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Abstract
A mathematical framework for modelling constrained mixed-variable optimization 
problems is presented in a blackbox optimization context. The framework introduces 
a new notation and allows solution strategies. The notation framework allows meta 
and categorical variables to be explicitly and efficiently modelled, which facilitates 
the solution of such problems. The new term meta variables is used to describe vari-
ables that influence which variables are included or excluded: meta variables may 
affect the number of variables and constraints. The flexibility of the solution strat-
egies supports the main blackbox mixed-variable optimization approaches: direct 
search methods and surrogate-based methods (Bayesian optimization). The notation 
system and solution strategies are illustrated through an example of a hyperparam-
eter optimization problem from the machine learning community.

Keywords Blackbox optimization · Derivative-free optimization · Mixed-variable 
optimization · Categorical variables · Meta variables

1 Introduction

This work considers a general constrained optimization problem
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where f ∶ X → ℝ (with ℝ = ℝ ∪ {+∞} ) is the objective function, X  is the domain 
of the objective function f, x ∈ X  is a point and Ω ⊆ X  is the feasible set defined by 
the constraints of the problem.

1.1  Blackbox Optimization

In blackbox optimization (BBO), the objective and constraint functions are assumed 
to be blackboxes. In [1], a blackbox function is defined as: “any process that when 
provided an input, returns an output, but the inner working of the process are not 
analytically available”. For example, an aircraft drag evaluation could require using 
a finite element method that takes some design variables, such as a the material and 
dimension of a wing, and outputs a drag value. In this example, the inner working 
of the process are too complicated to allow a closed-form analytical formulation: the 
finite element method is a blackbox function.

In BBO, the objective and constraint functions can only provide information 
through evaluations. For instance, the only information that the objective function 
f (a blackbox) can provide is the mapping of a point x ∈ X  to its image f (x) ∈ ℝ 
through a given process, which is typically the execution of a time-consuming 
computer program. In  [2], the authors provide examples : “automotive valve train 
design [3] requires seconds, sample size identification for bioequivalence studies in 
the pharmaceutical studies industry [4] requires minutes, hyperparameter optimiza-
tion [5] requires hours, and airfoil trailing-edge noise reduction [6] requires days of 
CPU time for each execution of the associated computer code or simulation”.

In a minimization optimization context, allowing the objective function f to take 
the value +∞ is a convenient way to flag out and eliminate trial points outside of the 
domain X  as well as to reject points for which the blackbox unexpectedly failed to 
return a value.

Consequently, derivatives are often inaccessible or are too computationally 
expensive to compute. Thus, in general, traditional derivative-based optimization 
methods cannot be applied to blackbox functions [1]. This work uses the following 
terminology [1]: “BBO is the study of design and analysis of algorithms that assume 
the objective and/or constraint functions are given by blackboxes”.

1.2  Class of Problems

This work proposes a general framework to model a wide class of optimization 
problems with a broad type of variables. In addition to continuous and integer vari-
ables, the class may include categorical (or qualitative) variables as well as a special 
type of variables whose values determine if some other variables are included or 
excluded in the optimization problem. In this work, these special type of variables 
are called meta variables. These variables may alter the number of variables and 

(1)min
x∈Ω⊆X

f (x),
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constraints of the problem. Meta variables are a cornerstone of this work and are 
thoroughly defined in Section 3.

Real applications of this class of mixed-variable problems have been studied 
in the literature  [2]. In  [7, 8], a thermal insulation problem involves a meta vari-
able that determines the number of heat intercept, where each added heat intercept 
involves new design variables. In  [9], the optimal design of a magnetic resonance 
imaging device contains a meta variable that controls the number of magnets in the 
apparatus, which influences the number of variables and constraints the optimization 
problem. In deep learning [10], determining hyperparameters that maximize the per-
formance of the model includes a meta variable representing the number of hidden 
layers that affects the number of variables associated to the units (or neurons) of the 
architecture of the model.

The presence of meta and categorical variables makes this class of mixed-varia-
ble optimization problems notoriously difficult to tackle. Meta variables are funda-
mentally difficult to model and treat, as they may alter the number of variables and 
constraints. Categorical variables are also difficult to treat since they take discrete 
values from sets that do not contain any intrinsic metric of distance between the 
elements and cannot be easily relaxed. For example, in the aircraft design problem, 
a possible categorical variable could be the material composition of a specific part. 
Moreover, the class of problems includes problems that may also contain continuous 
or integer variables. The different variable types are detailed in Section 3.1.

1.3  Literature Review

A first framework to treat mixed-variable optimization problems in a context of 
blackbox optimization is detailed in [11]. The methodology is based on the general 
pattern search algorithm (GPS) and the variables are partitioned into two compo-
nents: discrete and continuous. The discrete component contains both the quanti-
tative and the qualitative discrete variables, i.e., integer variables in ℤ as well as 
categorical variables. The continuous component contains the continuous variables. 
Two main ideas emerged from this article. First, the continuous space, in which clas-
sical continuous blackbox optimization methods can be applied, are generated after 
fixing the discrete component. Thus, for a fixed discrete component, a continuous 
space is generated and explored.

Second, the exploration of the discrete variables space is being done by defining 
a set of neighbors function N  , which is an additional structure to the domain X  , 
such that N(x) is a set of neighbors of x ∈ X  . With this additional structure a local 
minimizer x⋆ is defined so that x⋆ minimizes the objective function f with respect 
to the set of neighbors (discrete part) and the continuous space. From the contribu-
tions of  [11], a practical application of a thermal insulation optimization problem 
is treated and optimized [8]. In [12], the filter method is added to the methodology 
proposed in [8, 11]. This addition enables the methodology to treat general nonlin-
ear constraints. In [13], the methodology based on GPS in [8, 11, 12] is extended to 
the mesh adaptive direct search (MADS) algorithm  [14]. A rigorous convergence 
analysis based on  [12] was improved by using the Clarke generalized derivatives 
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on the continuous space. In [15], the MADS algorithm is equipped with a granular 
mesh called GMesh, which allows the discretization of granular and continuous var-
iables simultaneously. Granular variables are quantitative variables with a controlled 
number of decimals. In particular, GMesh enables to treat integer-continuous prob-
lems with the MADS algorithm since integer variables are a special type of granular 
variables without decimals.

An important contribution from [9, 16] is the introduction of dimensional vari-
ables. These variables affect the number of variables, the number of constraints and 
the structure of the optimization problem. A point x is partitioned into three com-
ponents: a dimensional component, a discrete component and a continuous compo-
nent. The set of discrete variables, where the discrete component belongs, is gen-
erated from a fixed dimensional component. Additionally, the continuous space is 
generated from both a fixed dimensional component and a fixed discrete component. 
From the partition of a point x, a domain and a feasible set are implicitly presented 
in the formulation of an optimization problem. The present work importantly relies 
on the contributions from [9, 16].

A categorical kernel function is defined in [17] with the aim of tackling mixed-
variable optimization problems with a surrogate approach based on radial basis 
functions (RBF). The categorical kernel function measures the number of disagree-
ment between two categorical components, where a disagreement is counted when 
a specific variable of the two compared components is not the same. The surrogate 
is built upon a composed kernel such that the RBF, centered at some interpolation 
points, are shifted by the number of categorical disagreements between the fitted 
point and the interpolation points. The criterion to determine which point is evalu-
ated by the objective function is based on [18]. In essence, the criterion has a high 
value for points that are distant from the previous evaluations (exploration) or points 
that have promising surrogate-value (intensification).

Bayesian optimization (BO) has undergone significant development with the 
recent advent of machine learning. Nowadays, the emerging scientific literature is 
mainly related to BO based on Gaussian processes (GP), which serves as proba-
bilistic distribution surrogates [19]. The success of BO is explained by an acquisi-
tion function that selects which candidate point is to be evaluated. The acquisition 
function defines a less costly optimization problem with the surrogate. For continu-
ous problems, a well documented acquisition function is the expected improvement 
(EI) [20], which provides candidate points in unexplored regions (exploration) and 
candidate points in promising regions (intensification): algorithms that applies an 
EI function on a GP are often referred to as efficient global optimization (EGO) 
algorithms [20]. Historically, BO based on GPs was used to tackle continuous black-
box optimization problems. Hence, in practice the integer and categorical variables 
(one-hot encoded) are often relaxed as continuous variables and rounded after-
wards [21]. This naive approach, used in some modern blackbox solvers, often leads 
to failure such as a mismatch between the points provided by an acquisition function 
and where the true evaluation takes place, as well as reevaluating some points [21]. 
Moreover, an important number of additional variables may be generated by the 
one-hot encoding of categorical variables. In [22], continuous-categorical optimiza-
tion problems are modelled with GPs, where a GP surrogate is characterized by a 
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kernel composed of tensor products and additions of one-dimensional kernels: an 
one-dimensional kernel per variable. The one-dimensional kernel of a given cate-
gorical variable is a C × C matrix in which an element of the matrix is a correla-
tion measure between two categories of the categorical variable. The matrix-kernels 
for the ordinal and nominal categorical variables are distinguished. In [23], the BO 
framework is extended to tackle mixed-variable optimization problems with contin-
uous, discrete (categorical and integer) and dimensional variables, such as defined 
in [9, 16]. Again, the GP surrogate is characterized by a composed kernel built upon 
products and additions of one-dimensional kernels, each specified by the type of its 
corresponding variable. Moreover, two approaches are proposed in  [23]: multiple 
surrogates, one surrogate per dimensional component (set of dimensional variables), 
which separates the main problems into subproblems and a single surrogate with a 
composed kernel built upon on all variables, including dimensional variables.

In [24], the authors combined the user-defined set of neighbors in order to tackle 
categorical variables in an EGO subproblem. More precisely, a user-defined set of 
neighbors is randomly defined with a discrete probability distribution based on a GP. 
Thus, the randomly user-defined set of neighbors serves as a randomized categorical 
exploration strategy for the EGO subproblem.

