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Abstract
As conventional last-mile transport contributes to traffic congestion and pollution, 
urban areas need new approaches to transporting freight. One promising idea is inte-
grating freight deliveries with existing public transport infrastructures like light rail. 
However, this concept creates the challenge of offering a high service quality for 
passengers and freight. In this work, we consider a setting where freight originates 
from and is transhipped at several public transit stops that serve as micro-depots 
with a limited storage capacity. Furthermore, the system relies on shared vehicles, 
where a dedicated share of the capacity can be used to fasten freight containers 
or as a standing area for passengers. For this setting, we propose an optimisation 
model that integrates the tactical scheduling of transport services and the alloca-
tion of freight containers to those services. To solve realistically sized instances, we 
propose an adaptive large neighbourhood search heuristic. We use this heuristic to 
evaluate the system’s sensitivity to the capacity of micro-depots and vehicles.

Keywords  Transportation · Logistics · Shared transport · Scheduling · Adaptive 
large neighbourhood search

1  Introduction

Given close quarters and a high population density in urban areas, sustainably 
moving humans and freight on the "last mile" is challenging [1]. Both public 
transport and freight transport require space within cities’ infrastructure and meet 
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similar expectations: Passengers expect short travel times and frequent depar-
tures, while freight customers expect quick and punctual deliveries. At the same 
time, citizens expect the municipality to limit air and noise pollution and traffic 
for a better quality of life.

Integrating freight transport into public transport may offer chances to improve 
both services: The option to exploit capacity overhangs profitably can justify 
financial investments in public transport while limiting the adverse ecological 
effects of freight transport. Capacity overhangs occur in on-demand [2] and in 
fixed transportation services [3]. Here, we consider the challenge of integrating 
passengers and freight on a fixed infrastructure, such as light rail, thereby further 
justifying the investment while exploiting the opportunity of short travel times 
compared to crowded streets [4]. We allow for a partially shared vehicle capacity, 
e.g., a dedicated area in each shared vehicle can either carry securely attached 
freight containers or serve as standing space for passengers. Although this con-
cept currently faces legal restrictions in many European countries, it features in 
the pilot project LogIKtram in Karlsruhe, Germany [5].

Integrating passengers and freight must not disadvantage passengers to ensure 
the system’s acceptance and keep public transport attractive [6]. The success of 
such systems depends on strategic decisions, such as the inclusion of public trans-
port lines, vehicle capacity, and the capacity and positioning of depot stations [7, 
8], as well as on operational decisions, such as how much freight to accept and 
which parcels to transport on which vehicle [9].

To support planning for such an integrated system and to evaluate its sensitiv-
ity to strategic decisions, we extend a model first presented in [10]. That con-
tribution proposed a lexicographical model to create demand-oriented schedules 
and to assign freight containers to shared services given a single depot. The opti-
misation model prioritises passenger service by minimising the passengers’ wait-
ing time first and minimising the number of rejections and the delivery delay of 
cargo requests second. The extended model presented here lets freight originate 
and end at multiple micro-depots with a limited capacity. To solve realistically 
sized instances, we propose an adaptive large neighbourhood search (ALNS) heu-
ristic as inspired by [11].

We evaluate the heuristic’s solution performance and the system’s sensitivity 
to the vehicle and micro-depot capacities by planning and processing a simu-
lated day of operations. To that end, we generate artificial passenger and freight 
demand for various combinations of demand scenarios and network designs. 
Thus, the contribution of this paper is threefold:

•	 We formulate an extended problem allowing for the flexible pick-up and deliv-
ery of freight in a fixed public transport infrastructure.

•	 We extend ALNS operators for an ALNS-based approach to creating demand-
oriented schedules and assign freight to transport services.

•	 We evaluate the system’s sensitivity to strategic capacity decisions.

In the next section, we briefly review the state of integrated passenger and freight 
transport research before presenting an overview of related contributions featuring 



1 3

Operations Research Forum (2023) 4:54	 Page 3 of 35  54

ALNS. Subsequently, in Sect. 3, we describe the problem setting in further detail. 
In Sect. 4, we introduce the hierarchical optimisation model. Section 5 describes the 
proposed ALNS, specifically expounding on destroy and repair operators. We ana-
lyse the solution performance of the ALNS compared to simple scheduling rules and 
the mathematically optimal solution in Sect. 6. Section 7 analyses the resulting sys-
tem’s sensitivity to alternative combinations of the depot and vehicle capacity given 
by earlier strategic decisions. Finally, Sect. 8 summarises our findings and provides 
an agenda for further research in the domain.

2 � State of the Art

Cooperative transport of freight and passengers becomes possible when the pub-
lic transport system is not always fully utilised. Cavallaro and Nocera [7] provide a 
broad, concept-centric literature review focused on the idea. Hörsting and Cleophas 
[10] survey existing optimisation models considering the shared transportation of 
passengers and freight in an urban area on a fixed infrastructure. However, to pro-
vide a path to success for such integrated systems, decision-makers must find opera-
tional modes that ensure both passenger and freight service quality. In that regard, 
the research presented here is further motivated by a call-to-action stated in [12]: 
“model the impacts of [...] the projects [...] to estimate impacts on congestion, oper-
ations, and environmental outcomes”.

As shown in [13], significant distance savings can result when public transport 
systems deliver freight to micro-depots, from where they can reach their final desti-
nation. The idea of these micro-depots motivates the extended model presented here, 
in which, at a variety of stops, both passengers and freight can leave and enter the 
vehicles.

As we propose, on the one hand, a prescriptive approach to schedule vehicles and 
allocate freight and, on the other hand, evaluate the outcomes for various scenarios, 
our research is related to several further contributions. For example, [14] evaluate 
scheduling decisions for cargo vehicles in a freight rail system based on a discrete 
event-based simulation. Taking a much broader view of the matter, [15] evaluate a 
range of urban logistics schemes in an agent-based simulation to estimate implica-
tions for sustainability and the schemes’ attractiveness for stakeholders.

In the remainder of this section, we focus on two aspects that drive the model and 
the solution approach proposed in this paper: Firstly, we briefly summarise existing 
research on multi-depot transportation and relate it to the idea of micro-depots on a 
fixed infrastructure. Secondly, we provide some background for the adaptive large 
neighbourhood search algorithm we rely on to solve the scheduling problem.

2.1 � Micro‑Depot Transportation

Fragmented freight flows and inefficient delivery operations are two challenges in 
last-mile transportation that increase the need for consolidation [15]. At the same 
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time, ecologically friendly transportation modes like cargo bikes and electronic 
trucks often offer a lower capacity and a shorter range than conventional trucks. This 
conundrum has sparked increasing interest in urban consolidation centres or micro-
depots. Katsela et al. [16] evaluate the advantages and disadvantages of micro-hubs 
by analysing and comparing case studies. Planning a micro-depot network involves 
optimisation problems on various levels.

In recent research, [17] propose a method to locate distribution hubs in a metro 
network, while [18] consider location planning problems for multiple depots when 
cargo bikes take over the last part of freight transport. Furthermore, [19] review 
existing hub location problems and propose ideas to improve modelling. Delle 
Donne et al. [8] envision a system where freight enters and leaves the public trans-
port system via a set of drop-in and drop-out stations. In that setting, the authors 
evaluate strategic decisions on which public transport lines to recruit for freight 
transport and where to locate drop-in and drop-out stations.

In vehicle routing, multiple depots are a prominent concept [20–23]. Multi-depot 
solutions also combine well with new logistics schemes like crowd shipping or 
mobile depots [24–26].

In passenger transport, approaches to scheduling focus on depots that describe 
the starting and ending point of the trip for each vehicle. For example, [27] con-
sider a multi-depot vehicle scheduling problem where buses are assigned to given 
timetabled trips, whereas [28] focus on an integrated multi-depot vehicle and crew 
scheduling problem.

