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Abstract

This paper considers the simultaneous movement of multiple trains within a railyard
network, where each of a number of trains has an origin location and destination
location on the network. We wish to minimize the total time required to move all
trains from their origin to destination locations, while ensuring that at most one train
occupies each track segment at any given time. We propose an integer programming
model that is able to solve small problem instances exactly, as well as a heuristic
solution method for solving problems of realistic size in acceptable computing time.
Our constructive heuristic approach uses a ranked priority list of trains that require
repositioning, and sequentially determines a route on the network for each train in
priority order. We then relax the strict priority ordering rule by applying a Greedy
Randomized Adaptive Search Procedure (GRASP) based on the underlying con-
structive heuristic. As we demonstrate via a set of computational tests, this heuristic
approach is able to find good quality feasible solutions in fast computing time, dras-
tically reducing the labor hours typically dedicated to routinely solving this problem
in practice.

Keywords Railway logistics - Mixed integer programming - Shortest route

1 Introduction

A freight rail network generally consists of a set of geographically dispersed rail-
yards that are interconnected via so-called main track lines, or main lines, which

often traverse long distances (e.g., several hundred miles) between connected rail-
yards. Each railyard (also called a hub facility) acts as an origin and destination
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point for freight trains consisting of connected railcars. These railyards often cor-
respond to intermodal logistics freight terminals, where containers are transferred to
and from tractor trailers for regional over-the-road transportation. Within a railyard,
the assembly and disassembly of trains comprise a significant portion of the work-
load and activity within a railyard. That is, a railyard operates as a type of sorting
facility, where railcars from inbound trains with different origins are disassembled,
while cars with a common destination hub are assembled to form new outbound
trains.

Efficiently repositioning subsets of railcars in a railyard is necessary for ensuring
on-time train departures and a high degree of equipment utilization. The required
reassembly of railcars to create outbound trains necessitates frequent railcar reposi-
tioning among and between various track segments in the railyard network. Generi-
cally, we will refer to any set of railcars that remains connected during a move from
one position to another on the rail network as a train. Thus, given a current state
of the railyard network (i.e., the position of each train on the network), we wish to
find a set of routes and the start time for each route that minimizes the total time
required until all trains reach their final destination positions on the network. We
call this the multiple-train shortest-route (MTSR) problem. Based on the authors’
experience with a large rail carrier, this problem is routinely solved manually using
a basic set of priority rules, requiring a relatively large commitment of labor and
time. The contributions of this work, therefore, include modeling and solution meth-
ods that permit obtaining good quality feasible solutions in a short amount of time,
while substantially reducing the associated labor hours required to obtain these solu-
tions. We use the term shortest in reference to distance or time, assuming distance
can be scaled by the inverse of an average value of travel distance per unit time, in
order to obtain the total time spent in travel. While trains may travel at a wide range
of speeds between railyards, travel speeds are relatively small and limited within the
railyard (e.g., typically less than 10-15km/hr), such that using an average within-
yard travel speed tends to provide a relatively reliable estimate of total travel time
between two points.

Clearly if we are able to determine the shortest route independently for each train
on the empty network, and the execution of each of these routes starting at time
zero results in no collisions, then the combination of these individual shortest routes
solves the MTSR problem. This single-train shortest-route subproblem, however,
cannot be solved directly on the rail network, as physical travel constraints on the
railyard network do not always permit directly moving from each edge to all con-
necting edges at a node. For example, while track segments connect to one another
via switch points, it is not always possible for a train to approach a switch point and
directly proceed onto any other segment connected to the switch point. This results
because multiple segments connected to a switch point may form an acute angle,
which a train cannot physically traverse. In some cases, it is possible to ultimately
traverse such an acute angle by first proceeding past the switch onto a third track
segment (which must form an obtuse angle with each of the segments creating the
acute angle), and then reversing direction. Whether or not such a move is possi-
ble depends on whether a sufficient amount of track is available to pass the switch
and make the reverse move, which, in turn, depends on the length of the train. For
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Fig. 1 Illustration of a switch A
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example, the switch point illustrated in Fig. 1 creates an acute angle such that a train
traveling from point A to point B cannot simply turn at the switch point; instead, it
must fully pass the switch point toward point C and then reverse in order to reach
point B.

It will typically be the case that solving a shortest-route problem for each train
independently and initiating each such route at time zero will not produce a feasible
solution, as multiple trains may require traversing a common portion of the track or
switch point simultaneously (leading to collisions). Thus, beyond accounting for the
physical constraints on route selection for each train, our approach to formulating
and solving the MTSR problem must introduce constraints that ensure that no two
trains attempt to occupy a common point on the network at the same time. Given
the fact that each train may occupy multiple track segments and switch points at the
same time, this introduces substantial complexity beyond the single-train shortest-
route special case of the problem.

Motivated by the need to frequently solve multiple-train repositioning problems in
a railyard network, and the relatively high number of labor hours typically dedicated
to this task, we propose approaches for formulating and solving the MTSR problem.
We provide an exact approach that models the problem as an integer program with
an objective of minimizing the total makespan required for train repositioning. We
also propose a heuristic algorithm based on first determining the K-shortest routes
for each train in the network, and then searching for a feasible combination from
among each train’s K-shortest routes.

The remainder of this paper is organized as follows. The following section dis-
cusses previous relevant work in the area of train routing and its relation to our
proposed model and solution methods. Section 3 then provides a formal problem
definition. In Sect. 4, we provide an A’P-Hardness proof for the MTSR problem,
after which Sect. 5 discusses an exact model and a heuristic algorithm for efficiently
determining a solution. Section 6 then characterizes the advantages and disadvan-
tages of the two approaches via a set of computational tests, and we provide con-
cluding remarks in Sect. 7.

