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Abstract
Echo state network (ESN) is a special type of recurrent neural networks (RNN) 
wherein a dynamic reservoir is used in the hidden layer, the weight of internal units 
of ESN is kept fix during training process, and output weights are the only trainable 
weights. Therefore, network training in an offline mode can be changed into a lin-
ear regression equation which is simply solved, although it is required to use online 
training of ESN in some applied problems. The least mean square (LMS) algorithm 
can provide an easy and constant method for online training of ESN; however, the 
huge eigenvalue spreads of the correlation matrix of internal network states reduce 
the speed of the algorithm convergence. In this study, harmony search algorithm 
(HSA) is used to optimally produce the structure and weight of internal network 
units. It is possible to significantly reduce the eigenvalue spreads of the correlation 
matrix of network states by means of this algorithm. Thereafter, the LMS algorithm 
is used for the online training of ESN built with the help of HSA. Already-obtained 
simulation results show that the eigenvalue spreads of the correlation matrix are 
reduced millions of times, and the LMS algorithm increases the online training 
speed of the network several times with an acceptable precision of training.
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1  Introduction

An echo state network (ESN) is a new type of recurrent neural network (RNN) that 
uses a large dynamic reservoir in the hidden layer. The weights of the reservoir 
connections are randomly generated and remain fixed during the training process. 
Therefore, it is possible to use more units in the reservoir to produce more dynam-
ics. This feature of ESN has attracted the attention of many researchers. The impor-
tant research done so far on ESN includes detailed scrutiny of intrinsic plasticity 
in ESN [1, 2], an augmented ESN for nonlinear adaptive filtering of complex non-
circular signals [3], using leaky integrator neurons in ESN [4, 5], and echo state 
Gaussian process [6]. Some other scientists studied various ESN schemes [7–12] 
and several researchers attended to echo state property (ESP) [13–16].

The simple use as well as the ability to model dynamic systems make ESN an appro-
priate alternative for modeling unknown dynamic systems. ESN has been successfully 
used in solving many problems such as chaotic time-series prediction [17–19], speech 
recognition [20], grammatical structure learning [21], communication channel equali-
zation [22], dynamical pattern recognition [20, 23], power system monitoring [24–27], 
and energy consumption forecasting [28, 29]. However, in some practical problems 
where the parameters change during operation or the network needs output feedback, it 
is necessary to train the network online [30].

The least mean square (LMS) is one of the simple algorithms for online training 
of RNN. However, the convergence of this algorithm is very slow or may not con-
verge due to the eigenvalues spread of the autocorrelation matrix of network states 
[22]. To tackle this issue, several structures were used to construct ESN [31, 32], but  
none of these structures have a significant effect on the eigenvalues spread of the 
autocorrelation matrix. Therefore, other algorithms such as recursive least squares 
(RLS) [33], particle swarm optimization (PSO) [34, 35], and harmony search algo-
rithm (HSA) [36] have been used for the purpose of ESN online training, although 
these algorithms require complex calculations and much time is spent for online 
training. It has been tried to provide the possibility of using the LMS algorithm for 
online training of the network by building an appropriate reservoir [22].

A mixed method for the optimization of the reservoir and then online training of 
ESN will be introduced in this study. In this approach, HSA will be used to optimize 
an ESN so that the eigenvalues spread of the autocorrelation matrix is reduced, then 
the LMS algorithm will be used to train the optimized ESN online. In the following, 
the obtained results will be compared with PSO, HS, and RLS algorithms.

ESN, its conventional structure as well as its offline training will be explained 
in the section “Echo State Network”. LMS and HSA will be briefly introduced in 
sections “Least Mean Square (LMS) Algorithm” and “Harmony Search Algorithm 
(HSA),” respectively. In the section “Main Results”, a mixed method for the con-
struction and online training of ESN will be proposed. With the help of some exam-
ples, the efficiency of the proposed method will be illustrated in the section “Simu-
lation”. Finally, the results obtained from simulations will be referred to, and some 
applied suggestions will be made for the construction and online training of ESN.
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2 � Echo State Network

ESN is a discrete-time network, which contains three layers, namely input, hidden, 
and output. These layers consist of K, N, and L units, respectively. The size of input 
units at time n is represented by u(n) =

(
u1(n), u2(n)..., uK(n)

)
 , the size of reservoir 

states is represented by x(n) = (x1(n), x2(n),… , xN(n)) , and the size of output units is 
represented by y(n) = (y1(n), y2(n),… , yL(n) . The weight of the connections enter-
ing into the reservoir in an N × K matrix is Win = (win

ij
) , the weight of the internal 

connections of the reservoir in an N × N matrix is W = (wij) , the weight of connec-
tions returning from output to the reservoir in an N × L matrix is Wback = (wback

ij
) , 

and the weight of connections entering into the output in an L × (K + N + L) matrix 
is Wout = (wout

ij
) . These weights are all gathered together. In ESN, the size of units 

and weight of network connections are real values and input can directly enter into 
the output [37–39]. Figure 1 shows the structure of the echo state neural network.