Covariance functions (kernels) are fundamentally difficult to defined on categori-
cal sets since the distance between two categories (levels) is not defined. To tackle 
this difficulty, the authors in [25] proposed to map the categories of each categorical 
variable to a set of quantitative values that represents some underlying latent unob-
servable quantitative variable. More precisely, the categories of each categorical 
variable are mapped to a 2D continuous space: for a given categorical variable, the 
categories are compared into a 2D space. The quantitative values in the vectors does 
not have any intrinsic meaning. However, the distance between the values encap-
sulates some information, since the categories are mapped among themselves in a 
correlated manner. Mathematically, the mapping is done via a maximum likelihood 
estimation (MLE) procedure that fits the best multivariate Gaussian distribution of 
some data. A GP model is then constructed on continuous variables and latent vari-
ables. Furthermore, the authors in [26] formalized a pre-image problem with a con-
straint that recovers a categorical component from a vector of continuous latent vari-
ables. More technically, a continuous EGO problem is formulated as an augmented 
Lagrangian with a retrieving constraint on the continuous latent variables.

1.4  Motivation, Contributions and Structure of the Work

The compact and general formulation of Problem  (1) does not explicitly model 
mixed-variable problems. Hence, in order to efficiently model and tackle these prob-
lems, the formulation must be further detailed with a focus on treating the categori-
cal and, more particularly, meta variables.

To the best of the authors’ knowledge, no similar work has rigorously and explic-
itly formulated Problem  (1) for mixed-variable problems. The core aspect and 
main contributions of this work are to formally define the domain X  of the objec-
tive function, the feasible set Ω and a point x for mixed-variable problems. These 
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definitions have many implications in the mathematical framework that consists of a 
notation system and solution strategies. The notation framework rigorously models 
constrained mixed-variable problems in an efficient and unambiguous manner, as 
well as shines the light on some algorithmic subtleties in the solution of these prob-
lems. The present work also formalizes solution strategies present in the literature 
and tackles these problems by being fully compatible with two of the main mixed-
variable blackbox optimization approaches: direct search methods are formalized as 
subproblems strategies and surrogate-based Bayesian optimization approaches are 
formalized as auxiliary problem strategies. Hence, another main contribution of this 
work is the formalization of direct search methods and surrogate Bayesian optimiza-
tion approaches, for mixed-variable problems with meta and categorical variables, 
into a single and general framework.

The present work does not present any computational experiments, as it focuses on 
the presentation of the framework. The essence of the present work is similar to the 
well-known surrogate management framework [27], which was proposed with very 
few experiments. Computational experiments will be carried out in future work.

The document is organized as follows. First, an example of a deep learning 
mixed-variable optimization problem is described in Section  2. The example is 
used throughout the paper to facilitate understanding. Second, the notation system 
is exhaustively detailed in Section 3. The notation partitions variables in different 
types, classifies constraint functions, and formally presents their domain and the fea-
sible set. Finally, solution strategies are presented in Section 4 from the framework 
perspective.

2  Hyperparameter Multilayer Perceptron Example

In order to illustrate the mathematical framework, a simplified constrained hyperpa-
rameter optimization (HPO) problem on a multilayer perceptron (MLP) is detailed 
throughout the document. The goal of the detailed problem is to model a simple 
constrained mixed-variable blackbox optimization problem.

2.1  Basics of the MLP

No prerequisites in machine learning or deep learning are necessary since the exam-
ple is treated as a blackbox problem. However, the example is more relevant with 
some background in machine learning or deep learning. Hence, an overview of the 
basic concepts of supervised learning are briefly explained and illustrated on the 
MLP example in this section. For more details, see Chapters 5 and 6 in [28] that pro-
vide an excellent and concise introduction to this topic.

In the example, the MLP is a model designed to perform regression for inputs 
with p ∈ ℕ continuous features. More precisely, the MLP is a regression model 
ĥ ∶ ℝ

p
→ ℝ that approximates a nonlinear function h ∶ ℝ

p
→ ℝ , such that 
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�(in) = (�1, �2,… , �p) ∈ ℝ
p is an input data, ĥ

(
𝜈(in)

)
∈ ℝ is a predicted output and 

h
(
�(in)

)
 is the corresponding true output. The example is established in a super-

vised learning context, since the true output is assumed to be known.
In order to respect the dimensions of the domain and the codomain of the 

function h, the architecture of the model must have uin = p units in the input 
layer and uout = 1 unit in the output layer, as illustrated in Fig. 1.

The regression model ĥ in Fig.  1 is an example of a MLP neural network 
with l hidden layers. The mapping, commonly called feed-forward, of the model 
ĥ ∶ ℝ

p
→ ℝ is illustrated in Fig. 1: starting from the input layer, the input �(in) 

leads to the output layer ĥ
(
𝜈(in)

)
 through the hidden layers from left to right. The 

transition from one layer to a subsequent one is shown for the first node in the l-
th layer (see the rectangle at the top of Fig. 1): the value �(l)

1
 (grey node) is deter-

mined by a scalar product between the units of the l − 1-th layer and the weights 
(edges) wi , followed by a mapping of the resulting scalar product with a non-
linear function called the activation function. The activation function enables to 
approximate nonlinear functions.

The model fitting is commonly referred to as the training. It consists of adjust-
ing the weights of the model to minimize a loss function from the training data-
set. A loss function quantifies a score difference between a prediction ĥ

(
𝜈(in)

)
 

and its corresponding true value h
(
�(in)

)
 . After the training process is completed, 

the performance of the model can be tested on another dataset, commonly called 
the test dataset.

Fig. 1  An example of a MLP
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2.2  Constrained HPO of the MLP

As any deep neural network, a MLP model is characterized by its hyperparameters. 
In deep learning, a hyperparameter is a parameter whose value affects the architec-
ture (units or layers) of the model or controls the training process (activation func-
tion, optimizer or learning rate). The hyperparameters must not be confused with the 
parameters (weights represented as edges in Fig. 1) of the model. Hyperparameters 
are not internally adjusted with the training dataset, but they rather control minimi-
zation process of the loss function or the number of parameters of the model. The 
performance of a MLP is highly sensible to the choice of hyperparameters. Finding 
good hyperparameters is a difficult task since the training, validation and perfor-
mance test is done for a fixed set of hyperparameters (vector of hyperparameters) as 
illustrated in Fig. 2.

In Fig. 2, the objective function f of the HPO problem is schematized. Compu-
tation of the objective function f requires the training and testing of a deep neural 
network model for a vector of hyperparameters x as an input. The goal is to find the 
set of hyperparameters x that maximizes a performance score f(x), which is usually 
a precision score of accuracy on a untested data set. Although the internal mecha-
nisms of the MLP are known (see Section 2.1), the HPO problem is assumed to be 
a blackbox optimization problem. The internal adjustment of the weights (training), 
for a given vector of hyperparameters x, is performed by an algorithm called back-
propagation, which computes the gradient of the loss function with respect to the 
weights of the model. In practice, the number of parameters is in the order of mil-
lions or billions. Thus, the number of parameters combined with the backpropaga-
tion algorithm makes it almost impossible to formulate an analytical expression of f. 
For a more in-depth description of the HPO see [10].

The hyperparameters of the MLP example are described in Table 1. Some impor-
tant hyperparameters are internationally left out, such as the mini-batch size or the 
dropout, in order to restrict the number of variables to be modeled and keep the 
presentation concise.

In Table 1, the index i in ui represents the i-th hidden layer. The number of 
units in the hidden layers are grouped in the vector u(l) = (u1, u2,… , ul) , where 
l is the number of hidden layers. The situation where there are no hidden layer 

Fig. 2  Objective function of the HPO problem
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is modeled by setting l = 0 . In that case, the variables ui are said to be excluded, 
which signifies that the variables ui are not part of the optimization problem. 
The terminology of included and excluded is further detailed in Sections 3.1.1 
and 3.1.2.

The optimizer o is an important hyperparameter since it is a gradient descent 
method, based on the backpropagation algorithm, that iteratively adjusts the 
weights of the model. Moreover, depending on the choice of the optimizer, dif-
ferent hyperparameters are involved. Indeed, in Table  1 the optimizers do not 
share the same continuous hyperparameters. A given optimizer leads to different 
variables in the problem. For example, the variable decay � is only included in 
the problem when o = ASGD . This consideration is important and will be dis-
cussed throughout the document, but notably in Section  3.1.1 that focuses on 
meta variables. Related to the optimizer is the learning rate r which is the step-
size in the gradient descent method.

Finally, constraints on the hyperparameters are imposed to illustrate the nota-
tion (see Section  3.4). The first constraint of the problem imposes that r ≥ �l , 
where r is the learning rate, l is the number of hidden layers and � ∈ ℝ

+ is a 
tunable-scalar (not a hyperparameter). The constraint r ≥ �l models a trade-off 
between training time and performance of the model. In general, higher values 
of l are directly associated to longer training times, since the number of param-
eters in the model grows with the number of hidden layers l. Hence, the con-
straint r ≥ �l forces that larger values of l are associated with larger learning 
rates r, which allows the model to learn faster but at the cost of some perfor-
mance gains by fine-tuning the model parameters. The other constraints are 
ui ≤ ui−1 ∀i ∈ {2, 3,… , l} and they impose that the number of units is monotone 
decreasing in order to reduce the training time of the model. The dotted trap-
ezoidal architecture of the MLP in Fig. 1 is based on the constraints on the units 
ui.

Table 1  Hyperparameters of the MLP

Hyperparameter Variable Domain

Learning rate r ]0, 1[
Activation function a {ReLU, Sigmoid}
# of hidden layers l {0, 1,… , lmax}

 # of units hidden layer i ui {umin

i
, umin

i
+ 1,… , umax

i
}

Optimizer o {Adam, ASGD}
 if o = ASGD
   decay � ]0, 1[
   power update � ]0, 1[
   averaging start t0 ]1E3, 1E8[

 if o = Adam
   running average 1 �1 ]0, 1[
   running average 2 �2 ]0, 1[
   numerical stability � ]0, 1[
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3  Notation Framework

This section contains the fundamental mathematical definitions that allow mod-
elling mixed-variable problems. In Section  3.1, the mathematical objects that 
define the variables (point and components) are described. Subsequently, the 
domain X  is detailed in Section 3.2. Then, the feasible set Ω ⊆ X  is precised in 
Section  3.3. Finally, the content in Sections  3.1 to  3.3 is discussed within the 
MLP example in Section 3.4.

3.1  Variables and Components of a Point

The goal of an optimization algorithm is to find a feasible point x⋆ that mini-
mizes the objective function f. In a mixed-variable optimization context, it is 
necessary to formally define how a point is partitioned into different components.

Definition 1 (Components of a point). A point x = (xm, xcat , xqnt ) is partitioned into 
three components:

• a meta component xm;
• a categorical component xcat = (xnom, xord) , which itself is partitioned into the 

unordered categorical (nominal) component xnom and the ordered categorical 
(ordinal) component xord;

• a quantitative component xqnt = (xint , xcon) , which itself is partitioned into the 
integer component xint and the continuous component xcon.