2 Related Literature
The application of operations research techniques to railway scheduling and train

routing problems has been investigated in numerous previous works, with a major-
ity of these focused on passenger rail traffic between train stations within a city or

@ Springer



61 Page4of31 Operations Research Forum (2022) 3:61

country. The associated rail networks typically do not directly connect each pair of
stations and, as a result, problems that consider routing passenger trains through the
network of stations often arise. Some applications also exist that consider schedul-
ing train movements within the network of track segments at a station. Lusby et al.
[1] provide a comprehensive classification of the literature in this area. They cat-
egorize the models and methods at the strategic, tactical, and operational planning
levels, as the scheduling time horizon decreases from a lengthy planning horizon to
real-time scheduling.

In scheduling train timetables for various stations connected by tracks, Higgins
et al. [2] consider a single track line that passes through different stations. Their
objective is to minimize the total makespan or completion time for all trains to reach
their destination. They developed a mixed-integer nonlinear programming (MINLP)
formulation and applied a branch-and-bound algorithm to generate an integer fea-
sible solution. Their branching scheme determines train priority sequencing based
on current and future estimated delays, forcing one train to wait for another higher
priority train to pass along a shared track segment. Carey and Lockwood [3], on
the other hand, determine the priority order of conflicting trains within their pro-
posed MIP formulation. However, the combinatorial difficulty of the resulting prob-
lem necessitated the use of heuristic approaches for fixing some non-overlapping
train timetable variables, reducing the size of the formulation. In each of these
approaches, parallel tracks are available at stations or crossing points where more
than one train can stop at a time and allow another to pass.

Liu and Kozan [4] consider the train timetabling problem for a single-line track
using a job shop scheduling approach where trains and track sections are analogous to
jobs and machines, respectively. They propose an MIP formulation as well as a con-
structive heuristic to minimize the total makespan. In a recent paper, Lange and Werner
[5] revisit this problem with fixed train routes with associated desired departure and
arrival times. The authors provide an MIP formulation to minimize total tardiness, both
for cases where parallel tracks are accounted for directly in the formulation, and when
the consideration of parallel tracks is handled in a post-processing stage.

In addition to the single-line track train timetabling problem, other more general
networks have been considered in the literature, where stations correspond to nodes,
and the links between stations serve as connecting edges, producing a network that
usually is not a complete graph. For these problems, an aggregated rail topology is
usually defined in which the various possible routing decisions within a node (sta-
tion) are ignored for simplicity, and the arcs represent the connections between these
aggregated nodes [1]. The detailed network layout associated with each node is then
explicitly considered in order to verify the feasibility of the aggregated schedule’s
inbound/outbound times (this step is usually referred to as the train platforming
problem).

With this network setup, Caprara et al. [6] propose a multi-commodity flow for-
mulation for the train timetabling problem over a network of stations using binary
variables associated with each arc, flow constraints for arcs, and constraints ensuring
that multiple trains avoid conflicting arcs. The authors then suggest using Lagran-
gian relaxation for conflicting arc constraints. A follow-up work also included con-
straints that account for station throughput capacity, although the test instance sizes
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necessarily became smaller. Instead of associating binary variables with the selec-
tion of an arc, Cacchiani et al. [7] use such variables to select a train path, where the
model’s constraints prevent the selection of conflicting paths. The authors propose
a branch-and-cut-and-price algorithm and a heuristic solution approach to solve the
resulting problem. Their results demonstrate that the solution time becomes appreci-
ably shorter for the path-based formulation than the arc-based one.

As noted earlier, a plan resulting from the problem’s solution over an aggregated
network topology must be validated at the station level for tactical verification of
the proposed timetable. Lusby et al. [1] pose the intra-station level scheduling prob-
lem as a general junction train routing problem, which permits defining a general
network that may include station tracks, non-station tracks (the latter of which cor-
respond to the links under the aggregated topology), or both. As a result, the gen-
eral junction train routing problem can be defined in sufficiently general terms that
allow its use in addressing problems at each of the strategic, tactical, and operational
levels.

Zwaneveld et al. [8] formulate an intra-station scheduling problem using a node
packing formulation over a conflict graph, where nodes correspond to paths and arcs
between nodes indicate pairs of conflicting paths. Their setup permits defining a con-
flict as a result of a shared track segment between two paths, as a result of an opera-
tional restriction (e.g., restrictions forced by maintenance schedules), or through the
assignment of multiple routes to a single train. The objective of the model in [8]
maximizes the total weighted benefit of the selected paths; when all path weights
are equal, this corresponds to the maximum cardinality of the set of selected paths
(which corresponds to the maximum throughput in the network). Their solution
mechanisms include the use of valid inequalities to improve the model formulation
as well as a branch-and-cut algorithm for solving the node packing problem. Their
formulation selects from among a set of predetermined paths for each train rather
than selecting track sections within a junction network, and thus searches for set of
non-conflicting nodes (paths).

The junction train routing problem for intra-station scheduling can also be
defined using a multi-commodity network flow formulation. Fuchsberger and Liithi
[9] introduce a resource tree conflict graph, where nodes correspond to resource ele-
ments (such as switches), and arcs correspond to tracks connecting the resources.
Binary variables are associated with selecting each arc in the network, which,
together with a travel time parameter, leads to an objective of minimizing the total
travel time for trains on the network. To achieve a conflict-free solution, the authors
include additional constraints that restrict the assignment of the set of conflicting
arcs to at most one train.

Unlike the conflict graph, a so-called alternative graph, based on a disjunctive
graph approach, can be applied in routing multiple trains. Instead of searching for
non-conflicting paths, the alternative graph attempts to determine the order of opera-
tions whenever two activities are prone to conflict. Thus, the alternative graph has
nodes that correspond to operations and arcs that determine the sequence of con-
secutive operations. This graph contains pairs of extra (alternative) arcs that deter-
mine the order of operations that would otherwise block a track segment simultane-
ously or that simply may not be executed at the same time for any reason. Mascis
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and Pacciarelli [10] propose an alternative graph formulation to tackle the job shop
problem with blocking and no-wait constraints. D’Ariano et al. [11] subsequently
mapped their method to a real-time train scheduling problem. By allowing only one
arc of each pair of the set of alternative arc pairs, the model determines the best
sequence of trains at each conflict point.

