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Abstract
The goal of the production planning problem is to determine the optimum quan-
tity to produce in order to satisfy demand over a predetermined planning horizon 
with the least amount of money spent. Making the appropriate choices in produc-
tion planning will impact a manufacturing company’s performance and productiv-
ity, which is crucial to remain competitive in the market. Therefore, developing and 
enhancing techniques for solving production planning problems is very significant. 
This paper proposes a mixed-integer linear programming model for this extension of 
the dynamic multi-level capacitated lot-sizing under study, where setup carryover, 
backlogging, and emission control are considered. An item Dantzig-Wolfe decom-
position-based heuristic procedure is developed, and a dynamic programming and 
column generation approach is used to solve the problem. We also propose a multi-
step iterative capacity allocation heuristic procedure to handle any infeasibilities that 
arise when solving the problem. We evaluate the performance of the developed solu-
tion approach using a test data set available in the literature. Computational results 
show that the proposed optimization framework provides competitive solutions 
within a reasonable timeframe.
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1 Introduction

There are numerous models available for inventory control and production planning. 
Lot-sizing problems involve determining the optimum production plan or inventory 
replenishment policy while minimizing the total cost of the system. The capacitated 
dynamic lot-sizing problem (CLSP) deals with the problem of determining time-
phased production quantities that meet given external demands and the capacity 
limits of the production system. The multi-level extension of the CLSP, known as 
multi-level capacitated lot-sizing problem (MLCLSP), deals with the production of 
multiple items when an interdependence among them at the different production lev-
els is imposed by the product structure. The classical MLCLSP is introduced by Bil-
lington et al. [1], which is considered the theoretical basis for material requirements 
planning [2].

Setup operations are significant in some manufacturing industries and may 
strongly influence lot-sizing decisions. Setup operations prepare the processing units 
to manufacture production lots, consume production capacity (setup time), and incur 
setup costs. The classical CLSP assumes that the setup of the resources for each 
item produced in each period is necessary. However, some researchers assume that 
the setup state of a machine can be fully maintained over consecutive periods. In the 
literature (e.g., [3]), this is denoted as setup carryover. Simply put, setup carryover 
permits a setup state to be conserved between two consecutive periods. Haase [4] 
points out that solutions change considerably when setup carry-over is considered.

Many industries are responsible for the emission of greenhouse gases (GHG), 
such as carbon dioxide  (CO2), nitrous oxide  (N2O), and methane  (CH4), often 
throughout the entire production process (Fig. 1). Carbon is emitted directly from 
energy generation and the consumption of energy in setup, production, and inven-
tory-holding activities [5]. Recently, there has been growing concern about the 
effect of these gases on climate change. Many countries implement various car-
bon regulatory measures and legislation such as carbon cap, carbon cap-and-trade, 

Fig. 1  Greenhouse gas emission from the different activities of the production process
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carbon tax, and carbon cap-and-offset. These laws and various regulatory mecha-
nisms in regard to emissions oblige the manufacturing industry to implement alter-
native, more environment-friendly production systems. They need to invest in more 
energy-efficient technology as well as renewable energy sources, which are costly 
capital investments and practices. This has motivated many researchers to consider 
the environmental impact of emissions by incorporating emission-related measures 
in their models for optimizing production lot size.

In this paper, we present a Mixed Integer Linear Programming (MILP) model 
for the extension of the classical MLCLSP by allowing setup carryover, backlog-
ging, and emission control. We refer to the problem as MLCLSP with SCBE (multi-
level capacitated lot-sizing problem with setup carryover, backlogging, and emis-
sion control). We apply an item Dantzig-Wolfe (DW) decomposition approach to 
solve the proposed MILP formulation with an embedded column generation (CG) 
procedure. We propose a dynamic programming approach to solve each of the sub-
problems and develop a multistep iterative capacity allocation (CA) heuristic to gen-
erate feasible solutions. An integer linear programming (ILP) model is proposed to 
determine the setup carryover plan for a given production schedule. This approach is 
hybridized with an LP-based improvement procedure to refine the solution, thereby 
improving the solution quality given by the DW decomposition method.

The remainder of this paper is organized as follows: In Sect.  2, the related lit-
erature is discussed. In Sect.  3, we present the problem statement along with the 
formulated mathematical model. The proposed DW decomposition heuristic method 
is described in Sect. 4. Numerical results are discussed in Sect. 5. Finally, in Sect. 6, 
we conclude and provide a few recommendations for future work.

2  Literature Review

Production planning and enterprise resource planning (ERP) systems are built 
around lot-sizing decisions. Therefore, these decisions have been the focus of in-
depth inquiry by academics and professionals for decades. Since the seminal paper 
of Wagner and Whitin [6] addressing the simplest version of the problem—the 
uncapacitated single-item lot-sizing problem—various types of lot-sizing problems 
have been investigated. Only some special cases of these problems can be solved 
in polynomial time (e.g., Federgruen and Tzur [7]). Florian et al. [8] have proven 
that the capacitated version of the single-item lot-sizing problem is NP-hard. Later, 
Bitran and Yanasse [9] show that even special cases, which are solvable in polyno-
mial time, become NP-hard when introducing a second item. Therefore, because of 
the intractable nature of the lot-sizing problems, different solution algorithms and 
strategies have been employed. This includes Lagrangean relaxation (LR), Dantzig-
Wolfe (DW) decomposition, and fix and optimize (FO) approach.

Tempelmeier and Derstroff [10] apply Lagrangean relaxation (LR) to decompose the 
MLCLSP into several single-item uncapacitated lot-sizing problems (SIULSP) to obtain 
the lower bounds and propose a heuristic finite scheduling approach to find the upper 
bounds. Sox and Gao [11] incorporate setup carryover into a multi-item CLSP and pro-
vide a Lagrangean decomposition heuristic that quickly generates near-optimal solutions 
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and proposes a dynamic programming approach to solve N independent single-item sub-
problems. Later, Briskorn [3] revisits the problem addressed by Sox and Gao [11]. He 
identifies a flaw in the dynamic programming approach by Sox and Gao [11] and pro-
vides the necessary correction to solve the subproblems optimally.

Tempelmeier and Buschkühl [12] consider setup carryover in an MLCLSP and 
develop a Lagrangean decomposition heuristic. Sahling et al. [13] extend the work of 
Tempelmeier and Buschkühl [12] by incorporating multi-period setup carryovers and 
propose an iterative FO approach to solve a series of MILPs. Wu et al. [14] propose 
an MIP formulation for modeling the MLCLSP with both backlogging and setup car-
ryover. They present a progressive time-oriented decomposition framework that uses 
relax and fix (RF) heuristic. Setup carryover is considered by Carvalho and Nascimento 
[15] for a multi-plant CLSP and solved by kernel search (KS) metaheuristic method. 
Ghirardi and Amerio [16] study a CLSP with back-ordering and setup carryover and 
develop a feasibility pump algorithm to solve the problem. One of the recent studies 
that includes setup carryover is conducted by Fiorotto et al. [17] and a relax-and-fix and 
fix-and-optimize (RF-FO) heuristic is applied to solve the problem.

Lot-sizing with emission constraints was introduced by Benjaafar et  al. [18]. 
Retel Helmrich et al. [19] show that lot-sizing with emission constraints is NP-hard. 
The most recent research works on production lot-sizing and inventory planning 
problems focus on the reduction of carbon emission and conservation of resources 
Mashud et al. [20], Mashud et al. [21], Sepehri [22]. Konur and Schaefer [23] ana-
lyze an integrated inventory control and transportation planning problem under car-
bon cap, cap and trade, cap and offset, and taxing policies. Ghosh [24] identified the 
two most adopted carbon policies are (i) carbon tax/cost policy and (ii) carbon cap-
and-trade policy and solved the MINLP problem for both policies. Ahmadini et al. 
[25] solve a multi-item multi-objective inventory model with back-ordered quantity 
incorporating green investment to save the environment.