In this work, we consider a micro-depot network for shared passenger and freight 
transport. In that, we consider location and capacity decisions as given from strate-
gic planning but evaluate their implications for integration success. Given the idea 
of fixed infrastructure and line plans, scheduling services and allocating freight to 
services overtakes routing.

2.2 � Adaptive Large Neighbourhood Search (ALNS)

The adaptive large neighbourhood search (ALNS) is a meta-heuristic first proposed 
by [29] to solve a pickup and delivery problem with time windows. It extends the 
idea of large neighbourhood search (LNS) by allowing for a variety of destroy and 
repair operations as opposed to a single pair of one destroy and one repair operator. 
In each iteration, these destroy and repair operators are selected randomly according 
to weights that are updated based on different search strategies. For instance, opera-
tors leading to an improvement in the objective value are more likely to be selected 
in future iterations. The advantage of ALNS over LNS is the extended search space, 
which reduces the risk of getting stuck in local optima. Most ALNS algorithms 
include operators that aim for diversification and intensification. Diversification 
means the operator randomly searches a large part of the neighbourhood to find new 
solutions. Intensification implies that the operator searches purposefully to improve 
the quality of the current solution. For more information, we refer the reader to the 
definitions by [30].
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Today, ALNS is applied to various large-scale routing and scheduling problems. For 
instance, for variants of the pickup and delivery problems [29, 31, 32], two-echelon vehi-
cle routing problems [34, 33], or workforce routing and scheduling problems [35–37]. 
Windras Mara et al. [38] present a detailed survey of the recent development on ALNS.

Barrena et al. [39] introduce an ALNS heuristic to solve a rail rapid transit prob-
lem with dynamic passenger demand, minimising the passenger waiting time. They 
improve the results of a branch-and-bound algorithm in [40] by 26%. Similarly, [11] 
propose an ALNS to find a demand-oriented timetable, minimising the passenger 
congestion at stops. Their model includes limited vehicle capacities and multiple 
lines. Yuan et al. [41] use ALNS to design an urban network combining a fixed-line 
transport system and a demand-responsive transport system.

For this work, we are interested in applying ALNS to demand-oriented service 
scheduling problems. To that end, we adapt the heuristic of [11] to integrate the 
freight transport in Sect. 5.

3 � Problem Setting

In the following, we explain the problem framework and underlying assumptions. 
We extend the model of [10] by considering multiple micro-depots to be located at 
selected stops and feature a limited storage capacity. Furthermore, we focus on the 
operational mode featuring shared vehicles, assuming a limited share of the vehicle 
capacity can be used to secure freight.

The setting features an existing public transit infrastructure with a fixed set of 
stops and connecting legs, e.g., a single line in a light-rail network. Each station 
consists of two stops with opposite directions. Furthermore, we assume that the 
stops of each station are close to each other, i.e., it is possible to walk from the first 
to the second stop of the same station in, at most, a few minutes. Such a network 
configuration is common in many European cities that are the inspiration for this 
work. The vehicles operate on a circular, bi-directional single route, i.e., they start at 
a joint start stop and turn around when arriving at the boundary station (see Fig. 1).

The expected passenger demand takes the form of quantity flows driven by the 
arrival and alighting rates per time period and stop. First, we consider the number 
of passengers arriving per stop and period. When a vehicle arrives at a stop, a fixed 
ratio of passengers alights. Since the network is bi-directional and each stop serves 
a dedicated direction, every passenger waiting at a stop wants to board the arriving 
vehicle.

Several stops are pre-defined micro-depots, where freight can be loaded and 
unloaded. We consider freight as containers carrying parcels with the same 
requirements, i.e., time and place of release, due time, and destination. Every 
container should be transported to its destination stop within a soft due time. 
Additionally, a hard due time per container sets the time of the latest accept-
able arrival at the destination. We allow for the rejection of container requests to 
guarantee feasibility. Note that we assume that the service provider decides on 
the acceptance of containers before the start of the period so that freight custom-
ers can still find alternative means of transport. The micro-depots can only store 
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a limited number of containers between release and pick-up. Containers do not 
require storage capacity after drop-off at their destination stop, as we assume 
they are picked up instantly or immediately forwarded to their final destination.

The vehicle capacity is also limited. Specifically, we assume that parts of 
the standing area for passengers are modified so that parcel containers can be 
attached there, i.e., we assume that passengers and cargo share a selected vehicle 
space. Again, the transport of passengers is prioritised. First, passengers alight 
and board the vehicle. If there is enough space left, the parcel containers are 
secured in the remainder of the shared area.

This work focuses on satisfying the demand for the passenger and freight ser-
vice while integrating freight into the public transit system. For this reason, we 
consider an irregular time schedule with variable dwell times. Each service in 
the time schedule is defined by an individual vehicle’s arrival and departure time 
per stop over the course of the considered horizon. All processes, like board-
ing and alighting passenger and loading and unloading containers, must be exe-
cuted during the dwell time. Additionally, there must be a sufficient dwell time 
between the departure of two subsequent vehicles from the same stop, and no 
two vehicles must occupy the same platform simultaneously.

In practice, the planners usually determine the lines and the timetable before 
considering the vehicle routes and crew schedules [42]. Here, we disregard the 
challenges of rolling stock. Thus, we set an upper bound for the maximal num-
ber of services offered within the planning horizon instead of defining a specific 
fleet size. Nevertheless, given a time schedule, we can deduce the maximal num-
ber of simultaneously operating vehicles and, thus, the minimum required fleet 
size to operate the line. We aim to determine an irregular, demand-oriented time 
schedule and assign containers to operating services following the problem for-
mulation detailed in the next section.

4 � Mathematical Formulation

The problem considered here entails defining a time schedule T  as a set of indi-
vidual services. Since we consider demand-oriented scheduling, we allow for aperi-
odic services, i.e., vehicles may arrive and depart irregularly. We formally define a 

Fig. 1   Assumed network topology: a circular, bi-directional single route
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schedule in Sect. 4.1. For a given schedule, we compute the passenger flows and the 
resulting passenger service quality as described in Sect. 4.2.

Additionally, the problem entails assigning cargo containers to vehicles as for-
malised in Sect. 4.3, while minimising cargo delay and rejection. In Sect. 4.4, we 
link both sub-problems through a global lexicographical objective function defined, 
where we minimise the passenger congestion first and afterward the delay and rejec-
tion rate of cargo requests. Tables 1, 2, and 3 list the notation for sets, variables, and 
parameters introduced in the following.

4.1 � Time Schedule Formulation

We consider a discrete planning horizon, given as a set of time periods P . Fur-
thermore, we define a time schedule T  as a set of individual services, where each 

Table 1   List of index sets

Notation Set Description

S Set of stops
P   Set of periods in the planning horizon

P
dep
s    ⊂ P Set of departure times from stop s ∈ S

P
start
s

⊂ P Set of periods at which stop s ∈ S releases a container
T Set of services

T
dep
s,p

⊂ T Set of services that depart from stop s ∈ S at period p ∈ P

T
dep

s,≤p
⊂ T Set of services that depart from stop s ∈ S at period p ∈ P and earlier

R Set of containers
Rs ⊂ R Set of containers for which stop s ∈ S is included in the delivery path
R

start
s

⊂ R Set of containers with start at stop s ∈ S

R
end
s

⊂ R Set of containers with stop s ∈ S as their destination

R
start
s,≥ p

   ⊂ R Set of containers that start at stop s ∈ S at period p ∈ P and later

Table 2   List of variables

Notation Set Description

ds, t   ∈ P Departure time of service t ∈ T  from stop s ∈ S

as, t   ≥ 0 Arrival time of service t ∈ T  at stop s ∈ S

hs, t   ≥ 0 Dwell time of service t ∈ T  at stop s ∈ S

ws, p+ �s
p
   ∈ ℕ Number of passengers at stop s ∈ S in the interval [p, p + �s

p
] for 

period p ∈ P
dep
s

∪ {0}

wcum
s, p+ �s

p

   ∈ ℕ Accumulated number of passengers at stop s ∈ S in the interval [p, p + �s
p
] for 

period p ∈ P
dep
s

∪ {0}

ns, t   ∈ ℕ Number of passengers using service t ∈ T  when departing from stop s ∈ S

bs, t   ∈ ℕ Number of boarding passenger for service t ∈ T  from stop s ∈ S

es, t   ∈ ℕ Number of alighting passenger from service t ∈ T  at stop s ∈ S

yr, t   ∈ {0, 1} Is one if the container r ∈ R assigned to service t ∈ T  , else zero
zr ∈ {0, 1} Is one if the container r ∈ R accepted, else zero
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service t ∈ T  must pass all stops in the bi-directional network, represented by the 
set S . The number of services in T  is limited by the parameter V ∈ ℕ . Each service 
t ∈ T  consists of a departure time ds, t ∈ P , an arrival time as, t ≥ 0 , and a dwell 
time hs, t ≥ 0 per stop  s ∈ S . The parameter 𝜇s1, s2

