd, London

https://doi.org/10.1007/s43071-022-00030-x
https://doi.org/10.1007/s43071-022-00030-x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://CRAN.R-project.org/package=spdep


1 3

Evaluating the performance of AIC and BIC for selecting spatial… Page 35 of 35 2

Crespo Cuaresma J, Feldkircher M (2013) Spatial Filtering, model uncertainty and the speed of income 
convergence in Europe. J Appl Economet 28(4):720–741

Debarsy N, LeSage J (2022) Bayesian model averaging for spatial autoregressive models based on convex 
combinations of different types of connectivity matrices. J Bus Econ Stat 40:547–558

Diebold FX (2007) Elements of forecasting, 4th edn. Thomson South- Western, Mason
Elhorst JP, Halleck Vega S (2017) The SLX model: extensions and the sensitivity of spatial spillovers to 

W. Pap De Econ Esp 152:34–50
Fernandez C, Ley E, Steel M (2001) Benchmark priors for Bayesian model averaging. J Econom 

16(5):563–576
Fingleton B (1999) Spurious spatial regression: some Monte Carlo results with a spatial unit root and 

spatial cointegration. J Reg Sci 39:1–19
Florax RJGM, Folmer H, Rey SJ (2003) Specification searches in spatial econometrics: the relevance of 

Hendry’s methodology. Reg Sci Urban Econ 33(5):557–579
Hoeting JA, Davis RA, Merton AA, Thompson SE (2006) Model selection for geostatistical models. Ecol 

Appl 16(1):87–98
Jin F, Lee L-F (2013) Cox-type tests for competing spatial autoregressive models with spatial autoregres-

sive disturbances. Reg Sci Urban Econ 43:590–616
Judge GG, Griffiths WE, Hill RC, Lutkepohl H, Lee T-C (1985) The theory and practice of econometrics, 

2nd edn. Wiley, New York
Kelejian HH, Piras G (2011) An extension of Kelejian’s J-test for non-nested spatial model. Reg Sci 

Urban Econ 41:281–292
Lee H, Ghosh SK (2009) Performance of information criteria for spatial models. J Stat Simul Comput 

79(1):93–106
LeSage J, Pace R (2009) Introduction to spatial econometrics. Chapman & Hall/CRC, Boca Raton
LeSage J, Parent O (2007) Bayesian model averaging for spatial econometric models. Geogr Anal 

39:241–267
Mur J, Angulo AM (2006) The spatial durbin model and the common factor tests. Spat Econ Anal 

1:207–226
Mur J, Angulo AM (2009) Model selection strategies in a spatial setting: some additional results. Reg Sci 

Urban Econ 39:200–213
Mur J, Trivez FJ (2003) Unit roots and deterministic trend in spatial econometrics models. Int Reg Sci 

Rev 26:289–312
Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464
Zhang X, Yu J (2018) Spatial weights matrix selection and model averaging for spatial autoregressive 

models. J Econom 203:1–18

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.


	Evaluating the performance of AIC and BIC for selecting spatial econometric models
	Abstract
	1 Introduction
	2 The LM tests for spatial econometric models and the information criteria
	3 Simulation results
	4 Further simulation results
	5 Concluding remarks
	Acknowledgements 
	References