Reservoir states in ESN are calculated using Eq. (1):

In the above equation, f =
(
f1, f2,… , fN

)
 is the performance function of reservoir 

units and is usually selected as a sigmoidal function (or tanh), and network outputs 
are obtained through the following relation:

In the above equation, fout = (fout
1

, fout
2

,… , fout
L

) represents the performance 
function of output units and is selected as a linear or sigmoidal function and 
�(n + 1) =

[
u(n + 1) x(n + 1) y(n)

]
 is obtained from the combination of input, res-

ervoir, and output vectors of the previous moment [36].

(1)x(n + 1) = f

(
Win.u(n + 1) +W.x(n)

+Wback.y(n)

)

(2)y(n + 1) = fout
(
Wout

.�(n + 1)
)

Fig. 1   Block figure of echo 
state network

Trainable 

weight

Random 

weight

Input

layer

Output

layer
Reservoir



	 Operations Research Forum (2023) 4:10

1 3

10  Page 4 of 14

2.1 � Echo State Property

A main condition for the correct performance of ESN (as the name is clear) is that res-
ervoir states be a function (echo) of the history of the inputs operated on the network. 
This condition is called echo state property. Although the investigation of necessary 
and sufficient conditions to make certain about the satisfaction of echo state property 
is a difficult task, the network can satisfy echo state property on each input and all 
states of x ∈ [− 1, 1] only if the spectral radius of the reservoir (the highest eigenvalue 
of matrix W is called reservoir spectral radius) is smaller than one [12, 36].

2.2 � ESN Construction

Production of a suitable dynamic reservoir is necessary to build an echo state neural 
network. Although there is no precise method for determining network units, the 
number of network units could be selected in a range from one-tenth to half of the 
training data size. In addition to the size of the reservoir, the level of scattering in 
connections also affects the precision and convergence speed of the ESN. In many 
practical applications, the level of scattering could be considered to be 10% [9]. 
Once the number of reservoir units and the scatter level are set, it is time to propose 
the reservoir weight matrix so that the network maintains its echo state character-
istic. The following steps provide a systematic method to construct an echo state 
neural network [40]:

1.	 Produce Win, Wback, and W0 matrices with optional spread and at random.
2.	 Divide the W0 matrix by the largest spectral radius of itself to get matrix W1 with 

the spectral radius of one, W1 =
W0|�max|.

3.	 Multiply an appropriate value of α within the range of 0 < a < 1 to get the matrix 
W with an optional value of the spectral radius, i.e., W = α.W1 [36, 38].

2.3 � Offline ESN Training

The purpose of neural network training is to determine the weight of network con-
nections so that a minimum deviation from the desired output could be achieved. 
There are two general methods for the training of a neural network: supervised and 
unsupervised learning. Generally, for the training of echo state neural networks, the 
supervised learning method is used in both offline and online modes. In this study, 
a step-by-step method is proposed for offline training. Although, an online training 
method is also suggested in the following sections:

First step: produce Win, Wback, and W matrices randomly.
Second step: sample network dynamics with the operation of training data on the 
network, this step includes the following:
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1.	 First determine the initial states of the reservoir arbitrarily.
2.	 Operate the network by training data and bringing it up-to-date through (1).
3.	 Put d (0) = 0 at the beginning time of n = 0 where d(0) has not been defined.
4.	 Put the network states in a row matrix of M states.
5.	 Put the reverse of the performance function of output units (f−1(d(n)) in 

matrix T, similar to the previous stage.
	   To eliminate the effect of the initial states of the reservoir, we should omit 

the first sample from M and T matrices and store x(n) and (f−1(d(n)) vectors 
in M and T matrices simultaneously.

Third step: calculate the weight matrix of output connections Wout, multiply the 
pseudo-inverse matrix of M by matrix T, and get transpose of them to obtain Wout.

Fourth step: now, the obtained echo state neural network (Wout, W, Win, and Wback) 
is ready to be used for solving new problems [2, 35, 36].

