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Abstract
A bilevel programming is a two-level optimization problem, namely, the upper 
level (leaders) and the lower level (followers). The two level’s decision variables 
are entwined with each other which increases the complexity to obtain the global 
solution for both the optimization problems. Each level aims to optimize their own 
objective function under the given constraints at both the levels. To reduce the com-
plexity partial cooperation between the two levels has been exploited in obtaining 
the Pareto solution. A novel solution procedure is proposed for a multi-objective 
fuzzy stochastic bilevel programming (MOFSBLP) problem is studied and solved 
using genetic algorithm. In this paper, previous information of the lower level is used 
as a fuzzy stochastic constraints in the upper level along with its constraints. Then 
with the solution of the combine constraints, the lower level solution is evaluated. 
The proposed solution procedure is illustrated by a numerical example taken from 
Zheng et  al., and results are compared. A simpler version is solved using GAMs 
software to analyze the result of the numerical example. The proposed method high-
lights the importance of partial cooperation in solving bilevel programming prob-
lem. The advantage of the proposed solution method is that it creates common con-
straint space which helps in convergence of the algorithm.

Keywords Bilevel programming problem · Multi-objective programming · Genetic 
algorithm · Fuzzy stochastic programming

AMS Mathematics Subject Classification 90C15 · 90C29 · 90C70 · 90B50

 * S. Dutta 
 duttasanjay098@gmail.com

 S. Acharya 
 sacharyafma@kiit.ac.in

1 Department of Advanced Computing, St. Joseph’s University, Bengaluru, India
2 Department of Mathematics, School of Applied Sciences, KIIT University, Bhubaneswar, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s43069-024-00294-z&domain=pdf


 Operations Research Forum (2024) 5:11

1 3

11 Page 2 of 24

1 Introduction

The bilevel programming (BLP) problem is a subclass of multi-level programming 
(MLP), where the latter deals with decentralized planning problems with a number 
of decision-makers (DMs) and the former with only two levels and decision-makers 
respectively. In multi-level company/organizations or a hierarchical structure of deci-
sion systems, the decisions taken influence each level as a vicious circle. In the BLP 
problem, two decision-makers are located at two different hierarchical levels, each 
independently controlling a subset of decision variables with different set of objec-
tives. The upper-level decision-maker (DM) is called the leader who makes its deci-
sion forthrightly to the lower-level DM called the follower. The decision-makers at 
different levels aim to maximize their own objective function which in turn affect 
the optimal value of the respective optimization problem. This complexity is further 
enhanced with multiple objectives at one or both the levels. In the presence of multi-
ple conflicting objectives, one solution cannot optimize all the objectives, so an effi-
cient solution is needed. Further, the non-convexity and non-linearity either in the 
objective functions or constraints amplify their computational complexity. In addi-
tion, under different set of environment such as fuzzy, stochastic, fuzzy stochastic, 
cooperative, non-cooperative, and partial cooperative, the solution methodology to 
solve the bilevel programming becomes more challenging. Thus, in order to obtain 
a global solution for the BLP, the researchers largely depend on objectives reduction 
technique such as Karush–Kuhn–Tucker (KKT) conditions in case of multi-objective 
and evolutionary algorithms or hybrid methods and/or algorithms. Moreover, with 
the use of evolutionary algorithms, it becomes challenging to obtain a global optimal 
solution that will satisfy both the levels’ decision-makers, and therefore the decision-
makers settle for the Pareto-optimal solution. Although it is challenging, but bilevel 
programming issues frequently arise in many real-world optimization scenarios and 
need to be studied rigorously. Thus, in short, bilevel programming is a dynamic and 
expanding area as it lies at the intersection of game theory and decision science offer-
ing functional and practical framework for modelling and solving the real-world hier-
archical decision-making problems. The potential of handling big and complex real-
world problems makes it more attractive to the researchers.

1.1  Background

Bracken and McGill [1] initially studied the bilevel programming problem which 
is an (NP) hard problem [2–4], and Candler and Norton introduced the term bilevel 
in [5]. However, because of the close relation between Stackelberg’s work on the 
duopoly games [6] and bilevel programming which sparked greater interest in BLP 
in the latter years. A good starting point to study the bilevel programming for the 
academics and researchers can be found in [7] with key concepts, solution meth-
odologies and applications, and some other related books  in [8–10]. Some of the 
traditional approaches such as vertex enumeration [11] and transformation methods 
[12] were used to solve bilevel programming problem. In the vertex enumeration 
method, compromise vertex are searched controlling the decision variables, and 
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as such this method is inefficient. On the other hand, transformation method uses 
Kuhn-Tucker condition or Penalty function to transfer the lower level programming 
as the constraint in the upper level programming and then the corresponding pro-
gramming is solved.