Dantzig-Wolfe (DW) decomposition is applied for CLSP for the first time by 
Manne [26], in which lot-sizing problems are decomposed by item. Degraeve and 
Jans [27] later claim that the decomposition method proposed by Manne [26] has an 
important structural deficiency. They explain that imposing integrality constraints 
on the variables in the master problem does not necessarily give an optimal integer 
solution, as only the production plans, which satisfy the zero inventory property (if 
production takes place in a period t , the beginning inventory for that period must be 
zero), can be selected.  Degraeve and Jans [27] therefore proposed a new DW refor-
mulation and a Branch-and-Price (B&P) algorithm. Pimentel et  al. [28] present a 
comparison between the item DW decomposition and the period DW decomposition 
of a multi-item CLSP and apply the B&P algorithm to solve the decomposition mod-
els. Caserta & Voß [29] propose the DW decomposition approach in a meta-heuristic 
framework for the multi-item, multi-period CLSP with setup times. Fiorotto et al. [30] 
develop an efficient hybrid algorithm by combining LR and DW decomposition for 
the CLSP with multiple items, setup time, and unrelated parallel machines. Ioannis 
et al. [31] solve CLSP by implementing DW decomposition in a novel way that regu-
lates the size of the master problem and the subproblem independently. Wu et al. [32] 
proposed an item DW decomposition for the facility location and production planning 
problem. They demonstrate that the pricing subproblems of the item decomposition 
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are related to uncapacitated lot-sizing problems with the Wagner-Whitin (WW) prop-
erty. This property is employed to enhance the performance of column generation for 
the item decomposition.

CLSP is a mature field of research, and therefore, we can benchmark the perfor-
mance of our approach against other alternative techniques. Most of the literature 
considers single-level CLSP with multi-item, multi-period, and setup time. However, 
there has been insufficient evidence of the implementation of DW decomposition for 
the MLCLSP. Table 1 chronologically presents some of the studies conducted based 
on the approach proposed, type, and properties of the lot-sizing problem.

3  Problem Formulation and Decomposition Method for MLCLSP 
with Setup Carryover, Backlogging, and Emission Control (MLCLSP 
with SCBE)

3.1  MLCLSP with Setup Carryover, Backlogging, and Emission control (MLCLSP 
with SCBE)

The model MLCLSP with setup carryover, backlogging and emission control 
(MLCLSP with SCBE) is based on the following assumptions:

Table 1  Proposed heuristic approaches for solving the capacitated lot-sizing problems

Problem solved: SL single-level, ML multi-level, MI multi-item, ST setup time, SC setup carryover, SDST 
sequence dependent setup time, SM single machine, OT over time, BL backlogging, EC emission control
Solution approach: B&B branch and bound, LR Lagrangean relaxation, LDH Lagrangean decomposition 
heuristic, DW Dantzig-Wolfe, CG column generation, B&P branch and price, GA genetic algorithm, FO 
fix and optimize, RF relax and fix, FGP fuzzy goal programming, CA capacity allocation heuristic
* This paper

Reference Type of 
lot-sizing 
problem

Properties of the Problem Solution approach

Manne [26] SL OT DW
Billington et al. [1] ML ST LR and B&B
Tempelmeier and Derstroff [10] ML ST LDH
Sox and Gao [11] SL ST, SC LDH
Degraeve and Jans [27] SL MI, ST DW, CG and B&P
Tempelmeier and Buschkühl [12] ML MI, ST, SC LDH
Wu et al. [14] ML ST, SC, BL RF
Gören and Tunalı [33] SL SC, ST, BL  FO heuristic
Fiorotto et al. [17] SL MI, ST, SC RF and FO
Ahmadini et al. [25] SL MI, BL, EC FGP
Mashud et al. [20] SL SC, EC, BL Solved optimally for 

small problems
*Chowdhury, Baki, Azab ML MI, ST, SC, EC DW, CA, and CG
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 1. The planning horizon is divided into T periods (usually shifts or days), and there 
are m resources with period-specific capacities.

 2. n items (including end items and subassemblies) are arranged in an assembly 
product structure with a unique assignment of each item to a particular machine.

 3. External dynamic demand is assumed to occur only at stages that have no successors 
and are known in advance. Full demand occurs at the beginning of each period.

 4. Production cost is time varying, and setup cost is fixed over time.
 5. A setup incurred may cause setup cost as well as a setup time. Setup costs, as 

well as setup times, are sequence independent.
 6. At the beginning of the planning horizon, machines are not setup for any item.
 7. At most one setup state can be carried over on each resource from one period 

to the next, such that no setup activity is necessary in the second period.
 8. The conservation of one setup state for the same product over two consecutive 

periods is possible if only one item is produced in a particular period.
 9. A setup state is not lost if there is no production on the machine within a plan-

ning period.
 10. Backlogging is allowed for the items with external demand.

Moreover, we account for carbon emissions generated by different activities in 
the plant and warehouse. This includes production (e.g., greenhouse gas emissions 
due to burning fossil fuels for energy, as well as certain chemical reactions neces-
sary to produce goods from raw materials), holding (emissions due to energy spent 
on storage), and setup (emissions due to machine setup). A carbon emission cap reg-
ulatory mechanism is considered in which the total emissions due to all production-
related activities over the planning horizon cannot exceed a carbon cap imposed by a 
regulator over the planning horizon.

The problem is to find a production schedule, machine setup and carryover 
plans, inventory levels, and backlogging quantities in each time period that meet 
the demand requirements, limited capacity resources along with the emission cap, 
taking into consideration the bill of material (BOM) structure while simultaneously 
minimizing the total cost over the planning horizon of T  periods.

Indices:

 T Number of periods
n Number of items
m Number of machines

The decision variables are as follows:

 Ijt Inventory level of item j ∈ [1, n] at the end of period t ∈ [1, T] 
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bjt Quantity back ordered for item j ∈ [1, n] in period t ∈ [1, T]

Xjt  Production quantity of item  j ∈ [1, n] in period t ∈ [1, T]

Et Emission due to production, inventory, and setup in period t ∈ [1, T]

The parameters used are as follows:

gjk Quantity of item j ∈ [1, n] required to produce one unit of item k ∈ [1, n]

Djt External demand of item j ∈ [1, n] in period t ∈ [1, T]

hj Holding cost of item j ∈ [1, n]

cj Setup cost for item j ∈ [1, n]

sj Setup time for item j ∈ [1, n]

M A large number
Ij0 Initial inventory level of item j ∈ [1, n]

Rit Available capacity of machine i ∈ [1,m] in period t ∈ [1, T] (in time units).
Γ(j) Set of immediate successors of item j ∈ [1, n] based on BOM.
Pjt Production cost per unit of finished item j ∈ [1, n] at period t ∈ [1, T]

�(i) Set of items that can be assigned to machine i ∈ [1,m]

� Set of end items (items with external demand only)
�(j) Set of immediate predecessors of item j ∈ [1, n]

�(j) Set of machines eligible to process item j ∈ [1, n]

pj Processing time required to produce one unit of item j ∈ [1, n]

�j Backlogging cost for one unit of item j ∈ [1, n] per period.
ŝj Carbon emission related to the setup of item j ∈ [1, n]

p̂j Carbon emission related to per unit production of item j ∈ [1, n]

ĥj Carbon emission related to per unit holding inventory of item j ∈ [1, n]

Ccap Total allowable carbon emission cap

Model MLCLSP_SCBE:

Subject to:

�jt =

⎧
⎪
⎨
⎪
⎩

1

0

if the setup state of machine i�j ∈ �(i)at the end of period t ∈ [1, T]and at the beginning of period(t + 1)isitemj ∈ [1, n]

Otherwise

(1)Min
∑n

j=1

∑T

t=1
(PjtXjt + h

j
Ijt + cjYjt + �jbjt)

(2)Ij0 = bj0 = �j0 = 0∀j ∈ [1, n]