3 � Least Mean Square (LMS) Algorithm

LMS is an adaptive algorithm, which uses an error gradient vector for the estimation of 
weight vectors. This algorithm has been made up of a repetitive structure for the move-
ment of weight vectors towards the symmetry of the error gradient vector and finally 
minimizes the mean squared error. Compared to the RLS algorithm, the calculations of 
this algorithm are very simple. This algorithm does not need the correlation matrix and 
matrix inversion [41, 42]. Assume to calculate the network output via Eq. (4).

For the symmetric gradient vector error

In the above relation, the output function has been assumed a linear one, and the cur-
rent matrix of �(n) =

[
u(n + 1) x(n + 1) y(n)

]
 has been considered as the algorithm 

input. Then, the weight matrix of Wout is estimated with the help of this algorithm and 
based on reducing the maximum gradient in order to minimize the mean squared error. 
The equation of weight estimation is expressed as the following simplified Eq. (5).

In the above relation, e(n) represents the error of real network output from the 
desired degree, and μ is the step size of the algorithm and determines its convergence. 
We need to select 0 < 𝜇 <

1

λmax

 to make certain about the convergence algorithm. If a 
large value is selected for the step size of the algorithm, its convergence will be 
endangered and the small step size will reduce the speed of algorithm convergence. 
In this study, � =

1

2.�max
 is considered to keep a balance between speed and algorithm 

(3)W
out =

(
M

−1
. T

)T

(4)y(n) = Wout�(n)

(5)Wout(n + 1) = Wout(n) + μ. �(n). e(n)
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precision. The convergence speed of the algorithm depends on the eigenvalue spreads 
of the correlation matrix corresponding to reservoir states which will be minimized 
using the harmony search algorithm in the next section.

The goal of the harmony search algorithm is to minimize the S gain. In these 
cases, the largest spectral radius of the autocorrelation matrix of the network states 
is minimized, and therefore, a larger � can be selected for the LMS algorithm. Also, 
in this method, eigenvalues close to zero of the autocorrelation matrix of the net-
work states are removed. As a result, the training speed and convergence of this 
algorithm improved together.

4 � Harmony Search Algorithm (HSA)

HSA has been designed based on composers’ performance for making better music. 
As composers search different nets to achieve beautiful music, engineers search appro-
priate weight vectors for the optimization of objective functions [43, 44].

Harmony memory (HM), harmony memory size (HMS), harmony memory con-
sidering rate (HMCR), and pitch adjusting rate (PAR) constitute the parameters of 
this algorithm for optimization. To use the algorithm, we should store the number 
of HMSs of the feasible vector in HM and then produce a new harmony by means 
of PAR and HMCR. If the new harmony outweighs the worst harmony in harmony 
memory, it can replace it. This process should be repeated until an acceptable vector 
for the optimization of the objective function is achieved [45, 46].

The harmony search algorithm is operationalized using the following steps:

Step 1: First select the algorithm parameters and optimization problem. Then deter-
mine PAR, HMCR, HMS, a suitable objective function, and a small neighborhood 
radius of bw, and an allowed range of D for the vector values in this step.
Step 2: Then store as much as the capacity of harmony memory of the produced 
vector along with the values of the objective function for each vector.
Step 3: Based on Eq. (6), a new vector (harmony) is produced; each component of 
the new vector is selected with the probability of HMCR out of the components 
of existing vectors in harmony memory and with the probability of 1-HMCR out 
of the allowed range.

Then the selected components from harmony memory will be regulated with the 
probability of PAR, and the components selected from the allowed range will remain 
unchanged. Equation (7) shows how vector components have been regulated.

(6)
x�

j

i
∈
{
x1
i
, x2

i
,… , xHMS

i

}
HMCR

x�
j

i
∈ D 1 − HMCR

(7)x�
j

i
= x�

j

i
+ bw ∗ rand PAR
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Step 4: In this case, the new objective function of the vector (harmony) outweighs 
the worst existing vector in harmony memory; the new vector and value of the 
related objective function are replaced in harmony memory.
Step 5: Steps 3 and 4 will be repeated until an acceptable answer is reached [12].

Due to the efficiency of HSA in problems with extensive search space, we have 
used this algorithm for the construction of a proper dynamic reservoir with a small s 
rate. Then we train the weight of network output connections by means of the LMS 
algorithm in an online state.