For each t ∈ {m, cat, nom, ord, qnt, int, con} , the component xt is a vector con-
taining nt ∈ ℕ variables of type t:

The integer and continuous components are contained in the quantitative 
component xqnt for several reasons. In practice these variables are generally 
optimized with well known methods. Moreover, some blackbox optimization 
algorithms have the ability to simultaneously optimize integer and continuous 
variables. Thus, it is convenient to group these variables to lighten the notation. 
However, the quantitative component xqnt = (xint , xcon) can easily be partitioned 
into its two components if necessary.

The meta, quantitative and categorical components, as well as their corre-
sponding variables, are respectively discussed in Sections 3.1.1, 3.1.3 and 3.1.4. 
Additionally, the motivations behind the compact partition x = (xm, xcat , xqnt ) and 
the complete partition x = (xm, xnom, xord, xint , xcon) are discussed and illustrated in 
Section 3.1.5. Finally, in Section 3.1.2, the roles of variables and constraints are 
introduced in order to define more clearly the domain X  in Section 3.2.

(2)xt = (xt
1
, xt

2
,… , xt

nt ).
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3.1.1  Decree Property, Meta Variables and Meta Component

Meta variables are a cornerstone of this work. To formally define them, the decree 
property is introduced.

Definition 2 (Decree property and meta variables). The decree property is attributed to 
variables whose values determine if other variable(s) and/or constraint(s) are included 
or excluded from the optimization problem.

Variables possessing the decree property are called meta variables. 

In the MLP example from Section  2, the variable decay � is included when 
o = ASGD , otherwise it is excluded. An included constraint is a constraint function 
that defines the feasible set Ω that contains feasible solutions, whereas an excluded 
constraint has no impact on the feasible set Ω . In the MLP example, if the number 
of hidden layer is l = 0 , then the constraints ui ≤ ui−1 ∀i ∈ {2, 3,… , l} are excluded.

In addition to being meta, a meta variable also has a common variable type, 
such as categorical ( cat ), integer ( int ) or continuous ( con ). For example, in the 
MLP example, the number of hidden layers l is a meta variable since it decrees 
the units ui in the hidden layers i ∈ {1, 2,… , lmax} . More precisely, for a given 
l ∈ {0, 1,… , lmax} , u1, u2,… , ul are included variables and ul+1, ul+2,… , ulmax 
are excluded. Moreover, l is also an integer variable, since its domain is 
{0, 1,… , lmax} . The number of hidden layers l is a meta-integer variable.

On the one hand, meta variables may affect the number of variables (dimen-
sion) as well as the number of constraints included in the problem. In the MLP 
example, the number of hidden layers l affect the dimension and the number of 
constraints of the problem. Indeed, l affect the number of variables (dimension) 
since it determines the number of variables associated to the units ui in the hidden 
layers that are included: precisely, this number of variables is ||{u1, u2,… , ul}

|| . 
Moreover, l also decrees the corresponding constraints ui ≤ ui−1 ∀i ∈ {2, 3,… , l} , 
thus affecting the number of constraints.

On the other hand, meta variables do not necessarily affect the dimension of 
the problem or the number of constraints. Indeed, in the MLP example, both opti-
mizers ASGD and Adam from Table 1 decree three different continuous hyperpa-
rameters, specific to each optimizer. The dimension nor the number of constraints 
is affected by the choice of the optimizer.

In that regard, meta variables are a generalization of the strictly discrete 
dimensional variables defined in [9, 16]. There are several reasons to generalize 
the dimensional variables into the new meta variables. 

1. Meta variables do not necessarily affect the dimension (e.g., the optimizer o), in 
comparison to dimensional variables. This is an important justification, especially 
since the optimization of hyperparameters (see Section 2) in deep learning is, in 
effect, one of the most important industrial and academic mixed-variable black-
box optimization problem.
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2. Meta variables can be of any type t ∈ {cat, nom, ord, qnt, int, con} and are not 
strictly discrete (categorical or integer). For example, a problem could contain a 
continuous variable frequency that takes its value in the visible spectrum (con-
tinuous domain). The visible spectrum could be partitioned into the three inter-
vals that represent the red-blue-green colors. The frequency could decree some 
variable(s) or constraint(s) depending in which interval (color) it belongs to. In 
that particular example, the frequency is a meta-continuous variable.

3. The terminology dimensional is used in physical sciences and engineering to 
describe quantities such as the velocity, mass and time. Many of blackbox mixed-
variable optimization problems come from these disciplines, hence it is also 
strategic to avoid the term dimensional for a variable type.

Finally, the meta variables are contained in the meta component

where nm ∈ ℕ is the number of meta variables and xm
j

 is a meta variable. For short, 
the decree propriety is attributed to the meta component xm , since it contains the 
meta variables (more details are given in Section 3.1.2): this is a natural extension of 
Definition 2.

3.1.2  Roles of Variables

Some variable(s) are included or excluded depending on the value of a meta vari-
able. This consideration leads to the following definition.

Definition 3 (Decreed variable). A variable of type t ∈ {cat, nom, ord, qnt, int, con} is a  
decreed variable if its inclusion or exclusion is determined by values of a meta variable.

Definition 3 above ensures that a decreed variable cannot be a meta variable, 
since the type t belongs to {cat, qnt, nom, ord, int, con} . Therefore, a meta variable  
cannot decree another meta variable: this modeling choice has been made for  
the following reason. Problems in which a meta variable can be decreed are more 
general than the class of problems described in Section  1.2, however they are 
uncommon in practice, they make the notation considerably more cumbersome 
and they are not the target problems of this work.

Furthermore, there may be some variables that are not decreed and do not 
decree other variables. For example, in the MLP example, the learning rate r, 
is always included, is not a meta variable and is not decreed (see Table 1). This 
remark leads the following definition.

Definition 4 (Neutral variable). A variable of type t ∈ {cat, nom, ord, qnt, int, con} is 
a neutral variable if it is always included in the problem.

(3)xm =
(
xm

1
, xm

2
,… , xm

nm

)
,
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Definition  4 ensures that a neutral variable cannot be a meta variable. Hence, 
neutral variables are variables that are always included but not meta. Incidentally, 
note that meta variables are also always included.

The definitions for meta, decreed and neutral variables are all related to the decree 
property: meta variables have it; decreed variables are, by implication, affected by it 
and neutral variables are unaffected by it. To summarize and conceptualize this, the 
role of a variable is defined.

Definition 5 (Role of a variable). The role of a variable represents its relation to the 
decree property. A variable is attributed a single role amongst meta (as in Defini-
tion 2), decreed (as in Definition 3) or neutral (as in Definition 4).

The role of a variable differs from its variable type. In addition to its type 
t ∈ {m, cat, nom, ord, qnt, int, con} , each variable takes a single role amongst meta, 
decreed or neutral. By definition, meta variables are attributed the role meta. Inter-
relations between meta, decreed and neutral variables are schematized in Fig. 3.

Figure 3 illustrates many points. First, excluded variables are necessarily decreed. 
Second, neutral variables are disjoint from the other variables, which implies that 
they are unaffected by the meta variables. Third, meta variables are always included. 
Additionally, the arrow in Fig. 3 symbolizes the decree property. Finally, the meta 
component xm decrees all decreed variables.

In essence, the roles of variables consist of additional terminologies that help elu-
cidate some subtleties of the mathematical framework. The roles of the variables are 
particularly useful for defining the domain X  in Section 3.2.

Fig. 3  Roles of variables
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3.1.3  Categorical Component

The categorical component xcat contains qualitative variables, known as categorical 
variables, that are not meta: a categorical variable may be decreed or neutral. Categor-
ical variables are discrete variables that take qualitative values called categories. More 
precisely, a categorical variable xcat

j
 has j categories such that xcat

j
∈ Lj = {l1, l2,… , lj} , 

where li is the i-th category for 0 ≤ i ≤ j.
A categorical variable belong to either an unordered or ordered set. A nominal 

(unordered categorical) variable belongs to an unordered set. For example, the 
blood-type of a given person xnom

j
∈ {O-, O+,… , AB+} is a nominal variable since 

there is no intrinsic ordering between the blood type categories. The nominal varia-
bles are contained in the unordered categorical component xnom.

Subsequently, an ordinal (ordered categorical) variable belongs to an ordered set, 
in which the elements (categories) of the set are naturally ordered1. For example, the 
education level of a person xord

j
∈ {“less than HS”, “HS”,… , “MSc”, “PhD”} , 

where HS signifies high school, is an ordinal variable, since the categories are natu-
rally ordered, i.e., “less than HS” ≤ “HS” ≤ … ≤ “MSc” ≤ “PhD” . The ordinal var-
iables are contained in the categorical ordered component xord . Although the ordinal 
variables belong to ordered sets, distances between the ordinal variables are inher-
ently unknown: “[...] there is an ordering between the values, but no metric notion is 
appropriate” [29].

Note that a binary variable may be: a nominal variable, e.g., xnom
j

∈ {True, False} ; 
an ordinal variable, e.g. xord

j
∈ {small, tall} or an integer variable, e.g. xint

j
∈ {0, 1} . 

A modeling choice is made in this regard, however a binary variable should be typed 
into to either nominal ( nom ), ordinal ( ord ) or integer ( int ) based on its nature.

The categorical component xcat = (xnom, xord) is composed of the nominal compo-
nent xnom and the ordinal component xord , which are not meta.

In some cases, it might be beneficial to exploit the order of an ordinal variable, 
motivating the partition of the categorical component into nominal and ordinal com-
ponents. For instance,  [22] used different kernels for ordinal and nominal compo-
nents. Moreover, a direct search exploration strategy could be generically imple-
mented with a previous and next element mechanism for an ordinal set.

In previous work [8, 11, 12], meta variables were included in the categorical vari-
ables; it is an important distinction from this work.

3.1.4  Quantitative Component

The quantitative xqnt component contains discrete and continuous quantitative vari-
ables that are not meta variables: a quantitative variable may be decreed or neutral. 

1 Formally, a (partially) ordered set is a set X equipped with a binary relation (partial order) ≤ that sat-
isfies the properties of reflexivity, transitivity and antisymmetry for any pair x, y ∈ X . Additionally, an 
order ≤ is total if the comparability property ( x, y ∈ S are either x ≤ y or y ≤ x ) is met, which means that 
any two elements are comparable (a totally ordered set).
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Formally, the quantitative component xqnt contains variables that belong to intrinsi-
cally ordered sets for which a metric of distance is intuitively definable. Simply put, 
the quantitative component xqnt contains the integer and the continuous variables.