(3)Ijt = Ij(t−1) + Xjt + bjt − bj(t−1) − Djt∀j ∈ [1, n], t ∈ [1, T]|j ∈ �

(4)Ijt = Ij(t−1) + Xjt −
∑

k∈Γ(j)
gjkXkt ⋅ ⋅ ⋅ ∀j ∈ [1, n], t ∈ [1, T]|j ∉ �

Yjt =

{
1

0

if there is a setup for item j ∈ [1, n]on machine i ∈ [1,m]in period t ∈ [1, T]

otherwise
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The complete MILP model is presented as the minimization of the objective 
function (1), subject to constraints (2) through  (13). The objective function (1) min-
imizes the total production, holding, setup, and backlogging cost over the planning 
horizon of T  periods. Constraint (2) sets the initial inventory, initial backlog, and ini-
tial setup condition of the machines for each item. Constraints (3) and (4) represent 
the inventory balance for those products that are needed to satisfy external and inter-
nal demands, respectively. Constraint (5) ensures that the production of item j takes 
place in period t only if there is a setup of the machine i for item j during that period 
( Yjt = 1), or if the resource is already in the correct setup state at the beginning of 
that period ( �j(t−1) = 1 ). Constraint (6) indicates that production cannot exceed the 
available capacity. Constraint (7) makes sure that a setup can be carried over from 
period t to period (t + 1) only if either item j is setup in period t or the setup state 
already has been carried over from period (t − 1) to period t . Constraint (8) states 
that a machine can carry at most one setup state into the subsequent period. Con-
straint (9) computes the carbon emission due to production, inventory, and setup for 
each period. Constraint (10) controls carbon emissions under carbon cap regulatory 
mechanism applied over the planning horizon, which states that the total emissions 
should not exceed the total available emission limit (Ccap) in any period. Constraint 
(11) declares the nonnegativity of the variables, constraint (12) states that the ending 
backlogging quantity is zero, and constraint (13) is the integrality ones.

(5)Xjt ≤ M
(
Yjt + �j(t−1)

)
∀i ∈ [1,m], j ∈ �(i), t ∈ [1, T]

(6)
∑

j∈�(i)
pjXjt +

∑
j∈�(i)

sjYjt ≤ Rit∀i ∈ [1,m], t ∈ [1, T]

(7)�jt ≤ Yjt + �j(t−1)∀i ∈ [1,m], j ∈ �(i), t ∈ [1, T]

(8)
∑

j∈�(i)
�jt ≤ 1∀i ∈ [1,m], t ∈ [1, T]

(9)Et =
∑n

j=1

(
p̂jXjt + ĥjIjt+ŝjYjt

)
∀t ∈ [1, T]

(10)
T∑

t=1

Et ≤ Ccap

(11)Ijt ≥ 0,Xjt ≥ 0, bjt ≥ 0,∀j ∈ [1, n], t ∈ [1, T]

(12)bjT = 0∀j ∈ [1, n]

(13)Yjt,�jt ∈ [0,1]∀i ∈ [1,m], j ∈ �(i), t ∈ [1, T]
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3.2  Dantzig‑Wolfe Decomposition for the MLCLSP with SCBE

DW decomposition is a special technique used to solve linear programming and 
integer programming models. DW decomposition redefines a new set of variables by 
replacing the original variables with a convex combination of the extreme points of 
a subsystem. This technique has been effectively implemented in different contexts. 
For more details on such techniques see, Vanderbeck [34], and Vanderbeck and Sav-
elsbergh [35]. Degraeve and Jans [27] have presented a DW approach for the CLSP, 
addressing an important structural deficiency of the standard DW approach for the 
CLSP proposed by Manne [26]. In this section, borrowing ideas from Degraeve and 
Jans [27], we decompose the MLCLSP with SCBE into a master problem and a 
number of single-item uncapacitated subproblems with backlogging and setup car-
ryover. In this decomposition, the solutions of the subproblems are production plans 
for a single item. For a given product, each production plan specifies the production 
periods and the production quantity along with the inventory level, setup plan, back-
log quantity, and setup carryover decisions.

Let us introduce a more compact notation for the variables: Xj = (Xj1,Xj2,… ,XjT ) , 
Ij = (Ij1, Ij2,… , IjT ),bj = (bj1, bj2,… , bjT ),Yj =

(
Yj1, Yj2,… , YjT

)
�j = (�j1, �j2,… , �jT ).

Let Uj be the set of all feasible production schedules. For a production sched-
uleu ∈ Uj , letXu

jt
,Iu
jt
 , Yu

jt
 , bu

jt
, and �u

jt
 be the production quantity, ending inventory level, 

setup plan, quantity backlogged, and setup carryover decision variable of item j in 
period t , respectively. The master problem is given as follows:

Master problem ( MP1):

Subject to:

(14)Min
∑

u∈Uj

∑n

j=1

∑T

t=1
(PjtX

u
jt
+ h

j
Iu
jt
+ cjY

u
jt
+ �jb

u
jt
)�ju

(15)
∑

u∈Uj

∑
j∈�(i)

(pjX
u
jt
+ sjY

u
jt
)�ju ≤ Rit∀i, t

(16)
∑

u∈Uj

∑T

t=1

∑n

j=1

(
p̂jX

u
jt
+ ĥjI

u
jt
+ ŝjY

u
jt

)
�ju ≤ Ccap

(17)
∑

u∈Uj

∑

j∈�(i)

�u
jt
�ju = 1∀t ≥ 0, i

(18)
∑

u∈Uj

�ju = 1∀j

(19)�ju ≥ 0∀j, u ∈ Uj
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Let �ju be the new decision variable representing the weight of the production 
plan u for item j . The objective function (14) minimizes the total cost of the produc-
tion plans chosen for each item. Let wit,� , yit and vj be the dual variables with respect 
to (15), (16), (17) and (18), respectively. During each iteration, the master problem 
handles the linking constraints (constraints 15, 16, and 17) that connect the subprob-
lems and the convexity constraints (constraint 18) for each subproblem. Constraint 
(19) expresses the non-negativity constraints. Due to the large number of variables 
of the master problem, the linear programming relaxation of the master problem is 
solved using column generation.

The decomposed subproblems for each end item j|j ∈ � are as follows.
Subproblem 

(
SP1End

)
:

Subject to:

The subproblem (20) through (26) is a single-item uncapacitated lot-sizing prob-
lem and is solved by dynamic programming recursion (DPR) to determine the pro-
duction schedule of the end items with strictly external demand (i.e., no successors). 
In this decomposition, the solutions to the subproblems are the production plans. 
For a given product, each production plan indicates the production periods and the 
production quantity along with the inventory level, backlogging, and setup carryover 
decisions. After all end items are scheduled, the next item, k|k ∈ �(j) , is scheduled. 
The decomposed subproblems for all k|k ∈ �(j) are as follows:

Subproblem 
(
SP1Component

)
:

Subject to,

(20)

Min

m∑

i=1

T∑

t=1

[
(Pjt−witpj − � p̂j)Xjt

+ (cj − witsj−� ŝj)Yjt
− �jtyit

]
+
∑T

t=1

[
(hj − � ĥj)Ijt + �jbjt

]
− vj∀j

(21)Ij0 = bj0 = �j0 = 0

(22)Ijt = Ij(t−1) + Xjt + bjt − bj(t−1) − Djt∀t

(23)Xjt ≤ M
(
Yjt + �j(t−1)

)
∀i ∈ �(j), t

(24)Yjt + �j(t−1) ≤ 1∀i ∈ �(j), t

(25)Ijt,Xjt, bjt ≥ 0∀i ∈ �(j), t ≥ 1

(26)Yjt, �jt ∈ [0,1]∀i ∈ �(j), t ≥ 1

(27)

Min

m∑

i=1

T∑

t=1

[
(Pkt−witpk − � p̂k)Xkt + (ck − witsk−� ŝk)Ykt − �ktyit

]
+
∑T

t=1

[
(hk − � ĥk)Ikt

]
− vk ⋯∀k ∈ �(j)
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and (21), (23)–(26) for j = k.
The internal demand of any item (successor requirement) is placed on the 

right-hand side of the constraint (28), because 
∑

k�∈Γ(k)akk�Xk�t∀t is the depend-
ent demand for item k due to the production of its successors j that have already 
been scheduled. Treating the internal demands as constants, SP1Component is 
equivalent to SP1End , and hence, item k ′s production schedule can now be deter-
mined. Thus, a production schedule for all the items can be found for a given set 
of dual variables if the procedure is followed item-by-item in succession to make 
sure that all requirements resulting from the production of the successor items 
are calculated before scheduling an immediate predecessor. Equation (28) uses a 
sequential bill of material approach to pass successors’ production requirements 
between levels. Although it does not guarantee optimality, this procedure will 
ensure a feasible solution to the full set of inventory constraints.