As the bilevel programming consists of two levels, namely, the upper and the 
lower level or the leader and the follower, so to reach at a common optimal solu-
tion is very much desirable without compromising individual goals. Thus, in order 
to obtain the global solution of bilevel problem, many researchers converted the 
bilevel programming problem into a single objective problem. The programming 
such as goal programming and fuzzy programming were extensively employed to 
solve bilevel problem because of its easier implementation and for obtaining the 
global solution. Along this line, a solution procedure was developed [13] to replace 
the sub-problem of a two-level programming problem by its Kuhn-Tucker (K-T) con- 
dition and transform it into a mixed integer quadratic programming problem. Fur- 
ther, a non-cooperative two person game was presented as a mixed integer linear  
bilevel programming problem [14], where the leader’s choice do not influence the 
choices of the follower. Apart from the papers mentioned above, a different approach was  
studied where the upper level includes within its strategy the lower level’s reaction 
to its decision making process. To incorporate this idea, an exact and inexact penalty 
approach was designed to solve general bilevel programming problem [15]. A dif-
ferent approach, the homotopy method, was used in [16] to obtain global solution of 
the bilevel problem. A sufficient condition for the global convergence was provided 
which converges to K-K-T point. Besides these methods, a different form such as 
convex bilevel programming problem was formulated using merit function [17] and 
solved by branch and bound method to obtain the global solution. The combination of 
above methods are also used to solve bilevel problem, [18] presented a penalty func-
tion method based on Kuhn-Tucker condition for solving linear bilevel programming.

1.2  Multi‑objective Bilevel Programming

Single objective bilevel programming problems have been studied more due to its 
less complexities [8, 19, 20]. There exist an analogy between the single-level and 
bilevel multi-objective, where for an arbitrary binary relation, a sufficient condition 
is formulated to ensure the equality between the set of optimal solution and the effi-
cient solution generated by the binary relation [21]. A necessary optimal condition is 
given for the conversion of the multi-objective programming into its locally equiva-
lent to the single-level optimization problem [22]. With the growing interest in the 
methodology in solving linear bilevel and single-level programming, the interest in 
solving multi-objective further enhanced. Although it was quite latter, the researchers 
considered the multi-objective bilevel programming, the multiple conflicting objec-
tives either in the upper or in the lower level or in both. In [23], the multi-objective 
bilevel programming problem was studied, and various optimality conditions were 
derived and analyzed for the combined problem involving both the upper and the 
lower level together. An efficient solution is generated to solve the multi-objective 
bilevel programming (MOBLP), and a necessary and sufficient is provided [24] to 
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obtain the efficient solution. In addition to the mathematical methods, different algo-
rithms were proposed to solve MOBLP- to generate Pareto frontier [25], interactive 
balance algorithm [26] for the three-level multi-objective decision-making model. 
Apart from the above mentioned methods, the multi-objective bilevel programming 
are often converted to single-level programming problem using fuzzy set theory and 
fuzzy approach, and the corresponding converted problem is solved either by com-
mercial software or by developing new algorithm such as  Kth best algorithm [27]. 
Due to its immense use to solve multi-objective BLP, more details about the fuzzy 
approach and fuzzy goal approach are discussed in the next subsection.

As multi-objective problems frequently used to depicts the real life problems, so 
the MOBLP are used in formulating real life problems. A hybrid intelligent algo-
rithm was designed consisting of fuzzy, stochastic simulation and genetic algorithm 
along with simplex method to solve the facility location problem. The mathemati-
cal model formulated for the facility location problem as the bilevel programming 
where the objective was to optimize the customer flow with fuzzy trip cost [28]. 
Some of the application areas where MOBLP are used can be found in [10, 29–32]. 
A detailed review on multi-level and bilevel multi-objective programming with 
future research areas is presented in [33].

1.3  Fuzzy Programming

In order to avoid the complexities of vertex enumeration and transformation method, 
[34–37] used tolerance membership function to measure the satisfaction level of 
the objective functions and develop fuzzy approach to solve BLP. Fuzzy program-
ming approach with fuzzy goals at both levels were implemented in [38] to study 
the decentralized two-level linear programming problem with one decision-maker 
at the upper level and one or more decision-makers at the lower level, i.e., multi-
ple followers. Their method was based on the concept of minimal satisfactory level 
considered by the upper level to obtain a tentative solution by balancing both the 
levels. In addition, a linear fraction chance constrained bilevel programming prob-
lem was formulated with fuzzy goals [39] and solved using fuzzy goal programming 
approach. Apart from the mathematical method different algorithms were used, an 
� cut algorithm was used in [40] to solve linear multiple objective bilevel decision 
problem with fuzzy goals. Furthermore, the above approaches were used to solve 
different BLP problems non-linear integer BLP [41], with quadratic BLP [42], fuzzy 
parameters [43], genetic algorithm based fractional [44], and quadratic [45] BLP, 
bilevel quadratic fractional programming problem [46]. The recent theoretical find-
ings relevant to bilevel programming are arranged in [47].