> 0 gives the time-independent 
travel time between two stops s1 and s2 ∈ S . A given parameter �min ≥ 0 defines a 
minimal dwell time. Analogously, a maximal dwell time �max ≥ 0 per service ensures 
a limited overall travel time. In a feasible solution, two vehicles cannot dwell at the 
same stop at the same time. A minimal headway H ≥ 0 spaces the departure of two 
consecutive services from the same stop.

Formally, a feasible time schedule T  solves the following decision model:

(1)as, t = ds− 1, t + �s− 1, s, ∀s ∈ S ⧵ {0}, t ∈ T,

(2)hs, t = ds, t − as, t, ∀s ∈ S, t ∈ T,

(3)hs, t ≥ �min, ∀s ∈ S, t ∈ T,

Table 3   List of parameters

Notation Set Description

�s1, s2   ≥ 0 Travel time between stop s1 and stop s2 ∈ S

�min ≥ 0 Minimal dwell time at a stop
�max ≥ 0 Maximal dwell time at a stop
H ≥ 0 Minimal headway between two services
V ∈ ℕ Maximal number of services
�s
p

≥ 0 Duration between period p ∈ P to the next larger period in Pdep
s

Ns, p   ∈ ℕ Number of passengers arriving at stop s ∈ S at period p ∈ P

�
alight

s, t    ∈ [0, 1]   Ratio of passengers alighting service t ∈ T  at stop s ∈ S

C
pas ∈ ℕ Vehicle capacity primarily for passengers

�board ≥ 0 Boarding time per passenger

�alight ≥ 0 Alighting time per passenger

h̄s, t   ≥ 0 (Fixed) dwell time of service t ∈ T  at stop s ∈ S

Tr, t   ≥ 0 Delay of container r ∈ R transported according to service t ∈ T

P ≥ 0 Penalty for rejection per container
Qr > 0 Space required to load a single container r ∈ R

n̄s, t   ∈ ℕ (Fixed) number of passengers using service t ∈ T  when depart-
ing from stop s ∈ S

Cfre ∈ ℕ Vehicle capacity for cargo only
Cs ∈ ℕ Micro-depot capacity of stop s ∈ S

� load ≥ 0 Loading time per container

�unld ≥ 0 Unloading time per container
T
max ≥ 0 Maximal delay per container
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Through constraints (1), each service’s arrival time at the next stop results from 
adding up the departure time of the current stop and the travel time between both 
stops. Per stop, each service also provides a dwell time for the vehicle defined as 
in constraints (2). The minimal and maximal dwell are modelled in constraints (3) 
and  (4). Constraints  (5) set the order of the services, as a service’s arrival cannot 
take place before the previous service’s departure from the respective stop. Further-
more, constraints (6) ensure the headway between two consecutive departures from 
the same stop. Finally, constraint (7) limits the number of maximal services.

4.2 � First Sub‑Problem: Determine the Passenger Flow

We consider minimising freight transport’s interference with passenger transport 
quality as a crucial success factor for their integration. To quantify the passenger 
service quality, we measure the average passenger waiting time, overall stops, and 
times resulting from the passenger flow that a specific schedule produces.

We let a mixed-integer program describe the passenger flow for a given time 
schedule T  . The parameter Ns,p ∈ ℕ represents the new arriving passengers at stop 
s ∈ S and period p ∈ P . Note that the number of passengers and containers at 
each stop only decreases at a service’s departure. For this reason, we are particu-
larly interested in the departure times, defined as set Pdep

s
⊂ P for each stop s ∈ S . 

Analogously, the set T dep
s,p

⊂ T  includes the services that depart from stop s ∈ S at 
period p.

Additionally, the parameter 𝜏s
p
> 0 describes the duration between period p ∈ P

dep
s  

to the next larger period in Pdep
s  for each stop  s ∈ S . The parameters  �board ≥ 0 

and �alight ≥ 0 give the required boarding and alighting time per passenger. Based 
on the schedule T  , the value of h̄s,t represents the dwell time of service t ∈ T  at 
stop s ∈ S . The parameter Cpas is the vehicle capacity that can be used by passen-
gers. The parameter �alight

s,t ∈ [0, 1] represents the ratio of passengers alighting at stop 
s ∈ S from service t ∈ T  , where the boundary values indicate that none ( �alights,t = 0 ) 
or all ( �alights,t = 1 ) of the passengers alight.

The integer variable ws, p+ �s
p
 describes the number of passengers waiting during 

the time interval [p, p + �s
p
] for period  p ∈ P

dep
s

∪ {0} at stop s ∈ S . Analogously, 
the integer variable wcum

s, p+ �s
p

 represents the number of passengers accumulated over 

(4)hs, t ≤ �max, ∀s ∈ S, t ∈ T,

(5)as, t ≥ ds, t− 1, ∀s ∈ S, t ∈ T ⧵ {0},

(6)ds, t ≥ ds, t− 1 + H, ∀s ∈ S, t ∈ T ⧵ {0},

(7)|T| ≤ V ,

(8)ds, t ∈ P, hs, t, as, t ≥ 0, ∀s ∈ S, t ∈ T.
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the time window [p, p + �s
p
] for period p at stop s. The accumulation is important to 

record the waiting times per passenger. The integer variable ns,t represents the num-
ber of passengers travelling via service  t ∈ T  when departing from stop  s ∈ S . 
Finally, the integer variables bs,t and es,t are the number of boarding and alighting 
passengers at stop s and for service t, respectively.

The overall sub-problem is defined as

The objective function  (9) minimises the average passenger waiting time. Con-
straints  (10) and  (11) determine the absolute and accumulated number of waiting 
passengers. The number of passengers travelling on a service is represented by con-
straints (12). Constraints (13) set the number of initially boarding passengers to the 

(9)minA(T) ∶=
∑
s∈S

∑
p∈P

dep
s

∪{0}

wcum
s, p+ �s

p

|S| ⋅ |P| ,

(10)

s.t. ws, p+ �s
p
= ws,p −

∑
t∈ T

dep

p+ �sp , s

bs, t +

�s
p
−1∑

� = 0

Ns, p+ � , ∀p ∈ P
dep
s

∪ {0}, s ∈ S,

(11)

wcum

s, p+ �sp
= �s

p
⋅ ws, p −

∑
t∈T

dep

p+ �sp , s

bs, t +

�sp − 1∑
� = 0

(�s
p
− �) ⋅ Ns, p+ � , ∀p ∈ P

dep

s
∪ {0}, s ∈ S,

(12)ns, t = ns− 1, t + bs, t − es, t, ∀s ∈ S ⧵ {0}, t ∈ T,

(13)n0, t = b0, t, ∀t ∈ T,

(14)es, t ≤ �
alight

s, t ⋅ ns− 1, t, ∀s ∈ S ⧵ {0}, t ∈ T,

(15)es, t ≥ �
alight

s, t ⋅ ns− 1, t − 1, ∀s ∈ S ⧵ {0}, t ∈ T,

(16)ns, t ≤ Cpas, ∀s ∈ S, t ∈ T,

(17)𝛽board ⋅ bs, t + 𝛽alight ⋅ es, t ≤ h̄s, t, ∀s ∈ S, t ∈ T,

(18)ws, p,w
cum
s, p

∈ ℕ ∀p ∈ P
dep
s

∪ {0}, s ∈ S,

(19)ns, t, bs, t, es, t ∈ ℕ ∀s ∈ S, t ∈ T.
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number of initially waiting passengers. Constraints (14) and (15) consider the num-
ber of passengers who alight a service at a particular stop. Constraints  (16) limit 
the number of onboard passengers to the available vehicle capacity. Constraints (17) 
model the required service times for passenger transportation and limit it to the 
overall dwell time per stop and service.