The CG process begins by creating an initial set of feasible production plans 
for the master problem by fixing all the dual variables at a value of zero. The 
initial set of production plans is obtained from the uncapacitated single-item 
subproblems. However, it is possible that the production requirements of the 
items in a period may be greater than the available capacity. According to the 
theory of DW decomposition approach, updating the dual variables wit,� , yit and 
vj should take these infeasibilities into account; otherwise, the master problem 
( MP1 ) becomes infeasible because the constraints (15) and (19) may not be sat-
isfied. If demand for one item is greater than the capacity in a period, a split 
lot is required. Ramsay [36] shows that a feasible solution is often not attain-
able because an uncapacitated lot-sizing problem does not split the lot-sizes 
between periods. To avoid infeasibility, we propose a CA heuristic (Sect.  4.2) 
to obtain a feasible setup plan. Since each of the SIULSP is solved individu-
ally, the setup carryover decisions per resource are not coordinated. At most, 
one item can be carried over from one period to the next and if an item is carried 
over from period t  to (t + 1) , this item must have been produced first in period 
(t + 1) . Therefore, it is necessary to generate a feasible solution by incorporating 
the setup carryover constraints in the solution produced of the single-item sub-
problems. In this paper, an integer linear programming (ILP) model (Sect. 3.4) 
is developed to determine the setup carryover decision variables optimally, with 
the objective of maximizing the savings vis-a-vis setup costs. An LP-based 
improvement procedure is applied to obtain an optimum production schedule for 
a given set of setup plans and setup carryover decisions. If there is a production 
schedule u that makes the reduced cost negative, it is added to Uj . Then the mas-
ter problem is solved to provide new dual variables. This procedure is repeated 
until no new column with a negative reduced cost is found.

(28)Ikt = Ik(t−1) + Xkt −
∑

k�∈Γ(k)
akk�Xk�t∀t
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3.3  Dynamic Programming Recursion (DPR) for Single‑Item Subproblem 
with Setup Carryover and Backlogging

The dynamic programming recursion (DPR) formulation uses a network repre-
sentation of the single-item lot-sizing problems that integrates the setup status of 
machines into the state space. The single item uncapacitated sub-problem with setup 
carryover is shown in the graph G = (N,A) in Fig. 2. Each node N = [(t1, t2)|t1 ≥ t2 ] 
represents that production of a particular item starts at period t1 to meet the 
demand from period t2|t1 ≥ t2 . The arc A = [

(
t1, t2

)
,
(
t3, t4

)
|t2 ≤ t1 < t4 ≤ t3 ] indi-

cates the production of a particular item in period t1 to satisfy demands in periods 
t2 through

(
t4 − 1

)
, and t3 is the next period of production.

Fig. 2  Shortest path network for the subproblem
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Properties 1 and 2 hold.

Property 1 There are nodes (t1, t2) with t2≤ t1∀t1 = t2,…T − 1 and t2 = 1,…T + 1.

Proof of property 1  We are assuming that another production period will not take 
place in the window we are satisfying the demand. This is called zero inventory 
property. If t2> t1 , which means that production at t1 meets demand starting from 
period t2|t2 > t1 and the demand of periods t1,… , (t2 − 1) is met by production at 
period t′

1
< t1 . Thus, zero inventory property is violated at t1 . In this case, a better 

production schedule is obtained by shifting the demand of periods t1,… , (t2 − 1) 
from period t′

1
 to t1 . This modified production schedule saves cost of holding demand 

of periods t1,… , (t2 − 1) without increasing any setup cost or any other costs. There-
fore, t2≤ t1

Property 2 Now let us consider nodes  (t1, t2) and  (t3, t4) , where t2≤ t1 and t4≤ t3 . 
There is an arc (t1, t2) to(t3, t4) if and only if t1 < t4.

Proof of property 2  The arc from  (t1, t2) to(t3, t4) means that production in t1 
is followed by production in t3 . Production in t1 meets the demand of periods 
t2,… , t1,… , (t4 − 1) and production t3 meets the demand of periods t4,… , t3 and 
more. Therefore t1 < t4

Observation 1: The number of arcs that can be eliminated from any node (t1, t2) to 
( t3, t4)|t2 ≤ t1< t4 ≤ t3 is 

∑t1
r=1

(T − tr + 1).
Given 1 ≤ 𝜏 < t < t′ ≤ T , let us assume that production in period t satisfies 

demands in periods tthrough t′, and it also satisfies the backlogged quantities from 
periods � through (t − 1) . Let SCj

t be the total setup cost of item j in period t , PCj

t

(
�, t′

)
 

be the total production cost to satisfy demands of item j in periods � through (t� − 1) 
and HCj

t(t, t
�) be the total holding cost to hold item j in periods t through (t� − 1) and 

BC
j

t(�, t) be the total backlogging cost to satisfy demands in periods  � through(t − 1) 
by the production of item j in period t . These cost functions can be defined as follows:

For 1 ≤ t2 ≤ t1 < t4 ≤ t3 ≤ T , let fj[(t1, t2), (t3, t4) ] be the total cost to satisfy 
demands in periods t2 through ( t4 − 1 ) by the production of item j in period t1 , and t3 be 
the next production period.

(29)

SC
j

t = cj − witsj − � ŝj
PC

j

t

�
�, t�

�
= (Pjt − witpj − � p̂j)

∑t�−1

r=�
Djr

HC
j

t

�
t, t�

�
= (hj − � ĥj)

∑t�−1

r=t
(r − t)D

jr

BC
j

t(�, t) = �j
∑t−1

r=�
(t − r)Djr

⎫
⎪
⎪
⎬
⎪
⎪
⎭
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fj[(t1, t2), (t3, t4)] =

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

SC
j

t1
+ PC

j

t1

�
t1, t4

�
+ HC

j

t1

�
t1, t4

�
ift1 = t2, 𝛼j(t1−1) = 0 (30)

SC
j

t1
+ PC

j

t1

�
t1, t1 + 1

�
+yit1 + PC

j

t1+1

�
t1 + 1, t4

�
+ HC

j

t1+1

�
t1 + 1, t4

�

if t1 = t2, t1 < t4 − 1 and 𝛼jt1 = 1, t3 = t1 + 1, i ∈ 𝜌(j)
(31)

SC
j

t1
+ PC

j

t1

�
t2, t4

�
+ HC

j

t1

�
t1, t4

�
+ BC

j

t1

�
t2, t1

�
ift2 < t1 < t4 and 𝛼jt1 = 0 (32)

SC
j

t1
+ PC

j

t1

�
t2, t1 + 1

�
+BC

j

t1

�
t2, t1

�
+ yit1 + PC

j

t1+1

�
t1 + 1, t4

�
+ HC

j

t1+1

�
t1 + 1, t4

�

if t2 < t1 < t4 − 1 and 𝛼jt1 = 1, t3 = t1 + 1, i ∈ 𝜌(j)

(33)

t1 = t2 in expression (30) represents a setup in period t1, followed by the production 
for the demands of periods t1 through (t4 − 1) . This schedule does not have any setup 
carryover from period (t1 − 1) to t1 and hence, �j(t1−1) = 0 . Expression (31) includes 
a schedule where there is a setup and production in period t1 equal to the demand 
of period t1 , followed by carryover ( �jt1 = 1 ) onto period 

(
t1 + 1

)
, and production 

in period (t1 + 1) equal to the demands of period (t1 + 1) through (t4 − 1) . The case 
of t2 < t1 < t4 and no carryover ( �jt1 = 0 ) is addressed in expression (32) where the 
setup is done in period t1, and the production in period t1 amounts to the demands 
of periods t2 though (t4 − 1) , considering the backlogged quantities of periods t2 
though (t1 − 1) and holding inventories of periods t1 though (t4 − 1) . Expression (33) 
indicates a schedule for production and setup in t1|t2 < t1 < t4 − 1, production of 
demands of periods t2 through t1 , along with the backlogged quantities of periods t2 
though (t1 − 1) , setup carryover to the period (t1 + 1) , production in period (t1 + 1) 
equal to the demands of periods (t1 + 1) through (t4 − 1) and holding inventories of 
periods (t1 + 1) though (t4 − 1).