1.4  Computational Approaches

Transforming the multi-objective bilevel programming to single objective using the 
fuzzy approach has been applied in many problems to obtain the global optimal. 
On the other hand, Evolutionary methods such as genetic algorithm have played a 
vital role in obtaining the solution of bilevel programming problem due to its search 
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method. An interesting review has been presented on the bilevel programming along 
its applications in [48] moving from classical to evolutionary techniques. The con-
cept of Genetic Algorithms (GA) are motivated from the process of biological nat-
ural selection, developed by Holland [49]. GA has made significant improvement 
since then over the traditional methods by providing a set of an efficient domain 
independent search heuristics. The GA models commonly uses binary or real param-
eters as an initial solution, with processes such as mutation, crossover, and, fitness 
selection. Chance constrained programming model involving fuzzy parameter as 
the decision variables in the objective function and in the constraints were handled 
through the technique of genetic algorithm–based fuzzy simulation [50]. Due to its 
easy implementation and less restriction on problems, parallelism, and global per-
spective, [51] firstly developed genetic algorithm to solve BLP. For the above men-
tioned reasons, other researchers proposed types of genetic algorithm to solve BLP 
[52–55]. Goal programming depends on the weighted vectors to convert multiple 
goal attainment into a single objective programming problem with additional con-
straints. To reduce this dependence and to circumvent the additional constraints, [56] 
suggested goal programming as a multi-objective optimization problem to obtain the 
multi-Pareto optimal solution using genetic algorithm. In [28, 57], to solve stochas-
tic programming problem, GA-based stochastic simulation were used. The idea was 
further extended to GA based fuzzy simulation to solve multi-objective fuzzy sto-
chastic programming problems [58, 59]. GA have been used by many researchers to 
solve bilevel programming problem, to mention a few [51, 53, 60–63]. In order to 
solve the real-life problems containing bilevel programming, hybrid methods such 
as GA, and exact method [64], GA with PSO [65] are used to exploit their advan-
tages to a full extent. On a different context, a hybrid method based on machine 
learning and integer programming problems is developed and applied in transporta-
tion science [66].

Particle swarm optimization (PSO) is also a population-based technique and 
aims to search the optimal solution by updating generations, although the strategy 
and the computation techniques applied by both are different. In [67], a PSO-based 
algorithm was developed to solve fuzzy linear bilevel decision problem, where opti-
mization technique is adopted directly minimizing information loss. To strengthen 
further, an efficient method based on improved bilevel particle swarm optimiza-
tion algorithm to deal bilevel programming problem was developed [68]. In case 
of nonlinear bilevel programming problem, [69] presented a neural network model 
by generating approximal optimal solution. They further analyzed the asymptotic 
properties for stability, feasibility, and optimality and derived the necessary condi-
tions. In addition, a hybrid intelligent algorithm combining PSO with chaos search-
ing technique was presented to solve nonlinear bilevel programming problem [70]. 
Application of bilevel programming problem can be found in numerous area like 
taxation (Labb’e et al. [71]), transportation (Yin [55]), airline industry (Cˆot’e et al. 
[72]), and terrorist threat (Arroyo and Galiana [73]). Recent development in the 
solution procedure on bilevel programming problem can be found in [74–78]. In 
[79], a comprehensive review on solving bilevel programming using metaheuristics 
approach is provided.
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1.5  Uncertainty Environment

Optimization problems involving uncertainty and impreciseness in the data together 
either in the objective functions or in the constraints or both are referred to as  
fuzzy stochastic programming problems. In this type of mathematical models, the 
parameters are represented as fuzzy random variables. The novel idea of incorpo-
rating fuzziness to multi-objective stochastic programming was developed in [80]. 
To solve the linear fuzzy stochastic programming problems, [81] presented a novel 
approach of converting the original problem into a stochastic programming prob- 
lem, and then stochastic optimization techniques are applied for solving  the  
problem. The detailed mathematical models and their solution procedure involving 
fuzzy random variables are available in [64, 82–88], and [89] and the references 
therein. Real life contains uncertainty and to solve bilevel programming with uncer-
tainty   adds more complexity in it. Recently, some of the problems handled under 
uncertainty environment are provided in [90–93].

Recent researches on various configurations of optimization problems is provided below:

Authors/year Types of objective Variables/coefficients Solution procedure

Single Multiple Crips Fuzzy Stochastic Fuzzy 
Stochastic

Abo-Elnaga and Nasr 
(2021) [94]

√ √ Modified genetic  
algorithm with 
a new selection 
technique and Chaos 
search

Abo-Elnaga and Nasr 
(2021) [95]

√ √ K-means cluster  
interactive  
algorithm–based 
evolutionary 
approach

Singh et al. (2022) [96] √ √ Modified TOPSIS 
method under 
intuitionistic fuzzy 
environment and 
its application in 
production planning 
problem

Lv et al. (2024)
[97]

√ √ Approximate KKT 
condition to obtain 
weak efficient 
solution

Garg et al. (2023)
[98]

√ √ VIKOR approach  
to solve the  
BLMCNFP problem

Maiti et al. (2023)
[99]

√ √ Goal programming 
strategy with  
neutrosophic 
number
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Authors/year Types of objective Variables/coefficients Solution procedure

Single Multiple Crips Fuzzy Stochastic Fuzzy 
Stochastic

Fatameh and Sadeghi 
(2022)

[100]

√ √ Efficient point 
algorithm used 
under uncooperative 
environment

Yuhui and Zhang 
(2022)

[101]

√ √ Evolutionary  
algorithm driven  
by correlation  
coefficient

Altınkaynak et al. 
(2022)

[102]