The integer component xint exclusively contains discrete quantitative variables, 
called integer variables, that are not meta. Unlike the categorical variables, integer 
variables are always ordered and belong to sets with appropriate metric notions [29]. 
The decision to separate the discrete variables into the categorical component and 
the integer component differs from some of the current literature. Indeed, in [9, 13, 
23] the discrete component contains both the categorical and the integer variables. 
Thus, in [9, 13, 23], categorical and integer variables are not clearly distinguished: 
some useful mathematical properties of the integer variables might not be exploited 
at their fullest. In that regard, integer programming is a well developed optimization 
field that exploits the properties of the integer variables. In practice, this strengthens 
the separation of the integer variables from the categorical ones, since integer pro-
gramming techniques could be implemented in the algorithmic framework to treat 
the integers variables.

The continuous component xcon contains continuous variables that are not meta. 
Continuous variables have many properties that are generally exploited in a context 
of blackbox optimization.

3.1.5  Variable Type Classification

Figure 4 shows a tree chart that classifies a variable by their type in the proposed 
mathematical framework. The first question identifies meta variables, the second 
determines the continuous variables, the third distinguishes integer from categorical 
variables and the last one separates ordinal from nominal variables. The first ques-
tion also imply that continuous, integer, ordinal and nominal variables are not meta 

Fig. 4  Variable type classification tree chart
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variables. The doted box in the middle illustrates that quantitative variables contains 
the continuous and integer variables, whereas the doted box in the bottom exhibits 
that two types of categorical variable, which are ordinal and nominal variable.

The full partition of a point x = (xm, xnom, xord, xint , xcon) , displayed in Fig.  4, 
offers flexibility and extracts most mathematical information accessible to facilitate 
the optimization process: the modelling choices for the partitions are motivated by 
these considerations. The compact partition x = (xm, xcat , xqnt ) implicitly contains the 
same information and flexibility of the full partition. However, the compact partition 
alleviates the notation, which is why it is mostly used throughout this work.

3.2  Domain

At this stage, the variables have been: 1) classified into different types; 2) organ-
ized into components, which forms a partition of a point x; 3) attributed roles. 
The next step is to define the domain X  of the objective function f ∶ X → ℝ.

Definition 6 (Domain). The domain of objective function is defined by:

where Xm ⊆ �
nm is the meta set, X cat (xm) ⊆ ℤ

ncat (xm) is the parametrized categorical 
set and X qnt (xm) ⊆ ℤ

nint (xm) × ℝ
ncon(xm) is the parametrized quantitative set.

The meta set Xm ⊆ �
nm , the parametrized categorical set X cat (xm) ⊆ ℤ

ncat (xm) 
and the parametrized standard set X qnt (xm) ⊆ ℤ

nint (xm) × ℝ
ncon(xm) are detailed in 

Sections 3.2.2, 3.2.3 and 3.2.4, respectively.
The dependencies of the parametrized categorical set X

cat (xm) and para-
metrized quantitative set X qnt (xm) are defined through a parametrization with 
respect to the meta component xm . These parametrizations are a direct conse-
quence of the decree property of the meta component xm.

Definition 7 (Parametrized set). A parametrized set X t(xm) of type t ∈ {cat, nom,

ord, qnt, int, con} is the set that contains all the components of type t, such that

where St
i
 is the domain of the included variable xt

i
 and It(xm) = {1, 2,… , nt(xm)} is 

the set of indices of the included variables xt
i
 , which are either neutral or decreed by 

the meta component xm ∈ X
m.

From Definition 7, it follows that a component x t ∈ X
t(xm) contains only the 

included variables of type t. The excluded variables are not contained in the 

(4)

X =
{
(xm, xcat , xqnt ) ∶ xm ∈ X

m,

xcat ∈ X
cat (xm),

xqnt ∈ X
qnt (xm)

}

(5)
X

t(xm) =
{

xt =
(

xt
1
, xt

2
,… , xt

nt(xm)

)
∶ xt

i
∈ St

i
is an included variable ∀i ∈ It(xm)

}
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component xt ∈ X
t(xm) . Recall that excluded variables are necessarily decreed 

variables, whereas included variables may be neutral or decreed. Hence, in the 
component xt ∈ X

t(xm) , some included variables contained may be decreed by the 
meta component xm ∈ X

m , which justifies the parametrization of the set X t(xm).
Two additional remarks follow. First, meta variables are always included, thus the 

meta set Xm has no dependency. Secondly, a parametrized set X t(xm) is a subset of 
the set that contains all possible components X t , such that

where t ∈ {cat, nom, ord, qnt, int, con} . A component yt is said to be incompatible 
with the meta component xm , if yt ∈ X

t and yt ∉ X
t(xm) . The set X t contains all 

possible components, including incompatibles ones. The compatible and incompat-
ible components are further discussed in Section 3.2.1.

In the MLP example, a continuous component y con that contains the decay � 
(see Table  1) is incompatible with the meta component xm = (l, Adam) . Indeed, 
if o = Adam and ycon is a continuous component that contains the decay, then 
ycon ∈ X

con and ycon ∉ X
con(l, Adam).

Moreover, if all variables of type t ∈ {cat, nom, ord, qnt, int, con} are neutral var-
iables, then no parametrization is necessary, and therefore X t(xm) = X

t.
The possibility of having incompatible components justifies why the domain X  

from Definition 6 is formulated with a categorical parametrized set X cat (xm) and a 
quantitative parametrized set X qnt (xm) rather than the categorical set X cat and a quan-
titative set X qnt . Indeed, for a given meta component xm ∈ X

m , the categorical and 
quantitative components reside in their parametrized sets, such that xcat ∈ X

cat (xm ) 
and xqnt ∈ X

qnt (xm) , in order to take into account that some categorical or quantita-
tive variables may be decreed by the given meta component xm ∈ X

m.
Moreover, the meta component xm may affect the dimension nt(xm) of the com-

ponent xt ∈ X
t(xm) . Indeed, some included variables of type t contained in the com-

ponent xt ∈ X
t(xm) may be decreed by the meta component xm , thus the number of 

included variables in this component may vary with the meta component xm . In sim-
pler terms, the dimension of the component xt may vary with the meta component 
xm . Hence, the dimension of the component xt is a function nt ∶ X

m
→ ℕ . Notably 

in the MLP example in Table 1, the number of hidden layers l decrees the number 
of units ui in the hidden layers, which affects the number of integer variables. Thus, 
the dimension of the integer component xint ∈ X

int (xm) is determined by the meta 
component xm.

3.2.1   Partition of Components into Roles

Following the discussion of a parametrized set X t(xm) in Section 3.2, it may be neces-
sary or simply useful in some cases to explicitly distinguish the neutral and decreed-
included variables of a given type t ∈ {cat, nom, ord, qnt, int, con} . This section serves 
as a complementary discussion of the domain X  and the parametrized set X t(xm).

(6)X
t(xm) ⊆ X

t =
⋃

xm∈X
m

X
t(xm),
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A component x t ∈ X
t(xm) of type t ∈ {cat, nom, ord, qnt, int, con} may be parti-

tioned into its neutral and decreed-included variables partitioned such that

where xt
neu

 is the neutral-t component which contains the neutral variables of type t 
and xt

dec
 is the decreed-included-t component which contains the decreed-included 

variables of type t for a given meta component xm ∈ X
m . Based on the partition in 

Eq.  (7), a parametrized set X t(xm) of type t ∈ {cat, nom, ord, qnt, int, con} may be 
formulated as a Cartesian product such that

where X t
neu

 is the neutral-t set that contains all neutral-t components xt
neu

 and X t
dec

(xm) 
is the decreed-included-t set that contains all decreed-included-t components xt

dec
 

for a given meta component xm ∈ X
m . Definition 6 may be further detailed with 

Eq. (8), such that

The flexibility and thoroughness of the framework, provided by the types and roles 
of the variables, is succinctly displayed in Eq. (9).

Moreover, the decreed-excluded variables of type t are contained in the decreed-
excluded-t component xt

dec
 , such that

As discussed in Section 3.2, the component xt ∈ X
t(xm) is compatible with the meta 

component xm ∈ X
m , whereas (xt

neu
, xt

dec
, x

t

dec
) ∈ X

t is incompatible since it contains 
decreed-excluded variables.

The partition of components into roles is not put forward in the rest of the docu-
ment. However, it is implicitly present and illustrates several algorithmic subtleties, 
including the importance of distinguishing neutral and decreed variables during the 
optimization process.

3.2.2  Meta Set

The number of variables in the meta component is denoted nm ∈ ℕ . The meta com-
ponent xm belongs to the meta set Xm ⊆ �

nm , which contains all the meta component 
xm . In comparison to a parametrized set, the meta set Xm is static, since the meta 
variables are always included variables. This also implies that the meta component 
xm has a fixed dimension nm ∈ ℕ . Moreover, the set �nm is a mixed set consisting of 
Cartesian products, such that

(7)xt = (xt
neu

, xt
dec

) ∈ X
t(xm),

(8)X
t(xm) = X

t
neu

× X
t
dec

(xm),

(9)

X =
{
(xm, xcat , xqnt ) ∶ xm ∈ X

m,

xcat = (xcat
neu

, xcat
dec

) ∈ X
cat
neu

× X
cat
dec

(xm),

xqnt = (xqnt
neu

, x
qnt

dec
) ∈ X

qnt
neu

× X
qnt

dec
(xm)

}
.

(10)(xt
neu

, xt
dec

, x
t

dec
) ∈ X

t.
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where nm = nm
cat

+ nm
int

+ nm
con

 is the number of meta variables, nm
cat

 is the number of 
meta-categorical variables, nm

int
 is the number of meta-integer variables and nm

con
 is 

the number of meta-continuous variables.
In particular, note that 𝕄nm = ℤ

nm
cat × ℤ

nm
int = ℤ

nm in the case where meta varia-
bles are strictly discrete variables. Formally, in that case, the meta set Xm is a count-
able set since it is a subset of �nm , which is a Cartesian product of two countable 
sets. This case is common in practice and this allows to formulate X  more schemati-
cally in Section 3.2.5.