For 1 ≤ k ≤ T + 1, let Vj(k) be the minimum cost of satisfying demand in periods 1 
through (k − 1) for item j . Defining Vj(1) = 0∀j, we have the following DP recursion:

To analyze the computational complexity of recursion (34), it takes O(T) time to 
obtain SCj

t and O(T2) time to obtain PCj

t

(
t′, t′′

)
,HC

j

t

(
t′, t′′

)
 , and BCj

t

(
�, �′

)
 for all 

1 ≤ 𝜏 ≤ 𝜏′ ≤ t < t′ ≤ t′′ ≤ T  from Eq. (29). It is noted that after an O(T2) time pre-
processing step, each fj[(t1, t2), (t3, t4)] where 1 ≤ t2 ≤ t1 < t4 ≤ t3 ≤ T  can be evalu-
ated in constant time via Eq.  (30)  through (33). Once these values are available, 
Vj(k)∀1 ≤ k ≤ T + 1 can be obtained in O(T3) time.

3.4  Setup Carryover Assignment

The problem of setup carryover assignment can be described as follows. If an item j 
is produced both in period t and (t + 1) and a setup is performed in both periods, the 
second setup can be replaced by a setup carryover if the item is produced at the end 
of period t and at the beginning of period (t + 1) . This last condition can be fulfilled 
by only one item that is produced in both period t and (t + 1) . This saves both setup 
time and setup costs, and such savings are attainable by only one item that is pro-
duced in both periods t and (t + 1).

(34)Vj(k) = min
1≤k�≤t�<k≤t��

[V(k�) + fj[(t
�, k�), (t��, k)]]
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In this paper, we extended the setup carryover problem introduced by Chowd-
hury et al. [37] to a production system consisting of multiple identical machines. 
An ILP model can be formulated for each machine to determine the setup car-
ryover assignment variable. The objective of the problem is to maximize savings 
in setup costs. Suppose we are given S(i, t)∀i, t , where S(i, t) is the set of items 
produced in machine i∀i = 1, ...,m in period t∀t = 1...T  . Let us assume another 
set S�(i, t)|S�(i, t) = S(i, t) ∩ S(i, t + 1)∀i = 1, ...,m and t = 1…T − 1 . Each element 
of S�(i, t) represents an item that can be carried over from period t  to (t + 1) to 
avoid the machine setup for that item in period (t + 1) . Since, for a particular 
machine i , only one item can be carried over to the next period, we must pick 
exactly one element from S�(i, t). Let us introduce the parameters for the problem 
as follows:

cj Setup cost saving associated with element j|j ∈ S�(i, t)∀t

Decision variable:

Model SC:

Subject to,

The objective function to maximize the setup cost savings for all i = 1..m is 
expressed in Eq.  (35). Constraint (36) ensures that an item, which is produced 
in two consecutive periods, should be carried over to the next period. Constraint 
(37) states that at most one item can be carried over to the next period. But for 

qjt =

{
1

0

if item j ∈ S�(i, t)

otherwise

r�jt =

{
1

0

ifqjt = qj(t+1) = 1 and if |S�(i, t + 1)| > 1

otherwise

zjt =

{
1

0

if item j ∈ S�(i, t)is produced at the end of period t and in the beginning of period (t + 1)

otherwise

(35)Max
∑

j∈�(i)

T−1∑

t=1

cjzjt …∀i

(36)zjt ≤ qjt∀j, t < T

(37)
∑

j∈S(i,t)|qjt=1

zjt ≤ 1∀t ≤ T

(38)zjt + zj(t+1) ≤ 1∀j, t < T − 1|r�jt = 1

(39)zjt ∈ [0,1]∀j, t
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some t  , if qjt = 0∀j ∈ S(t) , 
∑

j∈S(i,t) zjt = 0 . Constraint (38) implies the condition 
that if the setup state of item j is carried over from period t  to (t + 1), then j can-
not be carried over from period (t + 1) to (t + 2) . Finally, the type of variables 
is defined in constraint (39). The LP relaxation of the model SC is obtained by 
relaxing the constraint (39) as zjt ≥ 0∀j, t . We determine the setup carryover var-
iable �jt by applying Procedure 1.

4  Proposed DW Decomposition Heuristic Method

4.1  Outline of the Solution Procedure

Generate an initial set of solutions by applying the following procedure:

Step 1.1: From Eq.  (29) calculate SCj

t , PC
j

t

(
t′, t′′

)
,HC

j

t

(
t′, t′′

)
 , and BCj

t

(
�, �′

)
 

by fixing the dual variables wit , yit, � , and vj a value of zero for the end items j
| j ∈ �.
Step 1.2: Use SCj

t , PC
j

t

(
t′, t′′

)
,HC

j

t

(
t′, t′′

)
 , and BCj

t

(
�, �′

)
 as the input for DPR 

and obtain the optimal production quantity Xjt and setup decision Yjt for item j in 
period t.
Step 1.3: Derive demand for the components k|k ∈ � as follows: D

kt
=
∑

k�∈Γ(k)akk�Xk�t∀t 
Step 1.4: Repeat Steps 1.1 and 1.2 for the components. The planned production is 
determined down to the immediate predecessor level.
Step 1.5: Apply the CA heuristic to make Xjt and Yjt feasible (Sect. 4.2).
Step 1.6: Solve the ILP for maximizing setup cost savings presented in Eqs. (31) 
and (32) and obtain the v alue of the setup carryover decision variable �jt∀j, t by 
applying Procedure 1 in Sect. 3.4.
Step 1.7: Use the Yjt values from step 1.5 and �jt from step 1.6 as parameters and 
solve the model MLCLSP_SCBE to obtain an optimal value for Xjt, Ijt and Bjt.
Solve the LP relaxation of the MP1 and obtain the dual values of constraints (15) 
through (18).
Solve the subproblems using the following approach:
Step 3.1: Use the dual values obtained from Step 2 and calculate SCj

t , 
PC

j

t

(
t′, t′′

)
,HC

j

t

(
t′, t′′

)
 , and BCj

t

(
�, �′

)
 by using Eq. (29).

Step 3.2: Repeat Steps 1.2 through 1.7.

Procedure 1
Input:  Zjt, S(i, t)
Output: �jt 
Initialization: �jt = zjt∀j,t 
Case 1: If |S(i, t)| = 0 then �jt = �j(t−1) 
Case 2: if |S(i, t)| = 1 then �jt = 1|j � S(i, t) 
Case 3: let � = random number between 1 and n|� ∈ S (i, t) 
if | S(i, t)> 1 and 

∑
j∈�(t)�jt = 0 then �∈t = 1 
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If there exists at least one new column with negative reduced cost, add such col-
umns to MP1 and start from Step 2 again. Otherwise, stop.