√ √ Fuzzy goal  
programming 
approach

Peijun and Zhu (2023) 
[103]

√ √ Focus theory of choice 
where the optimal 
solution is chosen 
according to the 
solution’s focus

Goshu and Kassa 
(2022) [104]

√ √ Systematic sampling 
evolutionary method

Haghifam et al. (2022) 
[96]

√ √ Two stage stochastic 
programming—
distributed energy 
resources

Wang et al. (2022) 
[105]

√ √ Two-stage stochastic 
fuzzy possibilistic 
programming with 
Bayesian model

Cheng et al. (2022) 
[106]

√ √ Fuzzy sorting  
algorithm— 
agricultural water 
resources

Deb (2021) [56] √ √ Genetic algorithm 
with the base  
enumerating method 
to solve interval 
linear BLP

Our review of the literature revealed that many researchers are now using  
computation and hybrid approaches instead of traditional methods to solve  
multi-objective bilevel programming (MOBP) problems because they are easier 
to implement and involve less complexity. Finding novel and effective solutions 
to MOBP is crucial as it is an NP hard problem with many real-world applica- 
tions involving uncertainty. Many researchers transform bilevel programming 
into a single-level programming to obtain the global solution. This approach of 
converting bilevel programming problem into a single level optimization prob-
lem  motivated us  to handle multi-objective bilevel programming without con-
verting into a single-level optimization problem using partial cooperation. 
Partial cooperation plays a vital role in the proposed solution procedure as it cre- 
ates a common constraint space for both the levels. Consequently, a novel genetic 
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algorithm–based approach to solving MOBP with partial cooperation between the 
two levels is presented in this article.

The paper is organized as follows: Sect. 2 presents basic preliminaries, and the 
mathematical models under uncertainty is presented in Sect.  3. The procedure to 
solve the mathematical models is described in Sect. 4. A numerical example is pro-
vided to clarify the proposed method in Sect. 5. Finally, conclusion and discussion 
are presented in Sect. 6.

2  Basic Preliminaries

Definition 2.1 A fuzzy number Ã is a convex normalized fuzzy set Ã of the real line 
R, with membership function Ã : R → [0; 1], satisfying the following conditions.

1. There exist unique interval J ∈ R such that �A(x) = 1: x � J
2. The membership function �A is piecewise continuous.

Definition 2.2 [107] A fuzzy number B̃ = (B(p),B(m),B(o)) is said to be triangular if 
its membership function is strictly increasing in the interval (B(p),B(m)) and strictly 
decreasing in (B(m),B(o)) and �B

(
Bm

)
= 1, where B(m) is core, (B(m) − B(p)) is left 

spread, and (B(o) − B(m)) is right spread of the fuzzy number B̃.

Definition 2.3 [108] α cut of the fuzzy number Ã is the set {x|�A(x) ≥ �} for 
0 ≤ � ≤ 1 and denoted by Ã [α].

Definition 2.4 A fuzzy number Ã is said to be positive if its membership function 
�A(x) ≥ 0; for allx ≥ 0 . It may be stated as follows: Let Ã[�] = [A ∗ ;A∗] be the α cut 
of the fuzzy number Ã for0 ≤ � ≤ 1 . Ã is said to be positive ifA ∗≥ 0.

Definition 2.5 [109] Let Ã = (A(m);A(p);A(o)) and B̃ = (B(m);B(p);B(o)) be two 
fuzzy numbers with α cuts Ã [α] = [A ∗ ;A∗] and B̃[α]= [B ∗ ;B∗] , respectively, then 
Ã≤̃B̃ if and only if A∗ ≤ B ∗ .

Definition 2.6 [110] A fuzzy random variable is a random variable whose parameter 
is fuzzy number. Let X̃ be continuous random variable with fuzzy parameter �̃  and 
P̃ as fuzzy probability; then, X̃ is said to be continuous fuzzy random variable with 
density function f (x;�) , P̃ ( X̃ ≤ x) = �̃  , where0 ≤ (�) ≤ 1 ; �̃ = (�(m);�(p);�(o)) , 
�(p) ≥ 0 and�(o) ≥ 1.

Definition 2.7 [110] Let E = [c, d] be an event. Then, the probability of the event E 
of continuous fuzzy random variable X̃ is a fuzzy number whose α cut is.

P̃ [c ≤ X̃  ≤ d] = [min{∫ b

a
f (x, �)dx|� ∈ �̃[�]; − ∫ ∞

−∞
f (x, �)dx = 1}
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Bounded Random Number (BRN) For C compiler, < stdlib: h > and rand function 
‘rand ()’ where used to generate random number on the interval [0, 1]:

• Step 1: m = rand ()
• Step 2: m ← (m = RAND MAX)

Fuzzy Uniform Distribution A random variable s has a fuzzy uniform distribution if 
its probability density function (pdf) is given by:

Denote the pdf as F̃U(ã, b̃ ), where ã is the lower bound fuzzy triangular number 
and b̃ is the upper bound fuzzy triangular number respectively.