4.3 � Second Sub‑Problem: Allocate Containers in a Given Schedule

Given a schedule that maximises passenger service quality, we want to reward 
freight allocations that produce an acceptable freight service quality. Here, we meas-
ure freight service quality via delays and rejection penalties.

We introduce several index sets to model the transport of parcel containers, rep-
resented by the set R . The set Tr contains all services suitable for transporting con-
tainer r ∈ R , i.e., ensuring that the service’s departure does not occur before the 
container is released and loaded. The set  T dep

s,≤ p
 includes all services that depart 

stop s ∈ S at period p ∈ P and earlier. The set Rs includes all containers for which 
stop s ∈ S is included in the delivery path. The set Rstart

s
⊂ R ( Rend

s
⊂ R ) includes 

all containers with start (destination) s ∈ S . The set Rstart
s,≥ p

 includes the containers 
released at period p ∈ P and later. The set Pstart

s
 includes all periods at which stop 

s ∈ S releases a container.
The binary decision variable yr, t models whether container r ∈ R is assigned to 

service t ∈ T  ( yr, t = 1 ) or not ( yr,t = 0 ). Furthermore, the binary variable zr decides 
whether a container r ∈ R is accepted ( zr = 1 ) or rejected ( zr = 0).

The parameters � load ≥ 0 and �unld ≥ 0 represent the required time for loading 
and unloading a container. Furthermore, the value of h̄s, t denotes the dwell time of 
service t ∈ T  at stop s ∈ S . The value Tr,t presents the delay of containers r ∈ R if 
transported via service t ∈ T  . Furthermore, the delay of a container must not exceed 
the parameter Tmax ≥ 0 . Each rejected container is penalised with a parameter P ≥ 0

.
As stated before, the parameter Cpas > 0 is the total vehicle capacity that can be 

used by passengers. However, the vehicle’s standing area can alternatively hold par-
cel containers; its size is represented by the parameter Cfre ≥ 0 . Thus, Cfre ≤ Cpas 
always holds. The parameter Qr > 0 gives the space required to transport a single 
container r ∈ R in relation to the space required by one passenger. Figure 2 illus-
trates the relation of the parameters Cpas, Cfre and Qr , for r ∈ R . The number of pas-
sengers n̄s, t travelling on service t ∈ T  by departure from stop s ∈ S results from 

Fig. 2   Illustration for the concept of shared vehicle capacity
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solving the first sub-problem (cf. Sect.  4.2). Additionally, the parameter Cs ≥ 0 
describes the freight storage capacity of the depot stop s ∈ S.

Thus, allocating containers to vehicles in a given schedule entails solving the fol-
lowing second sub-problem:

Objective function  (20) minimises the average cargo delay and the total rejection 
penalty. Constraints (21) ensure the delivery of each container via exactly one suit-
able service. Conversely, a service must not be selected if its departure at a stop is 
set before the containers are released (cf. constraints (22)). Constraints (23) guaran-
tee the restriction to the left-over capacity after the passengers boarded. Simultane-
ously, constraints  (24) limit the used space to the dedicated cargo capacity of the 
vehicle. Constraints (25) model a limited stop capacity to store accepted containers 
in micro-depots between their release and pick-up by the assigned service. Rejected 
containers do not require storage. Constraints (26) model the required service times 
for cargo transportation. Constraints (27) enforce a maximal delay per container.

(20)minB(T) ∶=
∑
r∈R

(∑
t∈ T

Tr, t ⋅ yr, t

|R| + P ⋅ (1 − zr)

)

(21)s.t.
∑
t∈ Tr

yr, t = zr, ∀r ∈ R,

(22)
∑

t∈ T⧵Tr

yr, t = 0, ∀r ∈ R,

(23)
∑
r∈Rs

Qr ⋅ yr, t ≤ Cpas − n̄s, t, ∀s ∈ S, t ∈ T,

(24)
∑
r∈Rs

Qr ⋅ yr, t ≤ Cfre, ∀s ∈ S, t ∈ T,

(25)
�

r∈R
start
s,≥ p

⎛
⎜⎜⎝
zr −

�
t∈ T

dep

s,≤ p

yr, t

⎞
⎟⎟⎠
≤ Cs, ∀p ∈ P

start
s

, s ∈ S,

(26)
∑

r∈R
start
s

𝛽 load ⋅ yr, t +
∑

r∈R
end
s

𝛽unld ⋅ yr, t ≤ h̄s, t, ∀s ∈ S, t ∈ T,

(27)Tr, t ≤ Tmax
⋅ yr, t, ∀r ∈ R, t ∈ T,

(28)yr, t, zr ∈ {0, 1}, ∀r ∈ R, t ∈ T.
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4.4 � Global Objective Function

We rely on a lexicographical objective as previously implemented in [10] to opti-
mise passenger and freight service quality. We prioritise passenger transport, such 
that the primary objective is to reduce the average waiting time A(T) accumulated 
over all periods and stops (cf. Sect.  4.2). The secondary objective minimises the 
penalty B(T, y, z) for average container delivery delay or container rejection (cf. 
Sect. 4.3). Thus, the global objective function is

where T  is a feasible time schedule according to Sect. 4.1, and the assignment vari-
able y ∈ {0, 1}R×T  and the acceptance variable z ∈ {0, 1}R satisfy the restrictions 
stated in Sect. 4.3.

5 � Adaptive Large Neighbourhood Search (ALNS)

Hörsting and Cleophas [10] show that solving a simpler version of the problem con-
sidered here to optimality is computationally expensive. As we aim to support plan-
ning and analysis for instances of realistic size in terms of the number of vehicles, 
stops, and periods, we propose to solve the problem via an ALNS heuristic. In that, 
we adapt the solution approach of [11] by integrating cargo transport. To that end, 
we propose iteratively optimising the cargo allocation and extending the ALNS by 
adding an operator that accounts for cargo service quality.

Figure 3  illustrates the ALNS procedure for the integrated cargo and passenger 
scheduling problem. The heuristic starts by constructing an initial time schedule 
(see Sect. 5.1), which it considers as the current schedule. Subsequently, it applies 
firstly a destroy operator (Sect.  5.2) and secondly a repair operator (Sect.  5.3). It 
selects operators based on probabilities given by the current weights. Applying the 
operators results in a new candidate schedule. The heuristic evaluates the passenger 
service quality for this candidate solution by solving the passenger flow problem. 
After a given number of warm-up iterations and if the candidate solution produces 
a passenger service quality that is at least equal to that in the current solution, the 
heuristic computes the optimal cargo assignment, i.e., solving the sub-problem intro-
duced in Sect.  4.3. If the overall objective value improves, the candidate solution 
becomes the new best solution. Finally, the heuristic updates the operator weights 
and decides whether the candidate solution becomes the new current solution based 
on an acceptance criterion. This procedure repeats until a maximum number of itera-
tions, a maximum number of iterations without improvement, or a maximal running 
time is exceeded. In the following, we discuss each step in more detail.