5 � Main Results

In this paper, a mixed method for ESN training and construction is proposed, which 
consists of two substantial steps. The former is the optimization of the structure and 
weight of internal connections while the latter is online training of the weight of 
output connections. In the first step, HSA for the optimization of the structure and 
weight of internal connections of ESN is used to provide the conditions for the con-
vergence of online training of ESN by means of the LMS algorithm. In this way, we 
should have the lowest possible value for eigenvalue spreads of the state correlation 
matrix. This step is aimed at optimizing the structure and weight of internal connec-
tions of the network; therefore, the weight of output connections remains unchanged 
and is determined by means of the LMS algorithm after network optimization. To 
use the HS algorithm, we should introduce the evaluation function at first. Here, s 
rate is introduced as the evaluation function. In other words, the purpose of the algo-
rithm is to reduce eigenvalue spreads of the state autocorrelation matrix.

In the above relations, the expression of (n) = [ u(n) x(n) y(n − 1 )] holds true, 
and λmax(R) and λmin(R) are representative of the maximum and minimum values of 
the correlation matrix corresponding to R, respectively. In order to use time in a bet-
ter way, it is suggested that we construct an optimized echo state neural network for 
use within an extensive range of applied issues. Thereafter, we can use this network 
for each specific application with a slight modification. The relevant modifications 
can also be made by means of HSA with fewer repetitions.

In the second step, the network constructed by HSA is trained in an online state by 
means of the LMS algorithm. For the training of ESN, the step size of the algorithm (μ) 
is selected. The step size is set as � =

1

2.�max
 to make a balance between algorithm speed 

(8)R = E
[
�(n)�T(n)

]

(9)f(x) = s =
||||
λmax(R)

λmin(R)

||||
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and precision. Then, training data are operated on the optimized network, reservoir states 
are calculated through (1), and the weight of output connections of the network are regu-
lated through Eq. (5). Flowchart 1 shows the proposed method briefly. Using the LMS, 
the algorithm not only increases the speed of training and needs a very smaller memory, 
but also it increases the network stability via proper step sizes.

Flowchart 1   Brief description of the proposed method.

End

Determine (chose) harmony search algorithm parameters such as 

HM, HMS, PAR and …

Build Echo State Network randomly

Optimize reservoir waits for minimizing S rate by employing 

HSA

Train optimized ESN by least mean square algorithm

Determine (chose) network parameters such as size of the 

network, spectral radius, density of reservoir connections and …

Start

6 � Simulation

One of the most common applications of ESNs is the prediction of chaotic time 
series. In this paper, we have used this network for the prediction of the Rossler, 
Mackey–Glass, and Lorenz time series. To this end, we should determine the 
number of reservoir units and their spectral radius. In this paper, 500 units in 
the reservoir network and a spectral radius of 0.90 have been used. The size of 
training data sets in all simulations has been considered 4000 where the first 500 
samples are ignored to nullify the effect of the initial states of the reservoir. The 
next 3000 ones are used for training and the remaining 500 ones are used for per-
formance evaluation. All the simulations have been made in the Matlab environ-
ment version of 2013 by means of a personal computer with INTEL CORETM 
i7-3470 CPU to make certain about the correctness of obtained results.
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6.1 � Mackey–Glass Time Series

Mackey–Glass time series is obtained through the following differential equation:

In the above equation, x(t) represents the value of the Mackey–Glass time series 
at time t; in order for the time series to be chaotic, we have selected equation param-
eters as δ = 17, β =  − 0.1, and α = 0.2. This time, the series is constructed by means 
of the second-order Runge–Kutta method with a step size of 0.01 [41, 47].

6.2 � Lorenz Time Series

The following three-variable differential (11) is used for the construction of the Lorenz 
time series.

To ensure that the obtained series is chaotic, we should select parameters as a = 10, 
b = 28, and c = 8

3
 , and we produce data sets using the fourth-order Runge–Kutta 

method with a step size of 0.02 and initial states of x (0) = 12, y (0) = 2, and z(0) = 9.

6.3 � Rossler Time Series

The following differential (12) is used for the construction of the Rossler time series.

To produce data sets out of the above chaotic time series, we should consider 
d = 0.15, e = 0.2, and f = 10 and use the fourth-order Runge–Kutta method with a 
step size of 0.01.

After the production of training data sets, we use the proposed optimized ESN 
for the construction and training of the network. In the first step, weights of the 
network reservoir should be produced in a way that correlation matrix eigenval-
ues of the reservoir have the least possible spreads. Algorithm parameters have 
also been selected as HMS = 10, HMCR = 0.85, PAR = 0.2, bw = 0.4, NI = 100000, 
and X ∈ {−0.4,−0.2, 0, 0.2, 0.4} . In this step, three training data sets are operated 

(10)
dx

dt
= � x(t) +

� x(t − �)

1 + x(t − �)10

(11)

⎧⎪⎨⎪⎩

dx

dt
= −a x(t) + a y(t)

dy

dt
= b x(t) − y(t) − x(t)z(t)

dz

dt
= x(t)y(t) − c z(t)

(12)

⎧⎪⎨⎪⎩

dx

dt
= −z(t) − y(t)

dy

dt
= x(t) + d y(t)

dz

dt
= e + z(t)(x(t) − f )
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on the input network simultaneously, and the algorithm is repeated NI times. 
Table  1 shows eigenvalue spreads of the correlation matrix of network internal 
states constructed with compromise structures, of the network constructed with 
the conventional random method, and of the network constructed with HSA. It 
clearly shows the performance of HSA in the optimization construction of ESN.