• Step 1: Use � value
• Step 2: Generate n1 from BRN (0, 1)
• Step 3: Return ( ̃a + ( ̃b −ã)n1)

3  Multi‑objective Fuzzy Stochastic Bilevel Programming Problem

The standard bilevel programming problem can be stated as follows

Subject to

Subject to

where A = (aij) m x n1, B = (bij) m x n2, and c = (ci) m x 1, a1 = (a1j) 1 x n1, a2 = (a2j) 1 x n1,
b1 = (b1j) 1 x n2, b2 = (b2j) 1 x n2, x1 = (x1j) n1 x 1, and, x2 = (x2j) 

n2 x 1, 1 < i < m;1 < j < n,n = n1 + n2.

max{∫
b

a

f (x, �)dx|� ∈ �̃[�]; − ∫
∞

−∞

f (x, �)dx = 0}] = [β ∗ [α], β∗[α]].

f (s) =

{
1

�b−�a
, if�a < s < �b

0, otherwise

(3.1)maxx1∈X1
Z1 = aT

1
x1 + bT

1
x2

(3.2)maxx2∈X2
Z2 = aT

2
x1 + bT

2
x2

(3.3)Ax1 + Bx2 ≥ c

(3.4)x1 ≥ 0

(3.5)x2 ≥ 0
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A multi-objective probabilistic bilevel programming (MOPBLP) problem can be 
presented as follows:

Subject to

Subject to

where X ⊆ ℝ
n1 , Y ⊆ ℝ

n2 , x = (x1, x2,… , xn1 ) and y = (y1, y2,… , yn2 ) are the upper 
and lower level variables respectively.

A multi-objective fuzzy probabilistic programming (MOFPBLP) problem is 
an MOPBLP of the above form where one or more of the variables are fuzzy. The 
fuzzy variable can be present in both in objective and constraints or in objective or 
in constraint. The fuzzy random variables portrait the stochastic and impreciseness 
nature of the parameters. As real-life problems contain multiple conflicting objec-
tives involving uncertainty, so to incorporate the uncertainty, fuzzy random varia-
bles are used to formulate the multi-objective fuzzy stochastic bilevel programming 
model. Depending on the nature of the problems, the uncertainty in the mathemati-
cal models can be captured using fuzzy random variables.

Different multi-objective fuzzy probabilistic bilevel programming models for sin-
gle time frame are presented as follows:

3.1  Model 1

Subject to

Subject to

In Model 1, the parameters 
(
ãk
i1
, b̃k

j1

)
∀i, j in the objective and in the constraints 

are fuzzy random variables with �̃p, p = 1, 2,…m is a fuzzy random number.

(3.6)maxx∈X ∶ Zk
1
=
∑n1

i=1
ak
i1
xi +

∑n2
j=1

bk
j1
yj, k = 1, 2,… ,K

(3.7)maxy∈Y ∶ Zl
1
=
∑n1

i=1
al
i2
xi +

∑n2
j=1

bl
j2
yj, l = 1, 2,… ,L

(3.8)P(
∑n1

i=1
fpixi +

∑n2
j=1

gpjyj ≤ cp) ≥ �p, p = 1, 2,…m

ak
i1
, ak

i2
, bk

j1
, bk

j2
, fpi, gpi, �p ∈ ℝ,∀i, j, k, l, p

(3.9)maxx∈X ∶ Z̃k
1
=
∑n1

i=1
ãk
i1
xi +

∑n2
j=1

b̃k
j1
yj, k = 1, 2,… ,K

(3.10)maxy∈Y ∶ Zl
1
=
∑n1

i=1
al
i2
xi +

∑n2
j=1

bl
j2
yj, l = 1, 2,… ,L

(3.11)�P(
∑n1

i=1
fpixi +

∑n2
j=1

gpjyj ≤ �cp) ≽ �𝛿p, p = 1, 2,…m

ak
i1
, ak

i2
, bk

j1
, bk

j2
, fpi, gpi, �p ∈ ℝ,∀i, j, k, l, p
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3.2  Model 2

Subject to

Subject to

In Model 2, the parameters 
(
g̃pj

)
∀j and c̃p in the constraint are fuzzy random vari-

ables with �̃p, p = 1, 2,…m that is a fuzzy random number.

3.3  Model 3

Subject to

Subject to

In Model 3, the parameters 
(
ãk
i1
, and b̃k

j1

)
∀i, j; g̃pj in the objective functions and 

in the constraint are fuzzy random variables. Similar objective functions can be for-
mulated for lower level objective functions as well depending on the problem.