A variant of the job shop scheduling with blocking approach for junction scheduling is
proposed by Rodriguez [12], who considers real-time routing through a junction. In this
paper the author defines the concept of a track circuit, which corresponds to the presence
of an electrical signal on the track segments occupied by a train at any given time. A train
must be delayed on its current track circuit if its subsequent track circuit contains another
train. Rodriguez [12] uses a constraint programming approach to determine a set of routes
without conflicting circuits with an objective of minimizing total delay.

As noted earlier, the problem of validating the feasibility of a timetabling solu-
tion at the station level is referred to as the train platforming problem, where the
goal is to assign available platforms to the scheduled inbound trains. Considering
each train as a node and generating the associated conflict graph that contains edges
between pairs of trains that cannot be assigned to the same platform, a graph color-
ing approach can be used such that no adjacent nodes have the same color, and each
color represents a platform. Cornelsen and Di Stefano [13] use such an approach
as a feasibility check for a passenger railway aggregated inter-station routing solu-
tion. For real-time problems, when infeasibilities have been detected and require fast
resolution, Pellegrini et al. [14] define a real-time traffic management problem, for
which they provide a mixed-integer linear programming formulation and consider
the objectives of minimizing maximum and total delay. Sama et al. [15] discuss
graph-based disjunctive programming approaches for this class of problems, with an
objective of minimizing the maximum delay (see also [16]).

While the approaches we have discussed can generally be tackled using branch-
and-bound methods (Lusby et al. [1]), in many cases, the problem’s size and com-
plexity can restrict the likelihood that an exact method is able to produce a good
solution in acceptable time. To help in addressing this problem, some research
has focused on improving the quality of the linear relaxation of the mixed-integer
programming formulation. For example, Fischer [17] proposes a set of ordering
inequalities that eliminate commonly found fractional solutions. In addition, as an
alternative to exact solution methods, numerous heuristic solution approaches have
been developed to address problems of practical size. These methods include, but
are not limited to, local search, Tabu search, and adaptive search algorithms.

The literature discussed thus far considered route planning and execution at the
aggregate level (via the network connecting multiple stations), as well as intra-
station routing and platform assignment. While these problems are often solved
in the passenger-train problem domain, relevant work also exists that addresses
problems unique to freight train operations. Ahuja et al. [18] introduced very
large-scale neighborhood search methods for solving so-called blocking problems
in freight transportation, where a block consists of a group of cars with a com-
mon destination. The creation of such blocks reduces the handling requirements
in railyards, although the problem of assigning cars to common blocks is chal-
lenging due to its combinatorial nature.
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The dissertation work of Schlechte [19] (and several related works, e.g., [20-22],
and [23]) considered a number of large-scale optimization problems involving both
freight train and passenger train routing and allocation of trains to tracks throughout
a network of stations covering a geographical region. This work considers aggre-
gated, macro-level mixed-integer optimization problems that are developed based on
the results of simulating detailed micro-level operations. These works use a rail cor-
ridor between Switzerland and Italy through the Alps as a test bed to validate their
solution approaches.

Bohlin et al. [24] consider a specially structured yard known as a classification
yard (also known as a hump or shunting yard), in which cars on a set of parallel
arrival tracks feed a set of parallel classification tracks (via a hump, using gravity
to roll into the classification yard), which subsequently feed outbound tracks from
which assembled trains depart. An engine pulls multiple cars onto the hump, the
cars are decoupled, and then gravity and switching are used to feed the cars onto
selected classification tracks. The problem they consider requires determining the
assignment of classification tracks to outbound trains in order to meet a desired
departure schedule. A broader discussion and overview of this class of shunting yard
track assignment and engine sequencing problems can be found in [25], while more
recently, Minbashi et al. [26] applied machine learning techniques to address this
class of problems under uncertainty.

Several of these works predetermined a set of feasible paths for each train,
while those that considered the actual station network structure explicitly did not
address the complexities introduced by switch points, or the difficulties associated
with repositioning trains within a railyard network containing a general structure.
While these issues typically do not affect passenger train routing through stations,
they become important factors to account for in freight rail train assembly and dis-
assembly operations. Thus, to our knowledge, the most related works are perhaps
Zwaneveld et al. [8], Rodriguez [12], and D’Ariano et al. [11], which consider rout-
ing trains through a network while accounting for collision avoidance and the delays
introduced when trains must wait for one another to pass on commonly used track
segments. However, these prior works do not account for the complexity introduced
when simultaneously repositioning freight trains within a railyard via switch points.
In the remainder of this paper, we address these additional challenges via the formu-
lation and solution of the MTSR problem.

3 Problem Setting and Definition

In this section we describe a typical railyard network structure and the constraints
this network imposes on train travel within the network. A railyard network con-
sists of a set of track segments, where each segment either provides a connection
between switches, or is part of a ramp track or support track, connected to a main
line via lead track(s). A ramp track, also known as a production track, is used for
loading containers onto railcars as well as unloading containers from railcars. Thus,
ramp tracks must be accessible to overhead cranes used for loading and unloading
operations. Support tracks, also known as storage tracks, are used to store railcars,
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Fig.2 Illustration of a sample railyard, with tracks and switches

e.g., empty railcars, assembled outbound trains waiting to depart, or newly arriving
inbound trains that have not yet been scheduled for unloading.