3.2.3  Parametrized Categorical Set

The categories of each categorical variable can be mapped with a bijection to a 
subset of ℤ . Hence, without any loss of generality, the parametrized categorical set 
X

cat (xm) is considered to be a subset of ℤncat (xm) . However, this bijection does not 
imply that a metric notion is appropriate [29]. In other words, this bijection is only 
useful in terms of algorithmic implementations.

Since the categorical variable xcat
j

 takes values from the set Lj = {l1, l2,… , lj} , the 
parametrized categorical set X cat (xm) is defined as

It may also be expressed as the Cartesian product between the parametrized unor-
dered and ordered sets

which outlines the distinction between nominal and ordinal variables.

3.2.4  Parametrized Quantitative Set

The parametrized quantitative set X qnt (xm) is a compact notation that describes a 
direct Cartesian product of the parametrized integer and continuous sets:

where X int (xm) ⊆ ℤ
nint (xm) is the parametrized integer set and X con(xm) ⊆ ℝ

ncon(xm) is 
the parametrized continuous set.

Again, the compact notation for the parametrized quantitative set X qnt (xm) is par-
ticularly interesting for algorithms that optimize simultaneously the integer and con-
tinuous variables is employed.

(11)𝕄
nm = ℤ

nm
cat × ℤ

nm
int ×ℝ

nm
con ,

(12)X
cat (xm) =

ncat (xm)∏
j=1

Lj =

ncat (xm)∏
j=1

{l1, l2,… , lj}.

(13)X
cat (xm) = X

nom(xm) × X
ord(xm) =

nnom(xm)∏
i=1

Li ×

nord(xm)∏
j=1

Lj,

(14)X
qnt (xm) = X

int (xm) × X
con(xm) ⊆ ℤ

nint (xm) ×ℝ
ncon(xm),
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3.2.5  Alternative Formulation of the Domain

The domain X  , as formulated in Definition 6, allows meta variables to be either 
categorical, integer or continuous. However, Definition  6 offers little insight 
regarding the visualization and construction of the domain X  , especially regard-
ing the parametrized categorical set X cat (xm) and the parametrized quantitative set  
X

qnt (xm ). In the case where meta variables are all discrete (categorical or integer), 
such that the meta set Xm ⊆ �

nm is countable, a more visual and algorithmic for-
mulation of the domain, based on [12, 13], is proposed:

Following the same logic as in Eq. (15), the parametrized quantitative set X qnt (xm) 
is formulated as:

Schematically, the parametrized quantitative set X qnt (xm) can be visualized as the 
union of multiple layers, where each layer is a Cartesian product of a parametrized 
continuous set X con(xm) with an integer component xint ∈ X

int (xm) , which is illus-
trated in Fig.  5b. In Fig.  5b, each layer shares the same continuous set X con(xm) , 
whereas each layer has a distinct integer component xint ∈ X

int (xm) . The quantitative  
set X qnt (xm) is represented as a box containing all the possible unions described in 
Eq. (16).

A visualization of the entire domain X  can be built upon the abstraction of the 
quantitative set X qnt (xm) illustrated in Fig. 5b. In Fig. 5a, the quantitative sets are 
represented as small rectangles, following the abstraction from Fig.  5b. The left-
curly brackets represents the unions in the Eq. (15), from left to right. Furthermore, 
the formulation of the domain X  in Eq. (15) may be understood and visualize as an 
explicit enumeration of all the possible points, similarly to a set of all possible com-
ponents X t in Eq. (6).

3.3  Feasible Set

Similarly to decreed variables, some constraints may be included or excluded of 
the problem. To model these constraints, the next definition, based on Definition 3 
(decreed variable), is proposed.

Definition 8 (Decreed constraint). A constraint cm ∶ X → ℝ is a decreed constraint 
if its inclusion or exclusion is determined by values of a meta variable.

In the MLP example discussed in Section  2, each constraint ui ≤ ui−1

∀i ∈

{2, 3,… , lmax} is decreed by the number of hidden layers l ∈ {0, 1,… , lmax}.

(15)X =
⋃

xm∈X
m

(
{xm} ×

⋃
xcat∈X

cat (xm)

(
{xcat} × X

qnt (xm)
))

.

(16)X
qnt (xm) = X

int (xm) × X
con(xm) =

⋃
xint∈X

int (xm)

(
{xint} × X

con(xm)
)
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The meta component xm , which contains all the meta variables, decrees all the 
decreed constraint. In other words, the decreed constraints that are included in the 
problem are determine by the meta component xm since it contains all the meta vari-
ables. From this remark, the set of decreed-included constraints is defined.

Definition 9 (Set of decreed-included constraints). The set of decreed-included con-
straints Cm(xm) is the set that contains all the included constraints that are decreed 
by the meta component xm.

Similarly to a parametrized set X t(xm) defined in Definition 7, the dependency 
of Cm(xm) with xm is defined through a parametrization with respect to the meta 
component xm . Moreover, the set of decreed-included constraints Cm(xm) is a sub-
set of the set of decreed constraints Cm . A constraint ĉm ∈ Cm is either included or 
excluded, whereas cm ∈ Cm(xm) is an included constraint, decreed by the meta com-
ponent xm (more precisely, a meta variable contained in the meta component xm ). In 
the MLP example, the set of decreed constraints is

and the set of decreed-included constraints is

where l ≤ lmax.
Contrary to decreed constraints, some constraints are not decreed by the meta 

component xm . Based on Definition  4 (neutral variable), the definition of neutral 
constraint is given.

(17)Cm = {ui − ui−1 ≤ 0 ∶ ∀i ∈ {2, 3,… , lmax}}

(18)

Cm(xm) = Cm(l, o) =

{
�, if l ∈ {0, 1}

{ui − ui−1 ≤ 0 ∶ ∀i ∈ {2, 3,… , l}} ⊆ Cm, otherwise

(a) (b)

Fig. 5  Visualization of the domain X
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Definition 10 (Neutral constraint). A constraint cj ∶ X → ℝ is a neutral constraint if 
it is always included.

In the MLP example, the neutral constraint is c(x) = �l − r ≤ 0 , which is always 
included no matter the meta component xm.

To define the feasible set Ω , the neutral constraints and decreed constraints are 
distinguished.

Definition 11 (Feasible set). The feasible set Ω ⊆ X  is the domain X  defined by 
constraints:

where ci are the neutral constraints with p ∈ ℕ and Cm(xm) is the set of decreed-
included constraints, which is parametrized with respect to meta component xm . The 
number of included constraints that are decreed by the meta component xm is simply 
|Cm(xm)|.

3.4  Mathematical Modeling of the MLP Example

Each hyperparameter is identified with its variable type and role in Table 2.
The following observations can be made. First, the number of units ui in the hid-

den layers are typed as integer variables. Although they affect the network architec-
ture, they are not meta variables because they do not decree other variables. More 
precisely, they do not affect the dimension of the integer component, since they do 
not decree any other hyperparameters. Second, the number of hidden layers l is a 
meta variable, since it decrees the units ui and thus it affects the dimension of a com-
ponent xint ∈ X

int (xm) . Third, the activation function a ∈ {ReLU, Sigmoid} is nomi-
nal variable, since it is a qualitative discrete variable that belongs to a set with no 
appropriate metric and no order. Fourth, the optimizer o is a meta-nominal variable 
as it decrees some continuous hyperparameters of the problem and takes a category 
in a set with no appropriate metric and no order.

3.4.1  Components and Sets

The meta set Xm is the Cartesian product between the domains of the two meta vari-
ables, the number of hidden layers l and the optimizer o, thus the meta component 
xm and the meta set Xm are:

Then, the only categorical variable is the activation function a, which is a neu-
tral variable. Thus, X cat (xm) = X

cat in the example, since no parametrization of the 

(19)
Ω =

{
(xm, xcat , xqnt ) ∈ X ∶ ci(x) ≤ 0, ∀i ∈ {1, 2,… , p},

cm(x) ≤ 0, ∀cm ∈ Cm(xm)
}

(20)xm = (l, o) ∈ X
m = {0, 1,… , lmax} × {Adam, ASGD}.
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categorical set is necessary. Following this, the categorical component xcat and the 
categorical set X cat are:

Moreover, the integer component is directly the vector of units in the hidden lay-
ers, such that xint = u(l) = (u1, u2,… , ul) . All the integer variables are decreed by 
the meta component xm and more specifically the number of hidden layers l. The 
integer component xint and the parametrized integer set X int are:

where umin
i

 and umax
i

 are respectively the minimum and the maximum of units 
allowed for each hidden layer i ∈ {1, 2,… , l} , l is the number of hidden layers and 
u(0) is an empty vector.

Finally, all continuous variables are decreed by the optimizer o, except for the 
learning rate r. Thus, the continuous component xcon is decreed by the meta compo-
nent xm , implying that the continuous set requires a parametrization. The continuous 
component xcon and the parametrized continuous set X con(xm) are:

The continuous component xcon ∈ X
con contains neutral and decreed-included 

variables, hence it may be partitioned into its neutral and decreed-included variables. 
The neutral-continuous component xcon

neu
 and the neutral-continuous set X con

neu
 are:

(21)xcat = a ∈ X
cat = {ReLU, Sigmoid}.

(22)

xint =

⎧
⎪⎨⎪⎩

� (excluded), if l = 0

(u1, u2,… , ul) ∈ X
int(xm) = X

int(l) =
l∏

i=1

{umin

i
, umin

i
+ 1,… , umax

i
} ⊆ ℕ

l, if l ≥ 1

(23)

xcon ∈ X
con(xm) =

{
X

con(Adam) = ]0, 1[4 ⊆ ℝ
4, if o= Adam ,

X
con(ASGD) = ]0, 1[3 × ]1E3, 1E8[ ⊆ ℝ

4, if o= ASGD .

Table 2  Hyperparameters with their variable type and role

Hyperparameter Variable Domain Type Role

Learning rate r ]0, 1[ continuous neutral
Activation function a {ReLU, Sigmoid} nominal neutral
# of hidden layers l {0, 1,… , lmax} meta-integer meta
  # of units hidden layer i ui {umin

i
, umin

i
+ 1,… , umax

i
} integer decreed

Optimizer o {Adam, ASGD} meta-nominal meta
  if o = ASGD

    decay � ]0, 1[ continuous decreed
    power update � ]0, 1[ continuous decreed
    averaging start t0 ]1E3, 1E8[ continuous decreed

  if o = Adam
    running average 1 �1 ]0, 1[ continuous decreed
    running average 2 �2 ]0, 1[ continuous decreed
    numerical stability � ]0, 1[ continuous decreed
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where r is the learning rate. Moreover, the decreed-included-continuous component 
xcon
dec

 and the decreed-included-continuous set X con
neu

(xm) are:

For the sake of simplicity, the domain of the units in the hidden layers ui and the 
number of hidden layer l are set as: umin

i
= 100 and umax

i
= 300, ∀i and l ∈ {2, 3} in 

Table 1. With l ∈ {2, 3} , the meta set (20) can be explicit as:

Moreover, the parametrized integer set X int (xm) can also be explicit:

The parametrized categorical and continuous sets remain unchanged.