4  Solution Procedure

Most of the research paper are based on solution methodology to solve the bilevel prob-
lem. The difficulty part in solving bilevel programming problem is to obtain a global 
solution. In this paper, Model 2 has been solved by fuzzy stochastic simulation–based 
genetic algorithm approach. The other mathematical models can be solved similarly. 
In the first step, we introduce additional constraints present in the lower as fuzzy sto-
chastic constraints in the upper level or the initial solution range for the lower level 
can be used from past data of the lower level as bounds. This step helps to find an 

(3.12)maxx∈X ∶ Zk
1
=
∑n1

i=1
ak
i1
xi +

∑n2
j=1

bk
j1
yj, k = 1, 2,… ,K

(3.13)maxy∈Y ∶ Zl
1
=
∑n1

i=1
al
i2
xi +

∑n2
j=1

bl
j2
yj, l = 1, 2,… ,L

(3.14)P̃(
∑n1

i=1
fpixi +

∑n2
j=1

g̃pjyj ≤ c̃p) ≥ �̃p, p = 1, 2,…m

ak
i1
, ak

i2
, bk

j1
, bk

j2
, fpi, gpi, �p ∈ ℝ,∀i, j, k, l, p

(3.15)maxx∈X ∶ Z̃k
1
=
∑n1

i=1
ãk
i1
xi +

∑n2
j=1

b̃k
j1
yj, k = 1, 2,… ,K

(3.16)maxy∈Y ∶ Zl
1
=
∑n1

i=1
al
i2
xi +

∑n2
j=1

bl
j2
yj, l = 1, 2,… ,L

(3.17)P̃(
∑n1

i=1
fpixi +

∑n2
j=1

g̃pjyj ≤ cp) ≥ �p, p = 1, 2,…m

ak
i1
, ak

i2
, bk

j1
, bk

j2
, fpi, gpi, �p ∈ ℝ,∀i, j, k, l, p
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easy solution for the bilevel programming problem as it creates a common constraint 
space under the partial cooperation between the two levels. As the decision-makers at 
the upper level may be well acquainted with the constraints of the lower level, tak-
ing into account the lower level constraints will reduce the complexity of the bilevel 
programming problem. The proposed steps can be used for general bilevel program-
ming problem also. In the second step, we apply � cut to remove the fuzziness in the 
constraints and then apply fuzzy inequality. Thirdly, the reformulated fuzzy simulation 
approach for different � values is used and monitors the probability condition simulta-
neously to solve the model. The bracket penalty operator is used to penalize the unsatis-
fied constraints. Once the probability condition is met, the fitness value of the multi-
ple objective functions is evaluated individually. For different � values ranging from 
� = 0.1to0.9 and different values for crossover operator (pc = 0.6 to 0.9) and mutation 
operator (pm = 0.001, 0.005, 0.008, 0.01), they are taken to obtain a set of Pareto opti-
mal solution. The probability of mutation is very less as compared to probability of 
crossover because the change in phenotype occurs at a slower rate in a population. The 
simulation starts with � = 0.1 and runs over different set of crossover probability and 
mutation probability. The solutions are stored, and the after elitism, the best solution 
is taken for next generation. Similarly, the simulation runs for different values of � . 
Finally, the obtained Pareto’s solutions are analyzed to select the efficient solution from 
it. As the multi-objective is often conflicting in nature, it becomes difficult to obtain 
the global solution which will satisfy both the levels. The detail procedures about the 
genetic algorithm are presented below. Also, a numerical example is solved using the 
above steps to show its feasibility.

4.1  Defuzzification

Applying the � cut, the fuzzy parameters are handle in the constraints in the following 
manner:

Applying the fuzzy inequality, the � cut of the fuzzy constraints (3.14) is expressed 
as follows:

Again on simplification, we get the following:

where, (cp∗, c∗p) ∈ cp[�], (�p∗, �
∗
p
) ∈ �p[�], p = 1, 2,… ,m

(4.1)P̃(
∑n1

i=1
fpixi +

∑n2
j=1

gpjyj ≤ c̃p)[�], p = 1, 2,…m

(4.2)P̃(
∑n1

i=1
fpixi +

∑n2
j=1

gpjyj ≤ cp�cp ∈ cp[�]), p = 1, 2,…m

(4.3)�P(
∑n1

i=1
fpixi +

∑n2
j=1

gpjyj ≤ �cp)[𝛼] ≽ �𝛿p, p = 1, 2,…m

(4.4)P(
∑n1

i=1
fpixi +

∑n2
j=1

gpjyj ≤ cp∗) ≥ �∗
p
, p = 1, 2,…m
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4.2  Fuzzy Stochastic Simulation–Based GA

Extend the algorithm presented in [111] to solve the multi-objective fuzzy probabil-
istic bilevel programming problem.

The pseudo code and the parameters used in the algorithm are described below:

Algorithm  Fuzzy Probabilistic Genetic Algorithm
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4.3  Initialization of the Population

A probable solution of population is generated and initialized. If (x1, x2,… , xn) be 
the decision variables, then the corresponding chromosome can be expressed as 
Xp = (x1, x2,… , xn) p, wherep = 1, 2,… , p_size , where p_size indicates popula-
tion size. The user selectable parameter p_size is crucial for searching the domain 
space. Usually a value 0 and the upper limit of the decision variables are chosen 
forxi(i = 1, 2,… , n).

4.4  Handling Fuzzy Stochastic Constraints:

Consider the below fuzzy probabilistic constraints:

Applying the �-cut and inequality conditions, the above expression reduces to

The inequality above can be express as follows:

where s = (c1, c2,… , cm) is an m-dimensional continuous probability distribution, 
with the decision variable x = (x1, x2,… , xn1 ;y1, y2,… , yn2 ) . Next, generating N 
number of independent random variables as sr =

(
cr
1
, cr

2
,… , cr

m

)
, r = 1, 2,… ,N.