(29)lexminT, y, z{A(T),B(T, y, z)},
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5.1 � Initialisation

The ALNS algorithm creates an initial schedule before searching for improve-
ments via destroy and repair operations. Specifically, the initialisation constructs 
a time schedule with regularly spaced departures and fixed dwell times at each 
stop. Figure 4 illustrates an exemplary initial schedule.

First, the initialisation fixes the latest feasible service for an initial constant 
dwell time h and stops |S| . This service departs from the last stop at the last 

Fig. 3   Adaptive large neighbourhood search for the integrated cargo and passenger scheduling problem
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possible period, i.e., |P| − 1 . Thus, the last possible arrival at the starting stop 
depends on the dwell time h and travel time �s− 1, s between stops s − 1 and s;

If A(h) is smaller than zero, the initial dwell time h is too large to ensure a feasible 
schedule. In that case, the initialisation iteratively decrements the dwell time and 
computes the new resulting A(h).

As the initial schedule features a constant headway, the initialisation defines 
this headway between two departures from the same stop for V services as

If ⌊H(h,V)⌋ is smaller than the given minimal headway time or the dwell time per 
stop, the initialisation procedure iteratively updates V → V − 1 until a feasible time 
schedule with a sufficient headway H(h, V) results.

Subsequently, the initialisation constructs the schedule by fixing the last service 
and adding the remaining services with headway H(h, V). This procedure rounds up 
the departure times to ensure they are feasible, i.e., included in the set P . Accord-
ingly, service t ∈ {1,… ,V} ends at

(30)A(h) ∶= |P| − 1 − |S| ⋅ h − ∑
s∈S⧵{0}

�s− 1, s.

(31)H(h,V) ∶=
A(h)

V − 1
.

(32)D(h,V , t) ∶= ⌈�P� − 1 − H(h,V) ⋅ (V − t)⌉.

Fig. 4   Initial time schedule
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The remaining departures at previous stops are added according to the given dwell 
time h and the travel time between two stops.

5.2 � Destroy Operators

The heuristic proposed here features three destroy operators as illustrated in Fig. 5. 
The operator random deletion and shift supports diversification, while the operators 
passenger-driven deletion and freight-driven deletion drive intensification. Figure 5 
illustrates how the destroy operators’ steps change a given schedule.

5.2.1 � Random Deletion and Shift

This operator features of two consecutive steps to create space for new services, 
a random deletion followed by a shift of the remaining service. The first step (see 
Fig.  5b) randomly selects a period between the first period and the last departure 
from the first stop. It removes the next service leaving the first stop after the selected 
time period from the schedule. The second step (see Fig. 5c) aims to distribute the 
gained space across the whole time window. To achieve this, it shifts an either all 
preceding or subsequent services in a random direction (left or right). The intensity 
of the shift is also randomly chosen to fall between zero and the size of the gap 
gained through the first step. If the direction of the shift is left (right), it shifts the 
service released after (before) the previously deleted service and all earlier (subse-
quently) released services. Due to the limited time window, shifting the first or last 
service may create an infeasible schedule. Therefore, the operator only shifts the 
boundary services as far as possible while maintaining feasibility. Then, it iteratively 
shifts the next services following the same approach. The second step is omitted if 
no shift creates a feasible schedule.

5.2.2 � Passenger‑Driven Deletion

This operator aims to improve passenger service quality by deleting low-quality 
services. To that end, it either deletes a service with insufficient dwell times for 
all passenger processes (see Fig. 5d) or, if that does not exist, deletes the service 
expected to carry the lowest accumulated number of passengers. To support the 
insertion of a new service by the following repair operator (see Sect.  5.3), the 
destroy operator stores and optionally adapts the pattern of dwell times of the 
deleted service. As illustrated in Fig. 6, it adapts the dwell times by increasing it 
for all stops with insufficient for the boarding and alighting process.

5.2.3 � Freight‑Driven Deletion

This operator deletes services of poor freight service quality. First, if the current 
solution includes rejected containers, the operator randomly selects one of those 
and deletes the service that departs after its arrival. Secondly, if the current solu-
tion includes delayed containers, it deletes the service departing after the release 
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of the most severely delayed container. If the current solution plans for all con-
tainers to be delivered punctually, the operator returns the current solution with-
out changes. Again, it saves the dwell times for each stop of the deleted service. If 
the increment of the dwell time at a particular stop allows for loading or unload-
ing an additional freight container, it adapts the pattern accordingly (see Fig. 6).

(b) (c)

(d) (e)

Fig. 5   Destroy operators
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Consequentially, for a feasible current schedule, the destroy operators guaran-
tee a feasible output schedule. Repair operators use the resulting gaps between 
services to introduce new services.

5.3 � Repair Operators

Following the destroy operator, the heuristic randomly selects and applies one of 
two possible repair operators based on the given weights. Figure 7 illustrates how 
each repair operator adjusts the schedule. Each repair operator inserts a new ser-
vice according to certain criteria. The new services follow either the default or an 
adapted dwell time pattern, depending on the previously applied destroy operator.

5.3.1 � Greedy Time‑Driven

The first repair operator (see Fig. 7b) selects the largest gap between the depar-
ture time of one service and the arrival of the next one in the given time schedule. 
Considering A(s,  t) as the arrival time and D(s,  t) as the departure time of ser-
vice t at stop s, it computes this gap as

The operator inserts a new service at the centre of the gap if this still allows for 
the required minimal headway. Then, it selects the now largest gap and repeats the 
insertion until either reaching the maximal number of services or violating the head-
way requirement.

(33)max
s∈S, t∈ T

I(s, t) =

⎧⎪⎨⎪⎩

A(s, t), if t is the first service,

�P� − 1 − D(s, t), if t is the last service,

A(s, t + 1) − D(s, t), else.

Fig. 6   Passenger and freight-
driven deletion: adapt the dwell 
times for the new service
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5.3.2 � Greedy Passenger‑Driven

The second repair operator (see Fig. 7c) selects a gap for service insertion based 
on the expected effect on passenger service quality. To that end, the operator first 
identifies all time points  p ∈ P where a service could be feasibly inserted. For 
each p, the operator ignores capacity and time limitations and computes the sav-
ings from picking up passengers who are currently waiting via the new service 
released at period p at the depot, tnew:

Then, the operator selects the time to insert the service to maximise the potential 
savings:

This operator also repeats insertions until reaching the maximum number of services 
or violating the headway requirements. Note that the operator computes the number 
of waiting passengers after each insertion by re-solving the passenger flow problem.

(34)S(p) ∶=
∑
s∈S

ws,D(s, tnew) − 1 ⋅ (D(s, t
new) − D(s, tnew + 1)),

(35)S(p∗) ∶= max
p∈P

S(p)

(a)

(b) (c)

Fig. 7   Repair operators
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5.4 � Search Strategy and Updating Weights

In the proposed ALNS, a simple scheme continuously updates the weights assigned 
to the two randomly applied repair operators. First, the initialisation assigns a uni-
form weight �i to each repair operator i. Then, the probability of selecting the repair 
operator i is defined as

where Ω+ is the set of all repair operators. Thus, the larger the weight �i , the higher 
the probability of selecting operator  i. The weights of destroy operators are com-
puted analogously with a set Ω− including all destroy operators.

Whenever a new candidate solution results from applying the destroy and repair 
operators, we define the new weights of the operator that contributed to creating that 
candidate solution as

Since the algorithm favours operators resulting in an improvement, we assume the 
order �1 ≥ �2 ≥ �3 ≥ �4.