3.4.2  Constraints

In the example there is a neutral constraint and decreed constraints. The neutral con-
straint can be easily expressed as c(x) = c(l, r) = �l − r ≤ 0 . The set of decreed con-
straints is

and the set of decreed-included constraints is

which can be further detailed since l ∈ {2, 3}

In this particular example, the number of neutral constraint is p = 1 and the num-
ber of included constraints that decreed by the meta component is |C(xm)| = l − 1.

3.4.3  Visualization of the Domain and the Feasible Set

In the MLP example, the meta set Xm is countable (see Eq.  26). Hence, the 
alternative formulation of the domain X  in Eq.  (15) and the feasible set Ω 
in Definition  19 of the MLP example may be visualized in Fig.  6, in which 
X

con
A

= X
con(Adam) , X con

B
= X

con(ASGD) and Ul = {100, 101,… , 300}l (domain of  
the units ui).

(24)xcon
neu

= r ∈ X
con
neu

= ]0, 1[

(25)xcon
dec

∈ X
con
dec

(xm) =

{
]0, 1[3 ⊆ ℝ

3, if o= Adam ,

]0, 1[2 × ]1E3, 1E8[ ⊆ ℝ
3, if o= ASGD .

(26)X
m = {(2, Adam), (3, Adam), (2, ASGD), (3, ASGD)}.

(27)

X
int (xm) = {100, 101,… , 300}l = Ul =

{
{100, 101,… , 300}2, if l = 2

{100, 101,… , 300}3, if l = 3.

(28)Cm =
{

ui − ui−1 ≤ 0 ∶ i ∈ {2, 3,… , lmax}
}

(29)

Cm(xm) = Cm(l) =

{
� (excluded), if l < 2,{

ui − ui−1 ≤ 0 ∶ i ∈ {2, 3,… , l},
}

(included), if l ≥ 2,

(30)Cm(2) = {u2 − u1 ≤ 0}, Cm(3) = {u3 − u2 ≤ 0, u2 − u1 ≤ 0}.
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The upper part of Fig. 6 (above the dotted line) represents the alternative formu-
lation of the domain X  in Eq. (15). The parametrized quantitative sets X qnt (xm) are 
illustrated as rectangles and the unions from left to right in Eq. (15) are viewed from 
top to bottom in Fig. 6. Moreover, the parametrized quantitative sets are expressed 
explicitly, such that X

qnt (xm) = X
qnt (l, o) = X

int (l) × X
con(o) = Ul×]0, 1[×X

con
i

 , 
where i ∈ {A, B} . The lower part of Fig. 6 schematizes the constraints. The included 
constraints decreed by a meta component xm , are contained in the set of decreed-
included constraints Cm(xm) . The neutral constraint is always included and unaf-
fected by the meta component xm , hence it is not assign to a specific meta compo-
nent xm comparatively to decreed constraints: this representation shows the neutral 
aspect of neutral constraints. Altogether, the upper and lower parts Fig. 6 synthe-
size the feasible set Ω of the MLP example.

In the literature review, it has been discussed that some optimization approaches 
tackle categorical variables by solving many subproblems in which a categorical com-
ponent xcat is fixed. Indeed, in [12, 14] the MADS algorithm was applied to a continu-
ous space where a discrete component, which contained meta, categorical and integer 
variables, was fixed. This idea can be generalized to the proposed notation system.  
For example, assume that xm = (2, Adam) and xcat = ReLU are selected and fixed. 
Then, the objective function f could then be optimized on the parametrized quantita-
tive X qnt (Adam, 2) with both the meta and categorical components fixed. Subproblems  
are further discussed in the next Section 4 and more particularly in Section 4.1.

4  Solution Strategies

Most blackbox approaches in mixed-variable optimization are built upon two strate-
gies. One solution strategy consists of solving many subproblems in which some 
selected components are fixed. Another strategy consists of formulating a less costly 
problem that selects a candidate point to be evaluated by the more costly objective 
function f. Some methods rely on both strategies.

Fig. 6  Diagram of the domain X  and the constraints for the MLP example
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For example, direct search methods  [8, 11, 12, 14] divide the main problem into 
many subproblems, in which the objective function f is optimized on a continuous space 
for a fixed discrete component xd . Bayesian optimization (BO) formulates an auxiliary 
problem, with a fixed acquisition function and a probabilistic surrogate, and then selects 
a candidate point that is subsequently evaluated by the objective function f.

The two strategies are respectively defined as the subproblems strategy and the 
auxiliary problem strategy. These strategies are the basis of the general algorithmic 
framework, since most algorithms that tackle mixed-variable blackbox optimization 
conceptually rely on solving many subproblems or on an auxiliary problem.

The purpose of this section is to illustrate that the framework notation may be 
easily adapted to the main blackbox approaches in mixed-variable optimization. 
More precisely, direct search and heuristic approaches are discussed through the 
subproblems strategy in Section 4.1 and the BO approach is discussed through the 
auxiliary problem strategy in Section 4.2.

4.1  Subproblems

The motivation of dividing a main problem into many subproblems arises from two 
rationales: 1)  there are methods that treat quantitative (integer-continuous) prob-
lems, or even categorical-integer-continuous problems (mostly with an auxiliary 
problem strategy); 2) there are few efficient methods that address mixed-variable 
optimization problems with both meta and categorical variables.

In the context of this work, subproblems are obtained by fixing values of meta 
and categorical components. In [8, 11, 12, 14], the component that is fixed is the dis-
crete component, which contains categorical variables. Secondly, note that there’s 
no particular interest fixing the integer or continuous components, since they can be 
properly optimized in practice.

To further formalize the subproblems, the objective subfunction must be first defined.

Definition 12 (Objective subfunction). An objective subfunction g is the objective 
function f with a single or many fixed components. The objective subfunction is said 
to be parametrized with respect to the fixed component(s).

From Definition  12, it should be noted that there is a direct correspondence 
between the fixed component(s) and its subproblem. In other words, a specific sub-
problem may be referred by its fixed component(s). Again, in Definition  12, the 
components that are interesting to fix are the meta component xm and the categorical 
component xcat . In this work, only the quantitative subproblems strategy, in which 
both the meta and categorical components, is detailed.

4.1.1  Quantitative Subproblems

In the quantitative subproblems strategy, the meta component xm and the categori-
cal component xcat are fixed, in order to generate quantitative subproblems (one 
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per couple (xm, xcat ) ). Fixing a meta component xm ∈ X
m simplifies the optimiza-

tion problem, since the included variables, the included constraints and the dimen-
sion in the subproblems are determined. In addition, fixing the categorical compo-
nents also further simplifies the optimization problem. Indeed, with both the meta 
and categorical components fixed, the subproblems are a quantitative blackbox 
optimization problem, where the included variables are either integer or continu-
ous variables. In practice, there are efficient methods to tackle these quantitative 
subproblems.

For the quantitative subproblems strategy, the objective subfunction 
g ∶ X

qnt (xm) → ℝ , parametrized with respect to the meta component xm ∈ X
m and 

the categorical component xcat ∈ X
cat (xm) , is defined as:

Thus, for a fixed meta component xm ∈ X
m and a fixed categorical component 

xcat ∈ X
cat (xm) , a quantitative subproblem may be formulated as

where Pqnt stands for quantitative subproblem. Moreover, note that the constraints of 
the problem are treated directly within the subproblems of the form (Pqnt ).

4.1.2  Exploration of Subproblems

There is a direct correspondence between the fixed component(s) and their sub-
problem, hence the exploration of subproblems may be done accordingly to the 
fixed components. Solving subproblems may be done directly with simple heuris-
tics, such as random searches on the meta and categorical components. However, 
extra work is required in a direct search framework. Qualitative variables, such 
as the categorical variables, do not posses intuitive neighborhoods nor directions 
of exploration. Hence, the meta set Xm , which may contain meta components 
with meta-categorical variables, and the parametrized categorical set X cat (xm) 
are both endowed with a user-defined neighborhood mapping. To formalize the 
exploration of subproblems, the following definition based on [8, 11, 12, 14], is 
proposed.

Definition 13 (User-defined neighborhood mapping). For any t ∈ {m, cat} , a user-
defined neighborhood mapping N t assigns a user-defined neighborhood N t(x) ⊆ X

t 
to a point x ∈ X  , such that each neighbor yt ∈ N

t(x) is a component of type t that is 
determined by a given rule rt ∶ X → X

t:

(31)
g(xqnt;xcat, xm) = f (xm, xcat, xqnt), where xm ∈ X

m and xcat ∈ X
cat(xm) are fixed.

(32)
(Pqnt ) min

xqnt∈X
qnt (xm)

g(xqnt ;xm, xcat )

s.t. cm(x) ≤ 0, ∀cm ∈ Cm(xm),

ci(x) ≤ 0, ∀i ∈ {1, 2,… , p}.
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where rt ∈ R
t(x) is a rule that assigns a neighbor yt = rt(x) ∈ X

t to a point x ∈ X  , 
R

t(x) is a set of rules defined for the given point x ∈ X  and P(X t) is the powerset of  
X

t , which is denoted as the codomain of the mapping N t to indicate N t(x) can either  
be: 

1. N
t(x) = � , such that x has no neighbor of type t;

2. N
t(x) = {yt} , such that x has a single neighbor of type t;

3. N
t(x) ⊆ X

t , such that xt has multiple neighbors of type t.

The set of rules Rt(x) embeds the generality of the user-defined neighborhood 
N

t(x) . Indeed, a rule rt ∈ R
t(x) must only respect the following mapping r ∶ X → X

t , 
which indicates that a component yt = rt(x) ∈ X

t , called a neighbor, is assigned to a 
point x ∈ X  . In practice, it is from the these rules that user-defined neighborhoods are 
generated and implemented. Moreover, two issues are specific to the categorical case 
t = cat : 1) the set X cat is the parametrized categorical set: X t = X

cat (xm) ; 2) the user-
defined neighborhood mapping N cat takes a point x ∈ X  as an argument, which allows 
to take into account the decree property of meta variables for the user-defined neigh-
borhood mapping N cat and its constituent parts, such as the rules rcat.