Assuming Ni(≤ N), i = 1, 2,… , n , and noting the number of times, the following 
relation is satisfied:

Then, according to the definition of probability, (4.7) will hold if 
(

Ni

N
= a∗

p

)
, p =

1,2,… ,m.

4.5  Fitness Value

The objective functional value which meets the constraints criteria is known as fit-
ness value. In multi-objective programming, each objective function’s fitness value 
is calculated and based on fitness value the objective function are sorted.

(4.5)P̃(
∑n1

i=1
fpixi +

∑n2
j=1

gpjyj ≤ cp∗) ≥ �∗
p
, p = 1, 2,…m

(4.6)P(
∑n1

i=1
fpixi +

∑n2
j=1

gpjyj ≤ cp∗) ≥ �∗
p
, p = 1, 2,…m

(4.7)P(
∑n1

i=1
fpixi +

∑n2
j=1

gpjyj − cp∗ ≥ 0) ≥ �∗
p
, p = 1, 2,…m

(4.8)= P
(
ti(x, s) ≥ 0

) ≥ �∗
p

ti(x, s
r) ≥ 0, i = 1, 2,… , n
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4.6  Selection Method

The robust selection method known as Binary Tournament Selection (BTS) based on 
chromosome fitness value is used to select chromosomes from the population. Choose j 
potential chromosomes from the pool of chromosomes, compare their fitness, and then 
sort the set of chromosomes based on their fitness values in decreasing order. The vic-
tors are chosen for mating. This method is rehashed until the required number of indi-
viduals are accomplished. The tournament size k controls the selection process. The 
tournament selection process is known as BTS if the tournament size is 2. The acquired 
individuals by this method is treated as new population species with same p size as the 
initial population.

4.7  Crossover Operator

The genetic operator called crossover is used to vary the individuals from one genera-
tion to next generation. A crossover point is selected by generating a random number 
r over the open interval (0, 1) for every pair of chromosomes. Denoting the crossover 
probability as pc, if r ≤ pc , then the given pair is selected for crossover.

4.8  Mutation Operator

To alter the sequence in the chromosomes, mutation operator is used which helps in 
varying the population from one generation to another. If the change is done bitwise 
in a sequence of chromosomes, it is known as bitwise mutation. A mutation point is 
selected by generating a random number ‘ r1 ’ over the open interval (0, 1) for every pair 
of chromosomes. Denoting the mutation probability as pm, if r1 ≤ pm , then the given 
pair is selected for mutation.

4.9  Termination

After attaining the needed accuracy or running the maximum generation the algorithm 
terminates.

5  Numerical Example

To illustrate the feasibility of the solution approach, consider the following numerical 
example [65]:

(5.1)maxx,yZ1(x, y) = −x + 4y

(5.2)maxx,yZ2(x, y) = −2x + y
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Subject to

Subject to

The above problem can be formulated as follows:

Subject to

(5.3)0 ≤ x ≤ 3

(5.4)maxyZ3(x, y) = −y

(5.5)maxyZ4(x, y) = −2y

(5.6)−x − y ≤ −3

(5.7)−x + 2y ≤ 0

(5.8)2x + y ≤ 12

(5.9)−3x + 2y ≤ −4

(5.10)y ≥ 0

(5.11)maxx,yZ1(x, y) = −x + 4y

(5.12)maxx,yZ2(x, y) = −2x + y

(5.13)0 ≤ x ≤ 3

(5.14)�P
(
−x − y ≤ �r1i

)
≽ �0.95;i = 1, 2,… , n

(5.15)�P
(
2x + y ≤ �r2i

)
≽ �0.92;i = 1, 2,… , n

(5.16)�P
(
−3x + 2y ≤ �r3i

)
≽ �0.94;i = 1, 2,… , n

(5.17)−x + 2y ≤ 0

(5.18)y ≥ 0

(5.19)maxyZ3(x, y) = −y
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Subject to

where, r1i, r2i, r3i follows fuzzy uniform distribution with F̃U
(
ã, b̃

)
= F̃U(−̃2, −̃5) , 

F̃U
(
ã, b̃

)
= F̃U(1̃0, 1̃4) , F̃U

(
ã, b̃

)
= F̃U

(
−̃1, −̃5

)
, 0̃.95 = (0.93,0.95,0.97), 0̃.92 =

(0.90,0.92,0.94), 0̃.94 = (0.92,0.94,0.96)that are fuzzy triangular numbers.
The solution obtained by proposed solution procedure is equally efficient as com-

pared to [65] for all � values, i.e., if we compare the value of x and y in both the 
papers, then it is the same or almost same. For example, the value of x and y in 
[112] is 3 and 1.5 respectively, whereas, in this paper, one of the solutions is 3 and 
1.5 respectively. Equations  (5.14), (5.15), and (5.16) are added to the upper level 
not exactly as in the lower level, but as a fuzzy probabilistic constraints. This step 
plays a key role in solving the multi-objective bilevel programming problem by cre-
ating a common constraints space for both the levels. It also emphasizes on giving 
importance to the lower level constraints while solving the upper level problem. The 
partial cooperation is highlighted between both the levels which plays a key role in 
solving management problems. In Zheng et  al., the result focuses mainly was on 
the upper level, but in this research paper, importance are given to both the levels, 
i.e., the primary focused on [112], and in general is given to upper level, but in this 
paper, both the levels are given importance.