Track segments are interconnected via switch points, where more than two track
segments meet, permitting travel between segments. We assume without loss of gen-
erality that at most one train may occupy a track segment at a time. If a particular
section of track is sufficiently long so as to permit containing two trains at differ-
ent locations on the section, we divide the section into smaller segments. We also
assume without loss of generality (as in [27]) that a switch point corresponds to a
point where exactly three track segments meet (if more than three segments meet
at a switch point, we decompose the switch into multiple switch points separated
by zero distance). At each switch point, two pairs of converging track segments
form obtuse angles, and the third pair forms an acute angle. Train travel along an
obtuse angle is possible without reversing direction, while traversing an acute angle
requires proceeding past the switch and reversing direction (a so-called double-back
move). Our network model contains a node for every switch point as well as an edge
corresponding to each track segment.

Figure 2 illustrates a sample layout of a railyard with various track segments and
switch nodes. We will refer to any set of railcars that remain connected during travel
on the network from origin location to destination location generically as a train.
Thus, a train may correspond to a single railcar or multiple connected railcars. As
a result, a train may span multiple edges/nodes of the network at any point in time.
This leads to complications that differentiate train routing problems from classical
network routing problems. As illustrated in Fig. 3, if a train’s length is smaller than
the shortest track segment in the network, then a simple node-to-node path from
origin to destination (which accounts for the time required for direction changes as a
result of double-back moves) can be used to determine a shortest route. On the other
hand, if the train’s length exceeds the length of some track segments, the same path
might not be feasible.

The problem we consider requires the movement of multiple trains on a rail
network. It is therefore critical to track each train’s end-to-end position through-
out its movement in order to ensure that no two trains attempt to occupy a com-
mon track segment or switch simultaneously. This will often result in the need
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to determine not only which path each train will take, but also points in time
at which a train must wait for another train to pass before proceeding along its
path. Figure 4 illustrates a case in which two trains require use of the edge high-
lighted in red and where one train must wait for the other in order to avoid a col-
lision. For instance, if we allow the black train to traverse the red track segment
first, the orange train must experience a delay before it can proceed onto the red
segment.

We define the MTSR problem as follows. We are given the structure of a rail-
yard network and the initial position of each of a set of trains on the network, as
well as the desired destination location for each train, where a train is defined as
a sequence of cars that must remain attached to one another. For each train, we
seek a path in the network from its initial position to its destination position, as
well as the location of the train at each point in time between its departure time
and arrival at its destination. The goal of the MTSR problem is to minimize the
time required to ensure that all trains are in their destination locations. To do so,
we need to determine a route for each train such that the last train’s arrival time
at its destination is minimized. Because of the low and consistent speeds used
when repositioning cars within a railyard (e.g., typically less than 15km/hr), our
model will assume that all trains move at a single speed equal to the average
speed traveled within the railyard. Observe that the possibility of delays neces-
sary for collision avoidance implies that the route chosen for each train in such a
solution may or may not correspond to its shortest route in the network.

Fig.4 Illustration of delays e ©

needed to avoid collisions ) \
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4 Problem Complexity

In this section, we show that the MTSR problem when trains may have any non-
negative train lengths is A’P-Hard. We utilize results from Peis et al. [28], who
demonstrate the strong A/P-Hardness of a store-and-forward packet routing prob-
lem on planar graphs. The store-and-forward packet routing problem requires
routing packets of data from packet-specific origin points to destination points. In
traveling along a path in the network, a packet may be delayed at an intermediate
node while awaiting transmission along its path, as each link is able to transmit at
most one packet per time unit. The goal is to minimize the total time required to
transmit a set of packets from origin to destination points.

To demonstrate the A’P-Hardness of the packet routing problem, Peis et al.
[28] use a reduction from the 3-BOUNDED-3-SAT problem. The 3-BOUNDED
3-SAT problem contains a set of m clauses C, ... C,,, where the truth of each
clause depends on the values of three binary variables (we can think of these as
true/false variables). For example, the clause (x; V x; Vx,) is true if any one of
the variables x;, Xj, OF X, equals 1. Each of the variables appears in at most three
clauses, and the problem is satisfiable if an assignment of values to each of the
variables can be made that results in all of the clauses being true. The problem
thus requires determining whether an assignment of true/false to each of the vari-
ables exists such that each clause is true. The 3-BOUNDED 3-SAT problem is
strongly A’P-Complete.

In the proof given in Peis et al. [28], given an instance of 3-BOUNDED 3-SAT,
they construct a packet routing network problem instance with a polynomial num-
ber of network vertices and packets that require routing, corresponding to each
variable and clause in the 3-SAT problem instance. They also create a polynomial
number of packets corresponding to each variable in the 3-SAT problem and, for
each clause, a required route that must be followed through the generated verti-
ces. They then show that a truth assignment exists for the 3-BOUNDED 3-SAT
problem instance if and only if the makespan on the corresponding packet net-
work routing problem is at most six for a planar network. Although each packet’s
path is predetermined in their proof, they then show that even if the routes are not
predetermined for each packet, all routes other than the predetermined ones will
be inferior to the prescribed route. Therefore, if routing decisions are allowed,
the prescribed routes will be selected in an optimal solution. Thus, the complex-
ity result continues to hold when routes are not predetermined. We can transform
their packet network into a corresponding special case of our railyard network in
polynomial time, such that an ability to solve this special case of the MTSR prob-
lem in polynomial time would imply an ability to solve the 3-BOUNDED 3-SAT
problem in polynomial time, which cannot be possible unless P = AV/P.