4.2  Description of the Capacity Allocation (CA) Heuristic

This section explains the CA heuristic. The outline and the numerical illustration of 
the CA heuristic (Sect. 4.3) use the following symbols:

l Index for levels of product hierarchy (from 0 for the end item, to L).
�(l) Set of items positioned in level l of the product hierarchy.
Qjt Production quantity for item j in period t obtained from WW solution (capac-
ity constraint relaxed).
X′

jt Production quantity for item j in period t obtained from CA heuristic.
Z′

jt Allocated capacity for item j in period t in time units.
Y ′

jt Setup decision for item j in period t obtained from CA heuristic.
I′jt Inventory level of item j in period t obtained from CA heuristic.
ReqCap(i,t) Required capacity of machine i in period t in time units.
AvailableCap(i,t) Available capacity of machine i in period t in time units.
t′ Last period before the next period of production obtained from the WW solution.
(RQ)j Remaining quantity of item j from the WW solution after the production 
quantity is adjusted in any period.
(RD)j,t Remaining demand of item j in period t that cannot be satisfied due to the 
limit of the capacity of resource i|i ∈ �(j).
UnusedCap(i,t) Unutilized capacity of machine i in period t.
Allowablej,t Allowable quantity of item j that can be allocated in period t.

The CA heuristic works as follows: The algorithm starts with t = 1 and l = 0 . Let 
us consider a machine i that is responsible to produce j|j ∈ �(l) is currently over-
loaded in period t . This overload of machine i is decreased by shifting the produc-
tion quantity of an item j|j ∈ �(i) into an earlier or later period. The production 
quantity of item j is reduced according to the ratio of the allowable capacity and the 
required capacity of machine i in period t and assigning the production of item j to 
period t as follows:

While decreasing the production quantity of any item, one has to remember that 
a reduction in the production quantity should not lead to a backlog for this item 

(40)Zi
jt = (Qjt × pj + sj) ×

Availablecap(i,t)

Reqcap(i,t)

(41)Xi
jt = max

(
z�jt−Sj

pj
,Djt − I�j(t−1)

)
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resulting from successor item demands. That is why it is necessary to adjust the pro-
duction quantity of the successor item. If there is no further item causing an over-
load of the resource in question in the current level, then the quantity of the succes-
sor items of the product hierarchy is adjusted. For all direct and indirect successors 
ji of item j , the maximum quantity that can be decreased is determined according to 
Eq. (42).

In the case where the sum of the required production of item j in machine i in 
period t exceeds the available capacity of machine i in periodt , we shift the produc-
tion[(RD)j,t = Djt − Ij(t−1) − X�

jt
] backward into period 𝜏|𝜏 < t andUnusedCap(i,𝜏) > 0 . 

Shifting production to the earlier period is possible because the feasibility of the 
resulting problem instances with respect to the capacity constraints is maintained by 
ensuring that the cumulative capacity for every period is larger than (or equal to) the 
cumulative requirement. Because of this shifting to an earlier period, the production 
quantity of item j in period � increases. To accommodate the derived demand of the 
predecessor items j�|j� ∈ �(j) , the production quantity of all j′ is adjusted as follows: 
X�

j�� = max(X�
j�� ,Dj��).

If, for all j|j ∈ �(l) and for all i|i ∈ �(j) , the available capacity of machine i in 
period t is allocated among all j|j ∈ �(i) , then we move into the next level of the 
product hierarchy. When the production quantity of all items j is allocated according 
to the available capacity of machine i in period t , shift forward the remaining quan-
tity (RQ)j to period t′|t′ > t and assign the production quantity of item j in period t′ 
as follows: X�

jt = min
[
Allowablejt� ,Djt� , (RQ)j

]
 . Update (RQ)j . Next, shift the rest of 

the quantity backward for all t� = t� − 1, ..t + 1 . A numerical example is presented in 
Sect. 4.3 to illustrate the CA heuristic.

(42)X�
j�t = max

(
Dj�t − I�j�(t−1), min

j��(j�)

X�
jt

ajj�

)

1
(machine 1)

2 (3 units)
(machine 2)

3 (2 units)
(machine 3)

4
(machine 1)

5 (3 units)
(machine 2)

6 (4 units)
(machine 3)

= 0

= 1

Fig. 3  Product hierarchy structure for the example problem

Table 3  Parameters for the 
example problem of size 
( T × n × m = 4 × 6 × 3)

Item (j) 1 2 3 4 5 6

Processing time ( pj) 2 3 2 3 1 2
Setup time ( sj) 15 20 25 30 20 20
Holding cost(hj) 0.5 0.6 0.2 0.3 0.6 0.2
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4.3  Illustrative Example for CA heuristic

Let us consider the following (Fig. 3) product hierarchy structure where there are 
two end items (items 1 and 4), and each of the end items has two components over 
the course of four periods. Demand of items 1 and 4 are D1t = (20, 25, 30, 30) and 
D4t = (25, 20, 30, 35), where t = 1.4. Table 3 provides additional parameters for this 
example problem.

WW for end-items: Each subproblem is an SIULSP. Let, Xjt and Z′
jt be the pro-

duction quantity and allocated capacity for item j in period t , respectively. The WW 
solution and the required capacity for item 1 and 4 at each period is given in Table 4.

Derive demands for components are given in Table 5.
WW for components
The WW solution for items 2, 3, 5, and 6 is given in Table 6.
Feasibility procedure:
Step 4.1: Capacity allocation of the WW solution is shown in Fig.  4. Let 

t = 1 and l = 0.
Item 1 and 4 are at level 0 and both of these items are processed by machine 1. 

The required capacity of machine 1 in period 1 ( 105 + 360 = 465 ) exceeds its avail-
able capacity in period 1 (Fig. 4a). That is why the production quantity of items 1 
and 4 in period 1 is shifted to the later periods.

The available capacity of machine 1 in period 1 is allocated for items 1 and 4 as 
follows:

Z�
11 =

(
105 ×

300

465

)
= 67.74 and Z�

41 =
(
360 ×

300

465

)
= 232.258 . As a result, the 

production quantity for item 1 and 4 in period 1 is decreased as follows:
X�

11 = [(67.74 − 15)] = 26 and X�
41 = [(232.258 − 30)∕3] = 67

Derived demand and required capacity for items 2, 3, 5, and 6 in period 1 are 78, 
52, 201, and 268, respectively.

Step 4.2: Let l = 1 . Items 2, 3, 5, and 6 are produced in the next level. The derived 
demand for item 2 in period 1 is 78 (= 26 × 3). But the WW quantity for item 2 in 
period 1 is 135 (Table 6). Therefore, we take the maximum of 78 and 135 as the 

Table 4  WW solution for end 
items 1 and 4

Period ( t) 1 2 3 4

X1t 45 0 60 0
Z′1t 105 0 135 0
X4t 110 0 0 0
Z′4t 360 0 0 0

Table 5  Derive demands for 
components

Period ( t) 1 2 3 4

D2t 135 0 180 0
D3t 90 0 120 0
D5t 330 0 0 0
D6t 440 0 0 0
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production quantity of item 2 in period 1. The production quantity of items 2, 3, 5, 
and 6 and the required capacity of machines 2 and 3 in period 1 is computed and 
shown in Table 7.

Thus, the required capacity of machines 2 and 3 in period 1 is 775 and 1345 
time units, respectively, which exceeds the available capacity of machines 2 and 3 in 
period 1 (Fig. 4b).

Step 4.3: The available capacity of machine 2 in period 1 is allocated for items 2 
and 5 as follows:

Z�
21 =

(
425 ×

(
400

775

))
= 219.35 and Z�51 =

(
350 ×

(
400

775

))
= 180.65 . As a 

result, the production quantity for items 2 and 5 in period 1 decreases as follows: 
X�21 = [(219.35 − 20∕3)] = 66 and X�51 = [(180.65 − 20)∕1] = 160 . Similarly, the 
production quantity for items 3 and 6 in period 1 is decreased to X�

31 = 70 and 
X�

61 = 157.
The required capacity of machine 2 = 66 × 3 + 20 × 1 + 160 × 1 + 20 × 1 = 398 < 400

The required capacity of machine 3 = 70 × 2 + 25 × 1 + 157 × 2 + 20 × 1 = 499 < 500

If the required capacity exceeds the available capacity, then repeat steps 4.2 and 4.3.
Step 4.4: Compute production quantity of the successor items: 

X�
11 = max

(
20,min

(
66

3
,
70

2

))
= 22 and X�

41 = max
(
25,min

(
160

3
,
157

4

))
= 39

Step 4.5: Update the production quantity of predecessors.