Furthermore, an acceptance criterion decides whether the current solution should 
reflect the newly found candidate solution. Thereby, the acceptance criterion sets 
the searching strategy through the neighbourhood. The hill climbing (HC) criterion 
accepts only solutions that are as good as or better than the current best, i.e., a candi-
date solution x is accepted if

where x∗ is the best solution observed so far and f is the objective function.
Following the recommendation by [43], we also implement a linear record-to-

record travel (RRT). The RRT criterion accepts a new solution if the relative dif-
ference to the global best is less than a continuously updated threshold. First, we 
define an initial threshold Tstart and a smaller end threshold value Tend . A candidate 
solution x is accepted if

At the end of each iteration, we linearly update the threshold value by

where Imax is the maximal number of iterations.
Finally, the algorithm updates the weight as

(36)�i =
�i∑

�k∈Ω
+ �k

,

(37)Ψ ∶=

⎧⎪⎨⎪⎩

�1, if the new solution is new global best,

�2, if the new solution is better than the current solution,

�3, if the new solution satisfies the acceptance criterion,

�4, otherwise.

(38)f (x) ≤ f (x∗),

(39)f (x) − f (x∗) ≤ T .

(40)T ← max{T −
Tstart − Tend

Imax
, Tend},
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where the decay parameter � ∈ [0, 1] controls the sensitivity to changes. If � is close 
to one, the weighting distribution only changes slowly, whereas a value close to 
zero highly rewards those operators that lead to improvement or acceptance in past 
iterations.

6 � Performance Analysis

Before evaluating the sensitivity of the resulting system on instances of realistic 
size, we validate the performance of the ALNS versus the outcome from solving 
the problem to optimality. To this end, we implement the mixed-integer program 
given in Sect. 4 in Gurobi (v9.0.1) and limit the runtime to 9 h for both objectives. 
We implement the ALNS from Sect. 5 in Python 3 based on the open-source pack-
age alns (v4.1.0). The hill climbing (HC) and record-to-record-travel (RRT) accept-
ance criterion rely on a starting threshold of 25% and an ending threshold of 1% of 
the initial first objective value. The algorithm starts with at most 100 warm-up itera-
tions for both criteria, followed by at most 1900 regular iterations. Additionally, the 
heuristic stops after 500 iterations without an objective value improvement or after a 
maximal running time of 1 h. All computations are run on an INTEL Sandy Bridge 
processor with 2.6 GHz.

As performance indicators, we consider the global runtime and the runtime per 
objective function. Additionally, we consider the average relative gap to the best value 
found and the average relative optimality gap, defined as

The source code underlying these results is publicly available at [44]. Further-
more, all instances and results presented in the following are publicly available 
under the same link.

For the performance analysis, we evaluate five problem settings with 60, 70, 80, 
90, and 100 periods. We choose small instances to solve the problem to optimality 
within an acceptable runtime. We create 10 stochastic instances for each setting by 
randomly drawing the number of released containers per stop from a uniform prob-
ability distribution. Additionally, we consider ten instances of an exemplary large-
scale scenario with 2880 periods. The scenario, termed uniform freight flow, all-
depots, is introduced in more detail in Sect. 7. Due to their size, these instances are 
not solvable to optimality; therefore, we exclude a comparison to the solver.

Table 4 shows the average runtime and solution quality for the varying number of 
periods. Noticeably, the solver runtime rises exponentially with increasing periods. 
The solver cannot solve the problem to optimality within the given time limitations 
of 9 h per objective for more than 100 periods.

The overall results in terms of the objective values and runtime of attempting to 
solve the problem to optimality are similar to those of solving the predecessor model 

(41)�a = ��a + (1 − �)Ψ,

(42)
solution value − best value

solution value
and

lower bound − solution value

solution value
.



	 Operations Research Forum (2023) 4:54

1 3

54  Page 22 of 35

introduced in [10] under the equivalent computational settings. That contribution com-
pared large-scale instances with 180 periods and small-scale instances with 60 peri-
ods. For the small-scale instances, the solver found an optimal solution for the major-
ity of instances; only instances with a high number of parcel containers could not be 
solved to optimality in the second objective. None of the large-scale instances could 
be solved to optimality, remaining with optimality gaps between 65 and 99% for the 
first objective function. Hence, extending the model to allow for multiple micro-depots 
with limited and stop-dependent storage capacities seems to have no significant effect 
on the problem’s computational cost. Both models show that the scale of the planning 
horizon is the primary driver of runtime and solving the problem for realistic horizons 
calls for efficient solution approaches like the ALNS presented in this paper.

To evaluate the heuristics’ performance, we first consider the results for instances 
with at most 100 periods. In these instances, both ALNS variants still find a close-
to-best solution with a gap of 2 to 5% to the best solution found by the solver in 
the first objective. The runtimes are at most 14 min for HC and at most 2 min for 
RRT. The difference in runtime mostly stems from HC solving the MIP for the sec-
ond objective function more frequently. As described in Sect. 5, it only pursues the 

Table 4   Average runtime and solution quality for a varying number of periods. The column time (sec.) 
includes the average optimisation time. Additionally, we consider the average time, the average relative 
gap to the best value found (best), and the average relative optimality gap to the best lower bound found 
(opt) for both objective functions individually

a Runtime limit for solver set to of 32,400 s (9 h) per objective

Periods 1st objective 2nd objective

Timea Timea Gap Gap Timea Gap Gap

Method (sec.) (sec.) (best) (opt) (sec.) (best) (opt)

60 Solver 1853.4 167.0 0.00 0.00 444.1 0.00 0.00
60 ALNS HC 509.3 12.2 0.03 0.03 634.9 0.11 0.11
60 ALNS RRT​ 42.3 12.2 0.04 0.04 5.0 0.11 0.11
70 Solver 11,655.2 791.6 0.00 0.00 1688.5 0.00 0.00
70 ALNS HC 318.9 12.0 0.03 0.03 388.3 0.08 0.08
70 ALNS RRT​ 65.7 15.2 0.03 0.03 22.2 0.09 0.09
80 Solver 75,629.5 14,060.3 0.00 0.00 19,125.5 0.00 0.02
80 ALNS HC 822.8 12.7 0.05 0.05 577.9 0.05 0.07
80 ALNS RRT​ 87.4 14.9 0.04 0.04 40.4 0.05 0.07
90 Solver 102,163.0 27,431.5 0.00 0.07 22,730.7 0.00 0.03
90 ALNS HC 380.4 11.7 0.03 0.09 424.9 0.04 0.07
90 ALNS RRT​ 59.0 12.2 0.03 0.10 15.9 0.04 0.07
100 Solver 102,318.1 32,404.1 0.00 0.17 9779.8 0.00 0.01
100 ALNS HC 534.4 11.4 0.02 0.19 415.2 0.05 0.07
100 ALNS RRT​ 76.7 17.3 0.02 0.19 22.3 0.05 0.06
2880 ALNS HC 2822.8 617.8 0.00 - 691.4 0.18 -
2880 ALNS RRT​ 1432.7 478.2 0.03 - 65.8 0.06 -
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second objective if the first objective of the candidate solution is at least as good as 
the current solution. Additionally, HC often includes more iterations because of the 
improvement stop criterion.

Different results emerge regarding the solution quality for the second objective 
value. Here, the ALNS cannot achieve the same performance as the solver. How-
ever, the average gap to the best solution reduces from 11 to 5% for more periods. 
This suggests that the heuristic is still valid for finding acceptable solutions for 
larger-scaled instances.

For the instances featuring 1880 periods, the average runtime is 47 min for HC 
and 24 min for RRT. HC finds better solutions in the first objective function ( 3% gap 
to RRT). RRT is more successful in the second objective but probably also the least 
restrictive because of the higher first objective value.