The solution to the corresponding special case of the MTSR problem on the
rail network in the transformed problem solves any underlying instance of the
corresponding packet routing problem. In the store-and-forward packet routing
problem, a node can store multiple packets at the same time, although an arc can
transmit at most one packet at a time (one unit of time is required to transmit a

@ Springer



Operations Research Forum (2022) 3:61 Page 110f31 61

&

Fig.5 Creating parallel tracks to represent a node of unlimited packet storage capacity

packet from one node to any other node that is connected to it via an arc). Con-
versely, in the railyard routing problem, both nodes and arcs can accommodate at
most one train at any point in time. To address this issue in the problem transfor-
mation, for each node in their packet network, we create a set of n parallel tracks
connecting two common outer nodes, where n is the total number of packets (see
Fig. 5). Thus, a train that is located on a parallel arc in the rail network corre-
sponds to a packet stored at the corresponding node in the packet network, and
we assume that a train may travel from one node to another node via a connect-
ing edge in one unit of time. For each packet in the packet network, we create a
train in the rail network with origin and destination locations corresponding to
those of the corresponding packet. Note that the network remains planar under
this transformation.

Observe that packets do not have length, and we thus assume that in our corre-
sponding rail network, all trains may be arbitrarily small in length. Because of this,
although there is a possibility of conflicts at nodes after introducing parallel arcs, the
time required for trains to cross one another at the nodes (i.e., going to and from the
parallel edges) is negligible for trains of arbitrarily small length relative to the time
it takes to travel from one node to another. In fact, when train lengths may take any
nonnegative values, then conflicts at nodes are no longer relevant because the spe-
cial case in which all trains have zero length eliminates the possibility of conflicts.

After this polynomial transformation from their packet network to the railyard
network, we can conclude that the minimum makespan in the packet network is at
most six if and only if the minimum makespan in the rail network is at most six, and
both of these can occur if and only if the 3-BOUNDED 3-SAT instance is satisfi-
able. This implies that the MTSR problem is at least as hard as the 3-SAT problem
and is thus in the class of A/P-hard problems.

5 Solution Approach

Efficient operations execution and high throughput levels at intermodal terminals
necessitate an effective tool for planning railcar moves in the network. Thus, given
an initial location of each of a set of trains on the network, as well as a desired
destination location for each train, we wish to determine a sequence of feasible
moves for each train that minimizes the time required until all trains are in their
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final destination positions. Section 5.1 first provides a base mathematical model
for this problem by formulating it as a large-scale O-1 integer program. Section 5.2
generalizes this base formulation to ensure that a train may only move if it has an
attached locomotive. While the resulting model is useful for solving small prob-
lem instances and permits providing a formal mathematical problem statement, the
problem’s complexity (and the required number of binary variables) implies that it
is unlikely that it can be used to obtain solutions to problems of practical size in
acceptable computing time. Because of this, Sect. 5.3 proposes a heuristic solution
method based on identifying a feasible combination of solutions to the K-shortest
routes problem (along with any required delays for each train’s departure to ensure
feasibility) for each train. We later provide the results of a set of computational tests
in Sect. 6 that demonstrate the effectiveness of this heuristic method in providing
high-quality solutions in acceptable computing time.

5.1 Integer Programming Model

This section presents a large-scale 0-1 integer programming (IP) model for the
MTSR problem. Our IP modeling approach discretizes both space and time in order
to provide a model representation of the problem and a benchmark against which
we can compare heuristic solution methods for small to medium problem sizes. The
input to this problem consists of a railyard network layout and a set of trains, each
with origin and destination locations and an associated train length. We wish to
determine a set of collision-free routes that minimizes the total time required for all
trains to reach their destination locations.

As noted earlier, a railyard consists of a set of connected track segments. Our
modeling approach decomposes each track segment into a discrete set of slots, i.e.,
each track segment is divided into a set of non-overlapping subsections called slots.
This approach is needed to account for the location of each train at all points in time.
Our IP model assumes a single standard slot size, corresponding to a standard car
length, such that each slot can accommodate at most a single railcar at any point in
time. Note that the most commonly used freight railcars in the US are 50 to 60 feet,
while standard 53 foot well cars are commonly used in intermodal transportation to
carry trailers that can also be transported via truck. Thus, using a 60-foot standard
slot length tends to provide a good approximation for the majority of railyard opera-
tions (when accounting for the average distance between cars on a single train). In
general, using a slot length equal to the largest car length on the network will lead to
overestimates of train lengths on the network (for example, our model will assume
that a sequence of ten 55-foot cars occupies ten sixty-foot slots, and is therefore 50
feet longer than the actual train).

Figure 6 illustrates a network representation of track segments in a railyard into
slots that can accommodate railcars. We create an index number for each slot, thus
characterizing the railyard as a set of connected slots of equal length. Observe that a
track segment with a total length that is not equal to an integer multiple of the stand-
ard slot size will necessarily have track portions that are not covered by indexed slot
numbers. Using our prior example, any track segment that is not an integer multiple
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Fig. 6 Breaking a track into N1 i
numbered slots 1 5 3 : TN 7

of 60 feet in length will have some portion uncovered by slots. If the set of indexed
slots on the segment is equidistant from both ends of the segment, then there will
be less than 30 feet of un-slotted track on either end of a segment of track. Because
such track portions are quite small relative to the average segment length, we assume
that the extra time required for a train to traverse such uncovered segments is negli-
gible relative to its total travel time.

We next specify how slots are interconnected. For each slot number, we deter-
mine the set of slot(s) directly accessible to the right of the slot, and the set of
slot(s) directly accessible to the left. In Fig. 6, for example, the slots accessible to
the left of slot 11 are {10, 12}, while the slot to the right of slot 11 is {8}. Using
this approach characterizes the feasible set of adjacent slots to which a train may
move from any given slot during a unit of time. As Fig. 6 illustrates, it is possible
for two slots to cover a common track portion next to a switch and then separate
on either side of the acute angle at the switch. In particular, in the figure, slots
12 (marked in red) and 15 (marked in green) overlap to the left of a switch. As a
result, slots 12 and 15 are both immediately accessible to the right of slot 14, while
the slots to the right of 12 and 15 are different and equal to 11 and 16, respec-
tively. This effectively corresponds to a virtual movement of the switch to the left
end points of slots 12 and 15, and permits considerable flexibility in creating and
assigning slot numbers to a railyard network.