The crossover probability pc and the mutation probability pm in genetic algo-
rithm were varied from 0.6 to 0.9 and 0.001 to 0.08 respectively.

The diagrammatic representation of the comparison of the both the optimal val-
ues is provided in the Fig. 1 below.

A simplified version of the above numerical example is solved using the soft-
ware GAMS 45.5.0 version (Academic license) taking the objective functions Z1 and  
Z3 in the upper and lower level respectively. The values of the decision variables 
obtained are x = 3 and y = 0 with the objective function value as − 3 and 0 respec-
tively. These values throw light on the effect of decision variable obtained of one 
level onto the other. The upper bound for the decision variables were x = 3 and 
y = 10 ; however, taking different values for y did not improve the solution. In addi-
tion, changing the objective function from maximizing to minimizing yielded a dif-
ferent result. The values of the decision variables thus obtained are x = 3 and y = 0 

(5.20)maxyZ4(x, y) = −2y

(5.21)−x − y ≤ −3

(5.22)−x + 2y ≤ 0

(5.23)2x + y ≤ 12

(5.24)−3x + 2y ≤ −4

(5.25)y ≥ 0
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Comparison of Op�mal Value 

F2

Z2

F1

Z1

Fig. 1  Comparison of optimal values presented in Table 1 and Table 2

Table 1  Pareto solutions using 
genetic algorithm

Optimum values of Z1,Z2,Z3,Z4

x y Z1 Z2 Z3 Z4

2.9906 1.4952 2.9902  −4.486  −1.4952  −2.9904
3.0 1.5 3.0  −4.5  −1.5  −3.0
2.9981 1.4952 2.9827  −4.5010  −1.4952  −2.9904
2.9828 1.4919 2.9848  −4.4737  −1.4919  −2.938
2.9363 1.482 2.9917  −4.3906  −1.482  −2.9640

Table 2  Optimum solutions for 
different values of � in [112]

Zheng et al.’s result

� x y Z

0.5 3 1.5 3, − 4.5
0.6 2.8 1.4 2.8, − 4.2
0.7 2.6 1.3 2.6, − 3.9
0.8 2.4 1.2 2.4, − 3.6
0.9 2.2 1.1 2.2, − 3.3

Table 3  Comparison of the 
solution obtained by using EMP 
and manual

Constraints/decision 
variable

EMP Manual Difference

Constraint 1  −3  −3 0
Constraint 2  −3  −3 0
Constraint 3 6 6 0
Constraint 4  −9  −9 0
x 3 3 0
y 0 0 0
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using extended mathematical programming (EMP) and x = 3 and y = 1.5 manually. 
Table 3 gives the detail of the solution obtained using GAMS software for maximiz-
ing problem.

Clearly, we see that constraints 3 and 4 are not utilized in its full sense, which 
indicates that the solution can be improved further.

6  Conclusion and Discussion

A bilevel programming is an NP hard problem with many real-world applications. 
Therefore, to find better and efficient solution is a challenging task. Many methods 
and algorithms were developed to obtain the global solution which will satisfy both 
the levels. Single objective functions are studied well, and solution methodology 
for the bilevel programming is developed. But, in case of multi-objective with con-
flicting nature at both the levels, still remains an interesting problem. Thus, in this 
line, a novel solution procedure is presented to solve bilevel programming problem 
and is implemented in solving a multi-objective fuzzy stochastic bilevel program-
ming problem using genetic algorithm. In this paper, the concept of partial coop-
eration has been implemented by converting the non-fuzzy stochastic constraints 
of the lower level as a fuzzy stochastic constraints and added to the upper level. 
This step provides a common constraint space for both the levels and also high-
lights the importance of partial cooperation in solving management problems. As 
the decision-makers at the upper level may be well acquainted with the constraints 
of the lower level. Taking into account the lower level constraints will reduce the 
complexity of the bilevel programming problem. The model formulated to solve 
bilevel programming problem can be implemented in any bilevel problem to obtain 
the optimum solution and/or Pareto solutions. Comparing the Pareto solution of 
the numerical example shown in Table 1 to the optimal solution of the publication 
[112], which is shown in Table 2, reveals that the former is optimal. The only diffi-
culty lies with the proposed solution procedure is to get the past data or information 
of the lower level which may not be possible in all cases and as the number of vari-
ables increases the complexity will also multiply. As multi-level programming is a 
decentralized planning problem and bilevel is a special case of it, therefore being a 
real-life model, the proposed can be implemented in any policy-making problems, 
supply-chain problems, network problems and further extended to transportation 
problem, transshipment problem, inventory problem, agricultural problem, etc. 
This work can be further develop to include competition strategies into a single 
mathematical model where at present only uncertainty is incorporated. Depending 
on the problem, such mathematical models can be developed which include both 
uncertainty and competition under one frame with possible different time frame.
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