In the MLP example and using Eq. (20), the meta rules of the form rm ∶ X → X
m , 

for a given point y = (ym, xcat , xqnt ) ∈ X  with ym = (l, o) , could be

where o represents the other optimizer available. The set of rules would be:

with corresponding user-defined neighborhood

The evaluations of the blackbox objective function f are generally costly, which 
implies that the user-defined neighborhood mappings have to set a trade-off between 
being exploratory and computationally expensive. Again, in practice, the user-
defined neighborhood mappings N m and N cat are based on rules provided by a user. 
Thus, the compromise is set with the discretion of the user. To lower the number 
of evaluations, some polling strategies may be used in practice. Indeed, instead of 

(33)
N

t ∶ X → P(X t)

x ↦

{
yt ∈ X

t ∶ yt = rt(x), rt ∈ R
t(x)

}
⊆ X

t

rm
1
(y) = (l + 1, o), rm

2
(y) = (l − 1, o),

rm
3
(y) = (l, o), rm

4
(y) = (l + 1, o), rm

5
(y) = (l − 1, o),

(34)R
m(y) =

⎧⎪⎨⎪⎩

�
rm

1
, rm

3
, rm

4

�
, if l = 0�

rm
2

, rm
3

, rm
5

�
, if l = lmax�

rm
1

, rm
2

, rm
3

, rm
4

, rm
5

�
, otherwise,

(35)N
m(y) =

⎧⎪⎨⎪⎩

�
(l + 1, o), (l, o), (l + 1, o)

�
, if l = 0�

(l − 1, o), (l, o), (l − 1, o)
�

, if l = lmax�
(l + 1, o), (l − 1, o), (l, o), (l + 1, o), (l − 1, o)

�
, otherwise.
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exploring all the neighbors at a given iteration, an opportunistic strategy would stop 
the iteration if a neighbor that offers a better solution is determined and resume from 
that neighbor.

4.1.3  Direct Search Framework

Direct search methods with strict decrease are iterative algorithms that start with an 
initial point x(0) and seek a candidate point t whose objective function value f(t) is 
strictly less than f (x(k)) , where x(k) is the current incumbent solution at iteration k. 
More precisely, at every iteration k, a set of trial points T is generated. Opportunisti-
cally, if a trial point t ∈ T  improves the objective function value, then it becomes 
the next incumbent solution x(k+1) = t and the iteration k terminates. Otherwise, the 
current incumbent solution remains unchanged, such that x(k+1) = x(k)  [1, 15]. In 
practice, stopping the iteration opportunistically reduces the number of evaluations 
required [1].

Moreover, direct search methods tackle blackbox optimization problems with two 
main mechanism: a global search strategy (diversification) and a poll that locally 
searches better solutions (intensification).

By its own, a poll is prone to miss out good point solutions. Indeed, the poll may 
get caught in a region with local minima or may neglect the exploration of promis-
ing regions that are far from the poll. For the meta set Xm and parametrized cate-
gorical set X cat (xm) the poll may be emulated with some user-defined neighborhood 
mappings Nm and N cat respectively. The quality of a poll based on a user-defined 
neighborhood mapping, such as the meta and categorical polling, depends on the 
exhaustiveness of the set of rules Rm and Rcat . Therefore, depending on the qual-
ity of implementation by the user and the dimensions of the problem, the poll, 
based on user-defined neighborhood mappings, is likely to neglect some promising 
components.

In that regard, a global search may help overcome this problem by evaluating 
scattered trial points (or components) with a flexible strategy that serves as a diver-
sification mechanism. The global search is generally being done before the poll for 
opportunistic reasons, given that the global search may find a better or interesting 
point that deserves to be further explored with the poll. The global search is an 
optional step that often improves the overall quality of a solution and increases the 
convergence speed. Many generic and low-cost global search strategies exist, such 
as the random search, Latin hypercube sampling or a Nelder-Mead search [30], and 
more sophisticated and costly global search strategies can be implemented to gen-
erate promising trial points or unexplored regions, such as the Gaussian Processes 
(surrogate) paired with an acquisition function (auxiliary problem strategy) that 
quantifies the uncertainty and the potentiality of a point.

Algorithm 1 presents the main steps of a direct search methodology. The method-
ology consists of a quantitative subproblems strategy (see Section 4.1.1) paired with 
an exploration of subproblems that is done with user-defined neighborhood map-
pings Nm and N cat from Definition 13.
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In Algorithm 1, the two main steps to tackle the meta and categorical variables 
with a direct search approach are compactly presented. For the global search and 
poll steps, an quantitative subproblem (Pqnt ) , which respects the formulation in 
Problem (38), is solved. Hence, the constraints of the problem are handled within 
the subproblems. Moreover, the solving of a subproblem (Pqnt ) encapsulates many 
algorithmic details, such as a stopping criteria for a subproblem, as well as a global 
search and poll on the integer and continuous variables. Note that, a potential solver 
for the subproblems could be the MADS algorithm  [14] which enables to treat 
simultaneously integer and continuous variables. For more details, see [15]. Then, 
additionally, constraints can be handled with the progressive barrier technique [31].

4.2  Auxiliary Problem

Auxiliary problems inexpensively allow to select candidate points to be evaluated by 
the true objective function f. Auxiliary problems are generally built from a surrogate 
model f̃  of the objective function f, an acquisition function � , as well as surrogates 
of each neutral constraint c̃j, j ∈ {1, 2,… , p} and decreed constraint c̃m ∈ Cm . The 
acquisition function � allows to select candidate points in promising regions (inten-
sification) or in unexplored regions (exploration). The acquisition function � is gen-
erally applied to a surrogate model f̃  that quantifies the uncertainty of a point of its 
domain, and provides a prediction of the true objective function f. This is the case in 
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BO where f̃  is a GP probabilistic surrogate model. Other surrogate models can be 
considered, such as random forests, however the most common remains the GPs. In 
this section, only GP surrogate models are adapted to the notation framework, since 
they are the basis of BO, an important blackbox approach to tackle mixed-variable 
problems. Before discussing BO, the encoding of variables is discussed.

4.2.1  Encoding of Variables and Auxiliary Domain

BO methodologies (from Section 1.3) often tackle categorical variables by encod-
ing them as quantitative variables. For instance, the categorical variables may be 
encoded by the emerging latent variables or simply with the popular one-hot encod-
ing binary vectors relaxed into a continuous vector [21].

Definition 14 (Encoder). For any t ∈ {cat, nom, ord} and iteration k ∈ ℕ , the encoder 
�t
(k)

 , parametrized with respect to the meta component xm ∈ X
m , is a mapping that 

assigns an encoded component lt to a component xt , such that

An encoder �t
(k)

 may be updated at every iteration k ∈ ℕ , such as the latent varia-
bles discussed in Section 1.3. In order to take into account the decree properties of 
the meta variables, an encoder is parametrized with respect to the meta component 
xm ∈ X

m . In general, a meta variable may be a meta-categorical variable. However, 
in this work, the meta variables are not encoded for two reasons. First, the decreeing 
property of encoded meta variables may be ambiguous and difficult to conserve 
through sophisticated mappings, such as the latent variables. Secondly, there are cat-
egorical kernels that allow to avoid encoding categorical variables, hence in a BO 
framework, meta-categorical variables may be treated with these kernels.

One of the main purpose of encoding categorical variables (or equivalently cat-
egorical component) is to formulate an auxiliary problem in which these encoded 
variables possess mathematical properties, making them easier to manipulate. How-
ever, by encoding the categorical variables, the domain of the surrogate model may 
differ from the domain of the objective function X  . Hence, the auxiliary domain 
Xaux is defined as follows.

Definition 15 (Auxiliary domain). The auxiliary domain at an iteration k ∈ ℕ is defined by:

where lcat = �cat
(k)
(xcat ;xm) and Lcat (xm) is the encoded parametrized categorical set.

(36)
�t
(k)

∶ X
t(xm) → L

t(xm)

xt
↦ lt = �t

(k)
(xt;xm).

(37)

Xaux =
{

(xm, lcat , xqnt ) ∶ xm ∈ X
m,

lcat ∈ L
cat (xm),

xqnt ∈ X
qnt (xm)

}
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Definition  15 allows to set Lcat (xm) = X
cat (xm) , so that no encoding is done: 

lcat = xcat . In addition, since some categorical kernels do not require encoding, it fol-
lows that the auxiliary domain Xaux is compatible with encoded categorical variables or 
with the original categorical variables.

From Definition 15, the auxiliary maximization problem may be formulated as:

where (Paux) stands for auxiliary problem, � ∶ Xaux → ℝ is an acquisition function 
applied to a surrogate model f̃  , c̃i ∀i ∈ {1, 2,… , p} are surrogate constraints for the 
neutral constraints, c̃m ∈ C̃m is a surrogate constraint for a decreed constraint. The 
last constraint imposes the existence of some xcat ∈ X

cat (xm) such that 
xcat = �cat

(k)
(xcat ;xm) is a pre-image constraint that recovers a categorical component 

xcat ∈ X
cat (xm) from the encoded parametrized categorical set Lcat (xm) . The pre-

image constraint also ensures that the optimal auxiliary problem solution resides in 
the domain X  . For more details on pre-images problem, refer to [26].

4.2.2  Bayesian Optimization

In this section, the BO approach is formulated as an auxiliary problem (Paux) , with-
out detailing the algorithmic steps or the construction of the GP (see [19] or [32] for 
more details on this subject). For the purpose of this work, it is sufficient to formu-
late the BO approach as an auxiliary problem (Paux) and to develop the kernel from 
the notation framework, since the kernel almost entirely characterizes the probabilis-
tic surrogate (GP). A kernel k ∶ Xaux × Xaux → ℝ is a positive semi-definite covari-
ance function. Conceptually, the kernel establishes the mathematical properties of 
the GP, such as the degree smoothness.