For ease of exposition, we assume a network topology that permits establishing
“right” and “left” travel directions. This is possible for a railyard network without
any acute-angle free cycles by using the following conventions.! Starting from a
node i, we move in a direction that we establish as the “right” direction by conven-
tion. We designate this direction to all slots that we can traverse directly (without
using any double-back moves). We do the same for the opposite direction, calling
this the “left” direction. As we move along a given direction, any time we hit a node,
if we can continue traversing an arc without double-backing, we then apply the same

" A cycle in a rail network that does not require a train to traverse an acute angle using a double-back
move is called an acute-angle-free (AAF) cycle. Such AAF cycles are sometimes used in a rail network
to reverse a train’s orientation on the network. We assume that the rail network on which we solve the
MSTR problem does not contain such AAF cycles. Thus, any existing such cycles in the network can
be partially blocked to prevent AAF cycle traversal when solving an instance of the MSTR problem.
Note that any route taken by a train that uses an AAF cycle without reversing orientation is dominated
by a path that does not traverse the cycle. If a train on the network requires reversing its orientation,
we assume the train travels to an AAF cycle and completes its orientation reversal prior to solving the
MSTR problem instance in a preprocessing routine.
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direction convention to the slots adjacent to the node; otherwise, we must reverse
the direction if a double-back move is required. Note that associated with any right
direction move from node i to node i 4+ 1is a corresponding left direction move from
node i + 1 to node i. Moreover, any two arcs that form an acute angle in the network
receive the same direction convention with respect to the node at which they meet.
This convention determines the relative direction of adjacent slots to each node.

It is not uncommon that some track segments within a railyard are temporarily
blocked and cannot be used during a planned set of train moves. For example, dur-
ing a planned set of moves, some tracks may be blocked off for loading or unloading
operations, or for maintenance operations. Such track segments and associated slots
are thus excluded when defining the network layout and the set of adjacent slots
available at a node. To characterize the position of each train in the network at all
points in time, we create an index number for each car in the train, and define a train
by the set of numbered cars it contains. We next define the variables and parameters
we use to model the MSTR problem. Then we formulate the problem as an inte-
ger program and provide a characterization of the objective function and associated
constraints.

To define a problem instance, we first define the network as a set S of standard-
length slots indexed by s, and let R, (L,) denote the set of adjacent slots to the right
(left) of slot s, for all s € S. After indexing cars, suppose we have a set C of cars on
the network that are part of a train that requires movement to a new location in the
network. Given a train containing n connected cars, note that each of the first n — 1
of these cars (going from left to right) has an associated car connected to its right
side (i.e., such that if the car is in slot s, the car connected to its right side must
always occupy a slot in the set R, throughout any sequence of car movements). Let
CC denote the set of all cars in the network such that another car remains connected
to its right side throughout all movements. Observe that if there are N trains requir-
ing moves, then |CC| = |C| — N, i.e., for each of the N trains, exactly one car (the
right-most car in the train) is not in the set CC. For each car c, let 59 and s‘j denote
the car’s original and destination slots, respectively, and for each ¢ € CC, let RH,
denote the car that remains connected to its immediate right-hand side.

We use a discrete time model, assuming that any car within a slot can move to
an adjacent slot in a single time unit. Let 7 denote a finite time horizon length that
serves as an upper bound on the total number of time units required to complete all
required moves (for example, if, for each train requiring a move, we determine the
shortest route from origin to destination on the network after blocking off all track
segment containing other trains, then we can set 7 equal to the sum of all associated
train shortest route lengths). Our mathematical formulation requires defining deci-
sion variables that keep track of each car’s location at all time points, the movements
of cars between slots, and whether or not each car has reached its final destination
location. We therefore let

o X, = lifcarcisinslots attimez, and O otherwise, forc € C,s € S,t=0,...,T

e Z, = lif the process is complete at time ¢ (i.e., no additional moves are required),
and O otherwise, forr=1,...,T;
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e GR,, = lif acar in slot s moves to an adjacent slot to its right at time ¢, and O other-
wise, fors € S,t=0,...,T;and

e GL, = lif a car in slot s moves to an adjacent slot to its left at time ¢, and O other-
wise, fors € S,t=0,...,T.

Using these definitions, we next formulate our integer programming model. Recall that
the objective is to minimize the makespan required for all train moves, i.e., the earliest
time at which all railcars occupy their destination locations.

T

Minimize ) 1Z, (1)
=1
Subject to:
Xo=1 ce(, )

Xpint £ D Xy + Xy + D Xy c€Cs€8,1=0,...,T—1, 3)

i€L, iER,
Y Xy=1 ceCr=1,..T, @
SES
Y Xy <1, seSt=1,..T, )
ceC
Z, <X, c€Cit=1,..,T, (6)
T
.zl )
t=1
Xpy < ) Xy <2-X,y, c€CCs€S8,1=0,....T, ®
i€R,
Y Xy +Xy SGR,+1, c€Cse8t=0,...,T—1, ©
i€R,
Zxcim +X,<GL,+1, ceCseS,t=0,...,T—1, (10)
i€l
GR,+ Y GL,<1 s€S,t=0,..T, an

i€R,
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GL,+ ) GR,<1 s€8,1=0,..T,

i€L (12)
X.,€{0,1}, ceCsest=0,...,T, (13)
zZ, e{0,1}, tr=1,...,T, (14)
GR, € (0,1}, s€S8,t=0,...,T, (15)
GL, € {0,1}, s€8,:=0,...,T. (16)

The objective function (1) minimizes the earliest time at which each car occu-
pies it destination slot, while Constraint set (2) sets the initial locations of the cars
and locomotives. Constraint set (3) ensures that each car either moves to or from
an adjacent slot at each time step, or remains in its previous location. Constraint
set (4) requires that each car occupies exactly one slot at each time period, while
Constraint set (5) allows at most one car to occupy a slot in each period. Constraint
set (6) allows Z, to equal one when every railcar is in its destination location, and
Constraint (7) ensures that the final state is achieved at some point in time. Con-
straint (8) requires that all right-connected cars remain connected throughout all
time periods. Constraints (9)—(12) together keep track of car moves to adjacent slots,
and ensure that if a move to the right (left) occurs for a car in a given slot, no car in
a right-adjacent (left-adjacent) may move left (right). Finally, constraints (13)—(16)
define the binary variables.