Figure  8 illustrates the progress of solution development when applying the 
ALNS based on HC or RTT to the large-scale instance. As visible in Fig. 8a, HC 
achieves the most improvement during the very first iterations. After the first hun-
dred iterations, the first objective plateaus and only slowly improves. At the same 
time, the second objective incrementally decreases over time, interrupted by a tem-
porary increment because of an improved first objective. Figure 8b shows that, for 
RRT, the first objective value oscillates between the current best and given thresh-
old. As the threshold shrinks, the amplitude also shrinks. Overall, HC achieves the 
most improvement in the earlier iterations, whereas RRT might require even more 
iterations to achieve the same level. Running HC only for a low number of itera-
tions, followed by a more intense search through RRT, might be an acceptable com-
promise for a low runtime and a good global solution quality.

Table 5 indicates the average number of times that each destroy and repair opera-
tor from Sect. 5 was applied in the large scenario. It also lists the average number of 
times the candidate solution was the new best solution, better than the current solu-
tion, accepted according to the chosen criterion, or rejected.

For HC, the candidate solution is either the new best, the same as the current 
solution (accepted), or worse than the current solution (rejected). Random dele-
tion and shift is the most successful destroy operator, followed by the passenger-
driven deletion. Nevertheless, HC regularly applies freight-driven deletion, and 
this accounts for approximately 13% of the iterations where the best solution is 
found. The passenger-driven insertion significantly outperforms the temporal-
driven insertion. RRT stops after fewer iterations than HC. Here, the passenger-
driven deletion induces more improvements than the random deletion and shift. 
A possible reason might be that the overall algorithm design includes more ran-
domisation than HC and therefore, requires more operators for intensification.

Having thus validated and benchmarked the ALNS variants, we use HC to 
create schedules and allocate freight for larger instances that cannot be solved to 
optimality in an acceptable time. Based on the results, we analyse the system’s 
sensitivity to capacity settings given different depot, freight-flow, and demand 
settings in the next section.
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7 � Sensitivity Analysis

When implementing a system for shared passenger and freight transport, the avail-
able capacities for freight transport, storage, and transhipment are important factors. 
While strategic fleet planning determines the vehicles’ capacity, the strategic choice 
and design of micro-depots determine the capacity for storage and transhipment. 
To support such considerations, we showcase a sensitivity analysis that considers 
two depot-location settings and three freight-flow settings. Section 7.1 describes the 
experimental setting including the design of problem settings and instances. Subse-
quently, Sect. 7.2 presents the results for the computational experiments.

(a)

(b)

Fig. 8   Objective value across iterations for an exemplary instance
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7.1 � Instance and Scenario Design

In general, we consider a bi-directional network of ten equidistant stations, i.e., each 
service must pass twenty stops in total when going back and forth. The travel time 
between any two stops is 1 min. We limit the analysis to equidistant stations, as we 
also test for certain network characteristics.

Each experiment covers 1 day of operations. We discretise this time horizon into 
2280 periods, such that each time period equals 30 s. Within the time horizon, given 
travel times, at most 100 services can circulate through the network.

To describe the temporal curve of the daily passenger demand, we extract the 
popular times for exemplary stations in the light rail network of Hamburg, Germany 
from [45]. According to a field study by [46], a single passenger needs 0.87  s on 
average to board or alight a vehicle. To account for simultaneous passenger pro-
cesses in a vehicle with nine doors, we set the boarding and alighting parameters 
�board and �alight to 0.87∕9 = 0.09 s. In addition, we set a minimum dwell time �min 
of 30  s to guarantee sufficient time for boarding and alighting processes. Further-
more, we expect a loading time of 20 s and an unloading time of 15 s per container. 
We assume that service times increase linearly with the number of passengers and 
containers. Each vehicle fits 500 passengers. The cargo releases are uniformly dis-
tributed between 7 am and 4 pm. The soft deadline is 1 h after release and the maxi-
mal delay is set to 1 h. The shared capacity for cargo ranges between 1 and 5 cargo 
containers for sensitivity analysis.

7.1.1 � Freight Flow

To consider structural effects from differences in freight demand, we consider three 
freight-flow settings governing the probability of containers originating from certain 
arrival stops and ending at certain destination stops.

Table 5   Average count of operator usage for an exemplary set of instances

Crit Operator Total Best Better Accepted Rejected

RRT​ Deletion and shift 450.8 14.4 198.7 224.9 12.8
RRT​ Deletion (freight) 348.8 4.4 92.1 246.3 6
RRT​ Deletion (passenger) 484.5 33.1 233 195.9 22.5
RRT​ Insertion (passenger) 777.2 49.1 442 284.5 1.6
RRT​ Insertion (time) 506.9 2.8 81.8 382.6 39.7
RRT​ Total 1284.1 51.9 523.8 667.1 41.3
HC Deletion and shift 638 109.8 - 184.7 343.5
HC Deletion (freight) 376.6 23 - 5.7 347.9
HC Deletion (passenger) 566.4 38.5 - 318.6 209.3
HC Insertion (passenger) 1064.7 168.3 - 502 394.4
HC Insertion (time) 516.3 3 - 7 506.3
HC Total 1581 171.3 - 509 900.7
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Uniform Freight Flow  The first scenario considers uniformly distributed freight 
demand, i.e., each container may originate at or be destined for each stop with the 
same probability. We do not consider this a realistic setting but use it as a bench-
mark for the two alternative settings described in the following.

Central Freight In‑flow  The second setting implements the idea that goods are tran-
shipped from long-distance transport in the suburbs for further transport to destina-
tions in the city centre. Thus, most containers originate in the outer areas of the 
network and have destinations in the centre (cf. Fig. 9a).

Directed Freight Flow  The third scenario implements the idea that goods must be 
transported from an appropriate transhipment area in the city to an industrial area 
outside of the city. Hence, the majority of containers originate on one side of the 
network and must be transported to the other side (cf. Fig. 9b).

7.1.2 � Depot Locations

Depending on the network layout, not all stops might be suitable for transhipping 
freight through micro-depots. As a strategic decision, the designers of a shared 
passenger and freight system must choose appropriate locations for depots. These 
choices result in alternative depot-location settings.

We assume that freight demand can arise at any stop, but that containers are 
always transported to the micro-depot closest to the original source and destination. 
These are the stops we term origin and destination stops here. To render different 
settings comparable, we adapt the deadline and release time of each container by 
adding up the travel time from the selected depot stops to the underlying source or 
destination.

For the sensitivity analysis, we consider two depot-location settings.

(a) (b)

Fig. 9   Probability distributions for the freight-flow-settings
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All‑Depots  In this setting, all stops are available as micro-depots. Thus, all stops in 
the public transit networks offer sufficient capacity to store at least a small number 
of freight containers (cf. Fig.  10a).  For the sensitivity analysis, the stop capacity 
ranges from one to five containers. To guarantee only minimal disturbance for the 
passenger service, we limit the maximal dwell time at each stop. All freight pro-
cesses must be executable within a maximal dwell time of 1 min, i.e. two periods.

Edge‑Depots  The second setting assumes that the network does not allow for tran-
shipment at intermediate stops. Instead, only stops that are situated at the outer edges 
of the network are depots (cf. Fig. 10b). To compensate for the lower depot density, 
we assume that the edge depots offer more capacity and consider stop capacities of 
two, four, six, eight, and ten containers in the sensitivity analysis. Since vehicles 
must also change directions at the related stations, additional dwell time results. We 
set the maximal dwell time in this design to 10 min, i.e., 20 periods.

To summarise, we consider three freight-flow settings, two depot-location settings, 
and twenty-five demand variants in the sensitivity analysis, creating 150 variations of 
the problem. As the freight demand is randomly drawn from a probability distribu-
tion, a single instance has only limited significance for the overall view of the prob-
lem. At the same time, we can only solve a limited number of instances, given a large 
number of problem variations. To balance efficiency and reliability, we randomly 
generate 10 instances for each of the 150 variations. Hence, we solve 1500 problem 
instances in total. All instances and result files are publicly available at [44].