In its simplest noise free form, a probabilistic BO distribution is built from a 
GP, which allows to compute for any given point x ∈ Xaux , a prediction f̂ (x) and an 
uncertainty measure �̂�2(x) , such that

where � is a set of sample points, f (�) is the vector of objective function values of 
the sample points, �(x) is a vector in which an element is the computed kernel k(x, y) 
with (x, y) ∈ Xaux ×� , K is a matrix in containing all pairs (y, z) ∈ � ×� , such that 
an element of K is k(y, z). In Eq. (39), everything is computed from the kernel k. In 
other words, Eq. (39) displays that the GP is entirely characterized by the kernel: it 
is assumed that the GP is noise free and that the mean function is zero, which is a 
common practice [19]. The surrogate probabilistic model f̃  satisfies

(38)

(Paux) max
x∈Xaux

𝛼
(
x;f̃

)

s.t. c̃i(x) ≤ 0, ∀i ∈ {1, 2,… , p}

c̃m(x) ≤ 0, ∀c̃m ∈ C̃m(xm),

xcat = 𝜙cat
(k)
(xcat ;xm) for some xcat ∈ X

cat (xm),

(39)
{

f̂ (x) = 𝜅⊺(x)K−1f (�)

�̂�(x)2 = k(x, x) − 𝜅⊺(x)K−1𝜅(x)
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where N  is the normal distribution. Moreover, a common acquisition function � 
applied on GP surrogates is the EI from [20]:

where f⋆ = f (xk) is current best known objective function value at iteration k > 1 , 
�̂�(x) is the standard deviation of the GP, Φ and � are respectively the cumulative 
distribution and the density function of a standard normal distribution (centered at 
zero with variance of one). In Eq. (41), the intensification and exploration trade-off 
of the EI (acquisition function) is displayed by the two terms: the first term favors 
promising low surrogate values (intensification) and the second term favors highly 
uncertain points (exploration). In the auxiliary problem (Paux) , the acquisition func-
tion could be 𝛼(x;f̃ ) = EI(x;f̃ ).

In a similar manner to surrogate model f̃  evaluated at a point x ∈ Xaux in 
Eq. (40), the surrogate constraints in the auxiliary problem (Paux) , may be devel-
oped into GP probabilistic surrogates. Thus, a given surrogate constraint c̃i would 
have its own prediction function ĉi (similarly to f̂ (x) in Eq. (39)), which could be 
directly used in the auxiliary problem (Paux) , i.e., c̃i(x) = ĉi(x) . Acquisition func-
tions may also be applied to probabilistic surrogate constraints, which is not cov-
ered in this work.

At this stage, the BO framework is formulated in a general manner, which does 
not explicit the mixed-nature of the optimization problems at stake. To adapt the 
BO framework on a mixed-variable context, the kernel k, must be further detailed 
with the support of the notation framework. Many possible kernels can be built 
with operations of multiplication and additions that respects the RKHS formal-
ism [22, 23]. An example of a specific kernel is detailed next to illustrate the com-
patibility of the framework with the mixed-variable optimization BO literature.

The kernel k is built piece-by-piece with the partition of a point x = (xm,

x = (xm, xnom, xord, xint , xcon) . The parametrized continuous kernel kcon ∶ X
con(xm)×

X
con(xm) → ℝ is formulated as multiplication of one-dimensional squared-exponential 

kernels:

where the �con
i

 are weight coefficients (hyperparameters of the surrogate model) that 
can be adjusted by various methods, such as the MLE.

The parametrized integer kernel kint ∶ X
int (xm) × X

int (xm) → ℝ is similar to 
kcon , but applies a transformation T that rounds the relaxed integer variables to the 
nearest integer [21]:

(40)f̃ (x) ∼ N
(
f̂ (x), �̂�(x)2

)
.

(41)

EI
(
x;f̃

)
= �

[
max(f⋆ − f̃ (x), 0)

]
=
(
f⋆ − f̂ (x)

)
Φ

(
f⋆ − f̂ (x)

�̂�(x)

)
+ �̂�(x)𝜙

(
f⋆ − f̂ (x)

�̂�(x)

)

(42)kcon(xcon, ycon;xm) = exp

(
−

ncon(xm)∑
i=1

�con
i

[
xcon

i
− ycon

i

]2

)
.
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where xint
i

, yint
i

∀i ∈ Iint (xm) are relaxed integer variables and �int
i

 are hyperparam-
eters of the surrogate model. The transformation T conserves the order of an inte-
ger variable and ensures that the one-dimensional kernels in  (43) are piecewise 
functions [21].

The parametrized quantitative kernel kqnt ∶ X
qnt (xm) × X

qnt (xm) → ℝ is formulated  
as multiplication of kint and kcon:

The parametrized categorical kernel kcat may be formulated with an encoding on the 
categorical variables  [25] ( kcat ∶ L

cat (xm) × L
cat (xm) → ℝ ), or without any encoding 

( kcat ∶ X
cat (xm) × X

cat (xm) → ℝ ). With an encoding, the parametrized categorical ker-
nel kcat is similar to kcon:

where �cat
i

 are hyperparameters of the surrogate model and Lcat
aux

(xm) is the set of 
indices of the encoded (included) categorical variables. Without any encoding, the 
parametrized categorical kernel kcat is formulated as tensor products of matrices 
(one matrix per categorical variable) [22]:

where, for t ∈ {nom, ord} and a categorical variable xt
i
∈ {1, 2,… , ci} , Tt

i
∈ ℝ

ci×ci is 
a positive semi-definite matrix in which an element is the correlation between two 
categories of the variable xt

i
 . Hence, for two given variables with specific categories 

xt
i
= c1 and yt

i
= c2 , Tt

i

(
xt

i
, yt

i

)
 is a correlation measure between the categories c1 and 

c2 . In Eq. (46), the matrices for the nominal and ordinal variables Tnom
i

 and Tord
j

 are 
distinguished, since there exist more sophisticated matrices for the ordinal 
variables [22].

Finally, a mixed kernel k ∶ Xaux × Xaux → ℝ , based on [23], is formulated as:

where km
i
∶ Sm

i
× Sm

i
→ ℝ is a one-dimensional kernel for a meta variable xm

i
∈ Sm

i
 , 

kcat is the parametrized categorical kernel that may take the form in Eqs. (45) or (46),  

(43)kint (xint , yint ;xm) = exp

⎛
⎜⎜⎝
−

nint (xm)�
i=1

�int
i

�
T
�
xint

i

�
− T

�
yint

i

��2
⎞
⎟⎟⎠

(44)kqnt (xqnt , yqnt ;xm) = kint (xint , yqnt ;xm) ⋅ kcon(xqnt , yqnt ;xm).

(45)kcat (lcat , ucat ;xm) = exp

(
−

∑
i∈L

cat
aux

(xm)

�cat
i

[
lcat
i

− ycat
i

]2

)
,

(46)
kcat (xcat , ycat ;xm) =

(
⊗

nnom(xm)

i=1
Tnom

i

(
xnom

i
, ynom

i

))
⊗

(
⊗

nord(xm)

i=j
Tord

j

(
xord

j
, yord

j

))
,

(47)

k(x, y) =

⎧
⎪⎪⎨⎪⎪⎩

nm∏
i=1

km
i
(xm

i
, ym

i
), if xm ≠ ym,

nm∏
i=1

�
km

i
(xm

i
, ym

i
)+

�
kcat (lcat , ucat ;xm)kqnt (xqnt , yqnt ;xm)

��
, otherwise,
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kqnt is the parametrized quantitative kernel in Eq.  (44). In Eq.  (47), the meta ker-
nel km ∶ X

m × X
m
→ ℝ is implicitly decomposed into one-dimensional kernels 

(one per meta variable), which is again, common practice in the literature. Moreo-
ver, in Eq.  (47), the kernel computations for the categorical and quantitative vari-
ables are only being done if the two points in share the same meta component: 
for t ∈ {cat, qnt} , the kernel computation k(xt, yt;xm) in Eq.  (47) is only done if 
xm = ym , which implies that xt and yt must both reside in the same parametrized set  
X

t(xm).

5  Conclusion

To the best of the authors’ knowledge, no previous work has explicitly and formally 
defined the domain X  of the objective function nor the feasible set Ω for the class of 
problems of interest: this is mainly what justified the need of a formal mathematical 
framework to model this class of problem. This work proposes a thorough notation 
framework for mixed-variable optimization problems. The framework formally and 
properly models mixed-variable problems with a careful emphasis on meta and cat-
egorical variables.

Many definitions are developed to shed light on the intrinsic difficulties resulting 
from the presence of the new meta variables. The roles of variables, which encom-
passes decreed, neutral and meta variables, and the decree property establish a novel 
and systematic approach to model such optimization problems.

The general constrained optimization problem (1) is explicitly and formally 
formulated, for the class of problems, throughout the new definitions of a point 
x = (xm, xcat , xqnt ) , the domain X  of the objective function, and the feasible set Ω . 
Moreover, for t ∈ {cat, nom, ord, qnt, int, con} , a parametrized set X t(xm) elucidates 
that some variables of type t may be included or excluded of the problem depend-
ing on the meta variables. The parametrized categorical set X cat (xm) and the par-
ametrized quantitative set X qnt (xm) are building blocks of the domain X  that has 
two equivalent formulations. Both formulations provide a different perspective on 
mixed-variable problems. Furthermore, the constraints are split into neutral and 
decreed constraints, which allow to formulate the feasible set Ω.

In Section  4, a direct search approach and Bayesian optimization are presented 
using the proposed framework. More precisely, in Section  4.1, the subproblems  
strategy is introduced. The objective subfunction g and the quantitative subproblems  
strategy are explicitly formulated, which leads to the formal definition of an user-
defined neighborhood mapping N t ∶ X → X

t (exploration of subproblems) for direct 
search methods. Subsequently, the encoder �t

(k)
 , the auxiliary domain and the auxil-

iary maximization problem are all introduced and defined in Section 4.2. From these 
new definitions, Bayesian optimization is formalized within the framework, notably 
from a mixed kernel k ∶ X

aux × X
aux

→ ℝ that is constructed with the framework.
Thereby, the notation framework is shown to be compatible with the two 

main approaches of the literature on mixed-variable optimization with meta and 
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categorical variables in a blackbox optimization context. The mathematical frame-
work has been carefully developed to be compatible with both approaches.

In general, direct search methods are exclusively developed by blackbox optimi-
zation researchers, whereas Bayesian optimization methods exclusively by machine 
learning researchers. Thus, one of the intentions of this work is to bridge blackbox 
optimization and machine learning specifically for mixed-variable blackbox optimi-
zation problems.

Computational experiments will be carried out in future studies with the math-
ematical framework of this work as a foundation.
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