The above integer programming model for the MSTR problem provides a solu-
tion that determines a period-by-period location of each railcar, along with the
minimum time at which all railcars occupy their destination locations. The solution
ensures a collision-free plan of movement for railcars because at most one railcar
may occupy a slot in every time period. In the following, we provide an extension to
this model that specifically accounts for locomotive requirements.

5.2 Integer Programming Model — Locomotive Extension

The integer programming model in the previous section considered trains and their
locations on the railyard network. A train cannot move, however, without having a loco-
motive attached in order to push or pull the train. In other words, in the previous mathe-
matical model, we implicitly assumed that each train has a locomotive already attached
to it to pull or push the railcars. However, in many cases, a set of railcars may exist on
the network without an attached locomotive. In fact, the number of locomotives that
perform within-railyard operations is typically limited, and a key consideration requires
assigning locomotives to trains that require movement before they can be moved. If the
movement and assignment of locomotives must be considered within the multi-train
repositioning model, additional definitions and constraints are needed for the integer
programming model. In the following, we first describe additional parameters and
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variables needed to account for this model extension. Later, we discuss how the previ-
ous mathematical model can be used to account for locomotive requirements.

In addition to the parameters defined in the previous section, we define Loco as the
set of locomotives (i.e., the set of railcars that are locomotives). We also want to pre-
vent the movement of any non-locomotive railcar(s) if no locomotive attached to the
car(s); therefore, we let:

e E, =lifslots is accessible to a locomotive from the right, 0 otherwise, for s € S,
t=0,...,T,and;

o W, = lifslot s is accessible to a locomotive from the left, 0 otherwise, for s € S,
t=0,...,T.

Note that a locomotive is accessible from a slot on the network at a given time ¢ if a con-
nected sequence of railcars exists between the slot and a locomotive at time 7. Using these
new definitions, we reformulate our integer programming model. Note that the objective of
minimizing the makespan required for all train moves is the same as in the previous model.

T
Minimize )’ 1Z, (17)
=0
Subject to: (2)-(16)
ESISZXCSZ’ SES,t=O,...,T, (18)
ceC
Wy < ) X, sES1=0,...T, (19)
ceC
E,< Y X+ D E, s€St=0,..,T, 20)
c€Loco i€ER,

Wy< D Xey+ D W, s€8t=0,...T,

c€Loco i€l (2 1 )

GR,+GL,<E,+ W, se€8,t=0,...,T, (22)

2GR, < Ey+ Wyt Y (B +Wipy), s€81=0,....T—1, 23)
i€R,

2GLy SEy+ Wy + ) (B +Wippy), s€S8,1=0,...,T—1, 24)
i€L,

Y Kegror = Xew) SEpy + Wy, sE€S1=0,..,T—1, 25)

ceC
E,e (0,1}, s€8,t=0,...,T, (26)
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W, e {0,1}, se8,t=0,...,T. 27

Constraints (18)—(21) determine whether or not each slot has an accessible
locomotive. A slot is accessible to a locomotive, and therefore available to carry
out a move, if either the immediate slot to its right or left is accessible to a loco-
motive, or a locomotive occupies that slot. Constraint (22) ensures that a move
to the right or left of a slot is possible if and only if that slot is accessible to a
locomotive either from the right or left. Constraints (23)—(25) require locomo-
tive accessibility during the entire duration of a move. In other words, if a given
railcar moves at some time step, its initial and subsequent locations’ slots must
remain accessible to a locomotive.

This mathematical model is more general because, in addition to tracking
period-by-period train (and railcar) locations while ensuring collision-free rout-
ing, this integer programming model considers the role of locomotives as well.
However, this extension makes the model even more complicated and larger in
terms of the number of variables and constraints. Alternatively, we might use
the mathematical model proposed in Sect. 5.1 to handle this locomotive exten-
sion heuristically. To see this, suppose we have k locomotives and wish to move
N > k trains to new positions. We first assign the k£ locomotives to a subset of k
trains that will be moved in the first iteration. By determining the initial and final
location of locomotives (this is subject to manual determination), we can solve
an instance of the model proposed in Sect. 5.1 to determine the minimum time
required to move the k locomotives to the k trains. Thereafter, we can use the
same model to solve a multi-train repositioning problem for the & trains with the
attached locomotives, because we have already ensured that those trains have a
locomotive attached. In other words, at each iteration, we decompose the math-
ematical model into two steps: first attaching locomotives to trains, and then
moving the trains with locomotives attached. After one iteration, we then have
N — k trains that still require moves, and we run another iteration of the two-step
procedure, first moving locomotives to trains, and then moving the trains with
the locomotives attached. This procedure is repeated as needed until all of the N
trains have been moved.

Both integer programming formulations are useful for solving small problem
instances and providing a mathematical model of the problem we wish to solve.
However, the large number of binary variables required in the formulation makes
its use in solving problems of practical size unlikely. The scale of the prob-
lem grows with the number of cars, the number of slots, and the time horizon.
Because of this, the following section proposes a heuristic solution method that
enables obtaining solutions for real-world problem sizes in acceptable computing
time.