(a)

(b)

Fig. 10   Scenarios depending on the location and design of depots
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7.2 � Computational Results

We use the ALNS with hill climbing (HC) to solve the randomly generated instances 
generated from the parameter settings in the previous sub-section. As result indi-
cators, we consider the passenger waiting time, the cargo acceptance rate, and the 
cargo delay. As expected, the passenger waiting time is stable across scenarios 
(results not shown). Because of the lexicographical objective, solutions with lower 
passenger waiting times are always prioritised. This results in only a 2% gap between 
the best and worst passenger waiting time found. Thus, the ALNS ensures a sta-
ble level of passenger service quality. From the maximal 100 services, all instances 
include at most five simultaneous services in peak times. Thus, the minimum fleet 
size to operate the computed time schedules is five vehicles.

Figure  11 shows the average number of accepted cargo containers for varying 
vehicle and stop capacities. Following intuitive expectations, the all-depots setting is 
advantageous. The larger number of depots makes up for the more restrictive dwell 
times, letting this design outperform the turning-depot-design by 0.91 (for central 
freight flow and high capacity values) to 25.52% (for directed freight flow with mini-
mal capacity values). To analyse under what settings the edge-depot setting enables 
good results, we further consider the structural characteristics.

First, we evaluate the results for the all-depot setting. When freight demand fol-
lows a uniform pattern, the average load per vehicle can be reduced to a minimum, 
and less vehicle and stop capacity is required. Figure 11a shows that the stop capac-
ity threshold for accepting all freight is two and that this is independent of the vehi-
cle capacity. If stops include only capacity for one container, the acceptance rate is 
still greater than 94% . Thus, the all-depot setting allows for an almost ideal accept-
ance rate given a uniform freight flow.

The central freight in-flow setting causes a lower acceptance rate (cf. Fig. 11c). As, 
in this setting, most freight originates at the outer stops, the required storage capac-
ity at those stops increases. If a stop can only store a single container, the acceptance 
rate ranges between 73 and 80% , i.e., 11 to 18% less than for a uniform freight flow. 
The acceptance rate growth logarithmically with increasing stop-capacity. Contain-
ers with closely spaced release times will probably be picked up by the same ser-
vice, leading to overlaps in storage time. The probability of overlapping storage times 
decreases with increasing capacity. The vehicle capacity also gains more relevance in 
the central freight in-flow setting. The acceptance rate rises by 4 to 18% when vehi-
cles can carry an additional container. Given a uniform freight flow, certain contain-
ers are already delivered before new containers are picked up. This is much less likely 
under central freight in-flow.

For the directed freight-flow setting, freight originates at yet fewer depot stops. 
Additionally, the origin and destination stops do not overlap, i.e., all containers of 
the service must be picked up before any container reaches its destination. For this 
reason, the vehicle capacity becomes more crucial (see Fig.  11e). If there is only 
space for one cargo container in each vehicle, the acceptance rate ranges between 0 
and 60%.

Next, we discuss the results for the edge-depots setting. As freight always origi-
nates from the nearest stop featuring a micro-depot, the origin distribution resulting 
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(a) (b)

(c) (d)

(e) (f)

Fig. 11   Average number of accepted cargo containers for different scenarios
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(a) (b)

(c) (d)

(e) (f)

Fig. 12   Average delay of accepted freight
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from the uniform flow and the central freight-in-flow settings is the same given 
edge-depots. The results of the two depot-location settings are most similar for the 
central freight in-flow. From a practical perspective, a better use case for the edge-
depot setting is the directed freight-flow setting. However, sufficient vehicle and stop 
capacity are crucial factors for the system’s success (cf. Fig. 11b).

Figure 12 visualises the average delay of accepted containers in the various sce-
narios. Since we only evaluate the delay of accepted containers, a higher capacity 
does not automatically result in a lower delay. Overall, we observe low delay rates 
from 0 to 2 min. Especially with a high stop capacity and a low vehicle capacity, a 
high number of containers is accepted, but the average delay increases up to almost 
19 min (cf. Figs. 11a, 12c, and e).

7.3 � Managerial Implications

To highlight the managerial implications, we compare our findings to the compu-
tational study in  [10]. In particular, this predecessor model differed from the one 
considered here in that it assumed both unlimited stop capacity and that all freight 
originates from a single depot.

In general, the findings of [10] emphasise the importance of optimisation tech-
niques to satisfy passenger and freight demand simultaneously. In that setting, a 
shared capacity between passengers and freight appeared more suitable for urgent 
containers with a tight deadline than a system with vehicles dedicated to either 
passenger or freight transportation. Furthermore, [10] highlight the impact of the 
freight loading and unloading processes. In that study, the dwell time represents the 
bottleneck in the considered system and the vehicle capacity plays only a minor role.

Beyond demonstrating that the ALNS is an appropriate alternative to solving the 
problem to optimality, our results indicate that the storage capacity of micro-depots 
is an essential factor for the system’s success when allowing for pick-ups beyond a 
central depot. Additionally, the dwell time still has a high impact on the system’s 
service quality. Especially for the edge-depot network design, a sufficient maximal 
dwell time is crucial to enable acceptable acceptance rates. However, for a high 
micro-depot capacity but a low vehicle capacity, the solutions can accept most of the 
containers but lack punctuality. Thus, we conclude that the shared capacity mode is 
only suited for urgent parcel containers when both stops and vehicles offer sufficient 
freight capacity.

8 � Conclusion

In this work, we considered the problem of scheduling services and allocating cargo 
in a shared passenger and freight transit system featuring multiple micro-depots with 
limited storage capacity. To prioritise the passenger service, we considered a lexi-
cographic objective function, where the first of the two objectives is to increase the 
average passenger waiting time across stops. The second objective function reduces 
the average freight delay. Furthermore, we presented an adaptive large neighbourhood 
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search (ALNS) to find good solutions for large-scale problem instances. As acceptance 
criteria, we implemented and compared hill climbing and record-to-record travel.

The performance analysis results indicated that the ALNS is appropriate for solving 
realistic-sized problems. The hill climbing approach achieved the best improvement 
in early iterations, while the record-to-record travel required more iterations to adapt.

Sharing resources, e.g., vehicle capacity, is one of the main advantages of such 
a system and one of its main challenges. We considered the effect of freight flow 
settings and depot locations in a sensitivity analysis for varying vehicle and stop 
capacities. Due to the lexicographic objective function, we found that the average 
waiting time was stable for various settings. The result showed that dense freight 
demand flows require sufficient depot and vehicle capacity.

Lower storage capacities can suffice if every stop is a micro-depot. However, this 
requires sufficient space at each stop to handle the transhipment process and to store 
containers. Additionally, the design might come with higher initial costs because of 
the reconstruction work to enable transhipping at depot stops. At the same time, the 
realism of an edge-depot setting under a central freight flow is questionable. Apart 
from the adaptation of release and deadline times, the distance between the depot 
station and desired demand locations might be too large to ensure a valid satisfac-
tory transportation service.

Our results when evaluating freight delay illustrate that a high stop capacity is 
insufficient to reach a high service degree if the cargo delay is also an important 
factor. A high storage capacity at the stops may ensure a high acceptance rate for 
freight, but vehicle capacity is an important factor in reducing delays.

The model presented here only considers a single line. Extending the model to a 
network of intersecting lines, where freight can change lines at transhipment depots, 
is an interesting concept for future work. Further extensions could also include the 
problem of rolling stock, i.e., assigning the vehicles in the fleet to services instead 
of setting an approximated upper boundary for the number of services. In the com-
putational study, we evaluated a network with closely situated stops for each station. 
In future work, a transit system with sparsely distributed stops is also worth analys-
ing. Additionally, this work did not consider further transport from the micro-depots 
over the "last meter". Future work could also anticipate the capacity request accept-
ance over time to avoid late denials. At the moment, the ALNS algorithm solves the 
freight assignment problem with a commercial solver. The evaluation of different 
algorithms to find a feasible assignment and further accelerate the heuristic might 
also be a promising approach.
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