X
�
21 = max(66, 22 × 3) = 6, 6X�

31 = max(70, 22 × 2)

= 70,X�
51 = max(160, 39 × 3) = 160,X�

61

= max(157, 39 × 4) = 157.

Table 6  WW solution for items 
2, 3, 5, and 6

Period ( t) 1 2 3 4

X2t 135 0 180 0
X3t 210 0 0 0
X5t 330 0 0 0
X6t 440 0 0 0

Fig. 4  Capacity allocation of WW solution
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Step 4.6: Shift the production quantity for each item to the period ( t′ ) before the 
next production period obtained from the WW schedule, and then shift the excess 
production forward. For any item j , if Xjt = 0∀t > 1 , then assign t� = T .

The CA heuristic procedure for the example problem is illustrated in Fig. 5.
Similarly, the capacity allocation for items 3 and 6 is shown in Table 8.
Step 4.7: t = t + 1 and repeat steps 4.1 to 4.6 until t = T  . The feasible solution 

after the capacity allocation is completed is shown in Table 9, and the capacity allo-
cation of a feasible solution is shown in Fig. 6.

Assign setup decision variables. For the example problem, Y �
jt = 1 for all j and t 

except Y �
3,4 = Y �

5,2 = 0.
LP-based improvement procedure: Solve the original problem as an LP given 

the setup variables. The setup decisions ( Y ′
jt ) provided by the CA heuristic are 

used as parameters in the relaxed LP model to refine the solution. As a result, the 
refined solution becomes optimum for a particular setup decision (Table 10) Fur-
thermore, if the setup decisions are correct, then the solution obtained using the 
local search method provides the optimum solution.

5  Computational Study

5.1  Dataset Used

The performance of the proposed DW decomposition and the CG procedure with 
the CA heuristic is tested using the test data set introduced by Tempelmeier and 
Derstroff [10]. This is a 75 problem-instance set of class B and class D as shown 
in Fig. 7. Class B test cases are comprised of 10 items, 4 periods, and 3 machines 
whereas class D problems are comprised of 40 items, 16 periods, and 6 machines. 
The 75 instances were generated using combinations of the following coefficients 
of variance, setup cost structures, and capacity utilization profiles:

Three demand structures with varying coefficients of variance (CV = 0.1, 0.4, 0.7).
Five setup cost structures resulting in different profiles of average time between 

orders (TBO).
Five capacity utilization profiles (90%, 70%, 50%, 90%/70%/50%, 40%/70%/90%).
Regarding the demand structures, the average demand per period for the end product 

in the assembly structure is set to 100. As for the setup cost structures, the numbers delim-
ited by slashes are TBO values for higher, middle, and lower levels of the product hierar-
chy. Note that TBO is an acronym introduced by Tempelmier and Destroff (1996), which 

Table 7  Production quantity 
of item 2, 3, 5 and 6 and the 
required capacity of machine 
2 and 3

Item (j) X′
j1 Z′

j1 Machine

2 max(78,135) = 135 425 2
3 max(52,210) = 210 445 3
5 max(201,330) = 330 350 2
6 max(268,440) = 440 900 3
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Fig. 5  Illustration of the working principle of CA heuristic for items 1, 2, 4, and 5

Table 8  Capacity allocation for 
items 3 and 6

Item Period ( t)

1 2 3 4

3 70 20 120 (WW  
solution)

0

6 157 36 107 140
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they defined as the average length of a production cycle. Setup cost is computed using 
the following formula: Setup cost = 0.5 × holding cost × average demand × (TBO)2 . 
Available capacity per period is computed by dividing the mean demand by the target 
capacity utilization. The setup time profile and the resource assignment for problem 
classes B and D are shown in Tables 11 and 12, respectively.

For more details about these test instances, see Tempelmeier and Derstroff 
[10]. In order to allow backlogging, the following modifications of the data made 
by Wu et al. [14] are being considered:

A ratio of backlogging costs to inventory costs such that �j = 10hj∀j ∈ �.
The demand for all items is increased by 20% for the first half of the time 

horizon, while the resource capacities are increased by 10% over the entire time 
horizon for each test instance.

However, these data sets have no allowance for an emission cap. We, therefore, 
alter the problem instances to limit the emission while making lot sizing decision. 
The emission due to setup ( ̂cj ), production ( ̂pj ) and holding ( ̂hj ) activities are all 
generated from discrete uniform distributions DU (0,20). The emission cap is set to 
25,000 and 60,000 tons of carbon for the problem classes B and D, respectively.

Table 9  A feasible solution after 
the CA heuristic is completed

Item( j) Period ( t)

1 2 3 4

2 22 23 30 30
2 66 69 115 65
3 70 20 120 0
4 39 6 30 35
5 160 0 65 105
6 157 36 107 140

(a) Machine 1 (b) Machine 2 (c) Machine 3
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Fig. 6  Capacity allocation of a feasible solution
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Table 10  Production schedule 
( X′

jt ) after the improvement 
procedure

Item ( j) Period ( t)

1 2 3 4

2 20 25 30 30
2 60 75 90 90
3 40 59 111 0
4 46 0 29 35
5 138 0 87 105
6 184 36 116 140

Fig. 7  The assembly product structure used for the experiment [10]

Table 11  Setup time profiles of problem class B and D for the assembly product structure [10]

Setup time

Class B Class D

5 10 15 10 15 20 25

Items 7, 8, 9, 10 1, 2, 5, 6 3, 4 1…10 11….20 21…30 31…40
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6  Performance Evaluation

Our developed DW decomposition and the CG procedure with the CA heuristic are 
coded using FICO’s Mosel (Xpress-IVE Version 1.24.02 64 bit) algebraic modeling 
language and the commercial MILP solver Xpress 7.6 is used to establish its effi-
ciency. All the test instances are run on a PC with an Intel Core i7 1.8 GHz proces-
sor, 8 GB of RAM, and an L2 cache of 512 KB.

Table 12  Resource assignment 
of problem class B and D for the 
assembly product structure [10]

Resource Problem class B Problem class D

A 1…4 1,2
B 5…7 3…6
C 8…10 7…14
D - 15…22
E - 23…30
F - 31…40

Table 13  Average deviation from optimality (%) of the proposed heuristic solutions for class B test cases 
of 10 items, 4 periods, and 3 machines ( Ccap = 25,000 tons of carbon)

TBO profile CV Utilization profile (%) Mean

90 70 50 90/70/50 50/70/90

1 0.1 0.19 0.19 0.19 0.19 0.19 0.19
0.4 0.20 0.13 0.19 0.19 0.65 0.27
0.7 0.64 0.53 0.65 0.19 0.19 0.44
mean 0.34 0.28 0.34 0.19 0.34 0.30

2 0.1 0.76 1.78 1.71 1.26 0.69 1.24
0.4 1.08 1.66 0.97 1.15 1.10 1.19
0.7 1.09 2.81 2.43 1.75 1.20 1.85
mean 0.98 2.08 1.70 1.39 1.00 1.43

4 0.1 1.81 2.52 1.89 1.04 4.56 2.36
0.4 1.45 1.69 3.39 1.63 0.95 1.82
0.7 2.04 2.30 4.49 1.57 4.93 3.07
mean 1.77 2.17 3.26 1.41 3.48 2.42

1/2/4 0.1 3.14 3.64 3.45 2.26 2.95 3.09
0.4 5.24 2.26 4.04 2.12 2.12 3.16
0.7 5.28 3.46 5.07 2.66 0.99 3.49
mean 4.55 3.12 4.19 2.34 2.02 3.24

4/2/1 0.1 1.15 0.50 2.37 0.35 0.50 0.97
0.4 0.51 0.50 1.19 0.50 0.93 0.73
0.7 0.50 1.36 1.46 0.49 0.50 0.86
mean 0.72 0.79 1.67 0.45 0.64 0.85
Overall mean (75 problem instances) 1.65
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With respect to the class B test instances, the computational results are given in 
Tables 13 and 14. Since the test instances of class B are relatively small problems, 
the commercial MILP solver Xpress 7.6 is able to optimally solve the MLCLSP 
with SCBE model (Eqs. 1 and 13) for all the test instances in this class. The optimal-
ity gap is calculated using the formula, %gap =

Heuristic Solution−Optimum solution

Optimum Solution
× 100 . 