In Table  1, short expressions of LMS-ESN have been used for the proposed 
method. As it is seen, the S rate has been reduced 106 times through HAS com-
pared to the available methods. The algorithm is also repeated NI

10
 other times for 

each time series. The obtained results are briefly illustrated in Table 2.
The obtained results show that training online conditions of ESN have been pro-

vided using the LMS algorithm; therefore, in the second step, the LMS algorithm 
is used for online training of ESN. In this paper, mean squared error for training 
(MSEtrain) and for testing (MSEtest) and spent time during network training (t) are 
used as performance criteria of each training method.

Tables 3, 4, and 5 show the results obtained from Mackey–Glass, Lorenz, and 
Rossler time series, respectively.

As it is seen in the above tables, the speed of the proposed method for online 
training of echo state network is higher than other methods, and the precision of 
this method is also higher than that of PSO and HS. Furthermore, this proposed 
method guarantees network stability with selecting a proper step size and uses a 
very shorter memory compared to existing methods.

(13)MSE =
1

T

�T

n=1
‖D(n) − Y(n)‖2

Table 1   Eigenvalue spreads 
different structures

Structure S rate

ESN 2.0762 × 10
15

Scale-free 6.3238 × 10
13

Small world 2.5567 × 10
13

Spatial growth 1.4262 × 10
14

LMS-ESN 8.4639 × 10
8

Table 2   Eigenvalue spreads of 
the network state matrix

Time series S rate

Mackey glass 6.3564 × 10
8

Rossler 1.3491 × 10
8

Lorenz 8.7259 × 10
8
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7 � Conclusion

In this paper, a mixed method using LMS and HS algorithm has been introduced to 
tackle the issue and pitfalls of online training of ESN. In this proposed method, the 
structure and weight of internal connections of echo state neural network are pro-
duced so that we have the lowest possible value for eigenvalue spreads of the inter-
nal state correlation matrix. Then, the network is trained in an online state by means 
of an LMS algorithm. Simulation results clearly indicate that spent time during net-
work training through the proposed method is much lower than that of other meth-
ods while the precision of outputs is acceptable. In addition, the proposed method is 
advantageous over the other two methods because it has simple calculations, guar-
antees network stability, and uses less memory. It is also possible to construct an 
echo state neural network by means of HSA and apply it within an extensive range 
of problems. Although the training time has been improved in this method, the pro-
cess of optimizing reservoir connections is a time-consuming and complex process. 
In the future, other methods of improving reservoir performance can be studied and 
investigated (Appendix: Table 6).

Table 3   Prediction results of 
Mackey glass time series

Algorithm MSEtrain MSEtest Time(s)

RLS 5.23 e
−11   4.71 e

−10   1722
PSO 9.43 e

−6   5.81 e
−6   981

HS 2.67 e
−7   9.28 e

−7   853
LMS 4.26 e

−10   8.63 e
−10   113

Table 4   Prediction results of 
Lorenz time series

Algorithm MSEtrain MSEtest Time(s)

RLS 2.38 e
−10   7.45 e

−10   1912
PSO 6.84 e

−6   9.12 e
−6   1025

HS 6.73 e
−7   1.78 e

−6   960

LMS 8.35 e
−10   5.83 e

−9   152

Table 5   Prediction results of 
Rossler time series

Algorithm MSEtrain MSEtest Time(s)

RLS 7.42 e
−11   2.63 e

−10   1786
PSO 5.71 e

−7   9.45 e
−7   934

HS 7.53 e
−7   4.62 e

−6   863

LMS 2.75 e
−10   8.54 e

−10   105
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HM, HMS, HMCR, PAR Harmony Memory, Harmony Memory Size, Harmony Memory Considering 

Rate, and Pitch Adjusting Rate respectively

s =
|||
λmax(R)

λmin(R)

||| eigenvalue spreads of the state autocorrelation matrix

λmax(R) and λmin(R) maximum and minimum values of the state autocorrelation matrix, respec-
tively
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