According to the results listed in Table 13, it can be seen that the overall mean devi-
ation from optimality is 1.65%. We provide the solutions (values of the cost objec-
tive function employed) in Table 14. Table 15 demonstrates the computational time 
(seconds) required by the DW heuristic solutions for class B test cases. It is noted 
from Table  15 that the average solution time using DW heuristic is improved by 
54.9% over the MIP solver solution time.

The computational results of class D problem instances are given in Tables 16 
and 17. Since the problem size of the class D test instances is relatively larger, 
MIP solver Xpress 7.6 could not solve any of the instances. Table 16 shows the 
average percent deviation of the proposed heuristic solutions from the lower 
bounds for problem class D. The gaps are calculated using the formula, 
%gap =

UBheuristic−LBMILP

LBMILP

× 100 . Here, UBheuristic denotes the upper bounds achieved 
by our developed DW decomposition heuristic. According to the results listed in 
Table 16, it can be seen that the overall mean deviation from optimality is 9.23%. 

Table 15  Solution time (seconds) required by the proposed heuristic solutions for class B test cases of 10 
items, 4 periods, and 3 machines ( Ccap = 25,000 tons of carbon)

TBO profile CV Utilization profile (%)

90 70 50 90/70/50 50/70/90

MILP DW MILP DW MILP DW MILP DW MILP DW

1 0.1 8.83 2.56 5.68 4.27 9.33 4.43 10.65 4.62 9.90 3.32
0.4 9.82 3.36 5.41 3.85 8.08 4.81 8.93 2.16 9.15 3.57
0.7 8.78 4.35 4.26 4.40 7.49 2.74 8.20 4.17 9.45 2.49

2 0.1 9.38 4.40 4.79 4.71 9.35 2.18 10.49 2.18 8.59 3.79
0.4 7.64 3.73 6.81 4.90 10.06 2.68 9.59 3.89 11.51 3.40
0.7 10.10 2.75 6.94 3.08 7.99 2.74 9.88 3.74 8.20 2.67

4 0.1 8.25 4.22 5.66 3.29 9.81 2.87 11.41 3.50 8.82 3.80
0.4 10.71 2.68 5.56 3.39 8.01 3.94 11.06 4.84 11.19 2.00
0.7 9.91 3.47 5.33 4.83 9.64 2.91 7.34 2.69 11.77 3.59

1/2/4 0.1 10.96 3.75 4.30 3.94 9.79 3.15 10.46 3.07 11.19 2.31
0.4 7.56 3.78 4.40 3.93 8.70 3.48 9.81 4.89 8.12 3.68
0.7 8.12 2.79 5.24 4.17 7.55 4.03 9.25 3.17 10.59 3.60

4/2/1 0.1 8.73 2.92 5.34 3.27 10.18 3.21 7.93 4.20 9.12 3.58
0.4 8.83 2.56 5.68 4.27 9.33 4.43 10.65 4.62 9.90 3.32
0.7 9.82 3.36 5.41 3.85 8.08 4.81 8.93 2.16 9.15 3.57
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For reference, we provide the solutions (values of the cost objective function 
employed) in Table 17. The column LBMILP in Table 17 denotes the lower bound 
obtained by solving the LP relaxation of the corresponding MLCLSP_SCBE for-
mulation after a running time of 1800s. The columns associated with UBDW pro-
vide the upper bounds achieved by the DW decomposition heuristic. It was men-
tioned in Sect. 5.1 that we consider the same modifications to problem classes B 
and D made by Wu et al. [14] to allow backlogging. Wu et al. [14] show that their 
progressive time-oriented heuristic (PTH) lowers the optimality gaps by around 
7.5% for the modified class B and 25% for the modified class D when compared 
to CPLEX. In contrast, as compared to the MIP solver’s solution, the DW decom-
position with the CA heuristic reduces the optimality gaps by roughly 1.65% for 
class B and 9.23% for class D test cases.

Table 16  Average deviation (%) of the proposed heuristic solutions from the lower bounds for class D 
test cases of 40 items, 16 periods, and 6 machines ( Ccap = 60,000 t∕MWh)

TBO profile CV Utilization profile (%)

90 70 50 90/70/50 50/70/90 Mean

DW DW DW DW DW DW

1 0.1 4.08 7.65 7.88 9.98 11.36 8.19
0.4 6.98 7.85 6.76 8.77 10.67 8.21
0.7 7.56 8.45 6.56 8.45 10.45 8.29
Mean 6.21 7.98 7.07 9.07 10.83 8.23

2 0.1 8.98 8.96 8.09 9.87 10.87 9.35
0.4 7.44 9.76 8.76 10.27 11.54 9.55
0.7 6.95 10.35 8.98 9.56 9.48 9.06
Mean 7.79 9.69 8.61 9.90 10.63 9.32

4 0.1 7.45 9.52 9.65 8.67 9.34 8.91
0.4 8.97 9.65 8.54 9.44 9.59 9.24
0.7 9.55 10.30 9.47 10.35 8.86 9.71
Mean 8.66 9.79 9.22 9.49 9.26 9.28

1/2/4 0.1 7.34 7.56 10.45 9.49 10.34 9.04
0.4 7.29 8.34 10.77 10.87 9.78 9.41
0.7 9.95 8.96 10.89 11.55 9.56 10.18
Mean 8.19 8.29 10.70 10.64 9.89 9.54

4/2/1 0.1 7.98 8.67 9.56 8.78 10.66 9.13
0.4 8.76 9.46 10.14 9.89 11.43 9.94
0.7 8.45 9.65 10.65 11.66 10.78 10.24
Mean 8.40 9.26 10.12 10.11 10.96 9.77
Overall mean (75 problem instances) 9.23
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7  Conclusion

This paper addresses the extended classical MLCLSP where setup carryover, back-
logging, and emission control are being incorporated (MLCLSP_SCBE). An item 
DW decomposition technique is developed to decompose the MLCLSP_SCBE into 
a master problem and a number of uncapacitated dynamic single-item lot-sizing 
problems, which are solved by combining dynamic programming and a multi-step 
iterative capacity allocation (CA) heuristic approach. An ILP model is developed 
to determine the setup carryover variable for a given production schedule. An LP-
based post-improvement procedure is implemented to refine the solution. The capac-
ity constraints are being taken into consideration implicitly through the dual vari-
ables, which are updated using a column generation procedure. The performance 
of the heuristic is tested by comparing the average percentage of deviation from 
optimality. The quality of the heuristic for MLCLSP_SCBE is tested using the two 
test data sets namely class B and class D introduced by Tempelmeier and Derstroff 
[10]. The results show that the overall mean deviation from optimality is 1.65% (for 
class B test cases) and 9.23% (for class D test cases) as the proposed heuristic-based 
decomposition approach is applied.

For future work, the proposed model can be extended to include constraints of 
limited inventory storage capacity, lot transportation, to name a few. In the future, 
period decomposition and resource decomposition can be considered for compar-
ing the effectiveness of each of these techniques. Also, metaheuristic approaches, 
math-heuristics, or the newer hyper-heuristics may be employed to investigate if the 
percentage gap from optimality improves using the sub-optimal solutions obtained 
by such solution approaches.
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