5.3 Heuristic Approach

A naive heuristic approach might begin by determining the shortest route for each indi-
vidual train on the subnetwork obtained by blocking off all track segments occupied by
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other trains’ origin and destination locations (we will refer to the resulting network as a
train’s associated blocked subnetwork). If a feasible route exists for each train on its asso-
ciated blocked subnetwork, then a feasible solution for the MTSR problem is obtained
by sequentially moving each train along its shortest route in its associated blocked sub-
network. While the corresponding solution provides an upper bound on the minimum
makespan equal to the sum of all trains’ shortest route lengths on the associated blocked
subnetwork, this solution is likely to be far from optimal, as this solution does not allow
simultaneous movement of multiple trains. While, in the most general case, we cannot a
priori guarantee that a feasible route exists for each train on its associated blocked sub-
network, we will assume for tractability that at least one feasible route exists for each
train in its associated blocked subnetwork (thus the network is not so populated with
trains such that gridlock may arise, which is typical of railyard networks in practice).

Our goal is to execute a set of conflict-free simultaneous routes, rather than routing
trains sequentially. A conflict arises when two or more trains seek to traverse a common
track segment simultaneously. That is, because each train’s route consists of a sequence
of track segments, two trains whose routes contain a common segment have a potential
for conflict. It may be the case, however, that this shared track segment is not required
by both trains at the same time. Therefore, we need to keep track of the sequence of
track segments contained within a train’s planned route, as well as the time during
which the train occupies each segment. Note that conflicts may be resolved by delaying
one or more trains until the conflicting track segment is available.

Our heuristic solution method applies the following logic, assuming we wish to
provide a solution to the MSTR problem with m trains, indexed from 1 to m. We first
determine the shortest route for the first train on its associated blocked subnetwork,
and execute this route beginning at time zero. We next determine the K shortest
routes for each of the remaining m — 1 trains in the network for some integer K > 0.
For the second train, among its K shortest routes, we select the one that minimizes
its arrival time at its destination location when initiating the route at time zero, and
delaying train 2 when conflicts arise with train 1. We then do the same for the third
train, selecting the route that minimizes its arrival time at its destination location
when initiating the route at time zero, and delaying train 3 when conflicts arise with
train 1 or 2. We proceed in this manner for all remain trains in sequence, delaying a
train that has a conflict with any lower indexed train number.

Because the routes are determined sequentially in train index order, the sequence
in which trains are indexed may have a substantial impact on the quality of the solu-
tion obtained. And, because m! index sequences are possible, it is computation-
ally impractical to evaluate all possible index sequences. As a result, we require a
strategy for prioritizing railcars in order to determine an effective index sequence.
One such potential strategy would be to sequence trains based on their shortest
route lengths in nonincreasing order. The idea behind this sequencing approach is
to ensure that those trains with longer routes are less likely to experience delays.
Another potential strategy would be to consider the reverse order, i.e., sequencing
trains based on shortest route lengths in nondecreasing order. This approach would
take advantage of the fact that those trains with shorter routes are less likely to cre-
ate conflicts with other trains scheduled after them. Another strategy that may be
applied in practice would establish train sequencing priorities based on subsequently
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Fig.7 Adjusting shortest path to account for arcs utilized for double-back moves

scheduled operations, e.g., those trains with earlier scheduled departures and/or
promised due dates would be given higher priority.

Determining the K shortest routes for each train on its associated blocked subnet-
work requires an ability to determine the shortest train route in a railyard network.
To do this, we apply the shortest train route algorithm proposed in Aliakbari et al.
[27], which runs in O(n?) time, where n corresponds to the number of switch nodes
in the network. With this method to determine the shortest route, we then apply the
method of Yen [29] to determine the K shortest routes for each train.

Recall that when a train performs a double-back move, the length of the train
moves past a node and then reverses direction in order to traverse an acute angle.
In performing such a move, the track segments occupied by the train immediately
after passing the node and before reversing are not strictly contained within the node
path between the train’s origin and destination. In addition, there may be several
choices for the set of track segments that may be used to accommodate the double-
back move. Furthermore, preventing track-segment conflicts requires accounting for
each track segment the train occupies at all times. Hence, at each switch point along
a train’s shortest route where a double-back move is performed, we apply a recursive
function (e.g., depth-first search) to determine the set of track segments the train will
occupy while performing the double-back move. We refer to these edges in the net-
work as double-back edges. These edges must be accounted for in the train’s route in
order to account for all occupied edges at all times. Figure 7 illustrates this concept.
Suppose that the train shown (of length 7) will execute a route containing nodes
1 - 6 - 5 — 9. This sequence requires a double-back move at node 5. This move is
feasible because the network contains an acute-angle-free path to the right of node 5
that is at least 7 units in length (in fact, it contains two such paths). Thus, in addition
to the route occupying edges (1, 6), (6, 5), and (5, 9), the train will need to occupy
edge (5, 4) (which has length 5) and either edge (4, 3) or (4, 10) in order to double-
back at node 5 (the figure illustrates the choice of edge (4, 3) instead of (4, 10); thus
edges (5, 4) and (4, 3) are added to the train’s route).

Accounting for track segment conflicts requires associating a time interval with
each train-segment pair. We assume all trains travel at the same speed, i.e., each train
can move one unit of distance per unit time. Therefore, if we know a track segment’s
length, the time a train begins travel on the segment, and the train’s length, we can
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Fig. 8 Adjusting path time based on required delay

easily determine the period of time during which the train occupies the segment. This
information is required in order to determine the amount of delay time introduced when
a train approaches a track segment on its route that is occupied by some other train. In
addition to the edges that are traversed by a train along its path, we account for the time
during which double-back edges are occupied by considering each such edge as occu-
pied during the time required to complete the double-back move.

To illustrate this idea, consider the two trains m1 and m2 in Fig. 8 (assume for con-
venience that m1 has priority by virtue of its lower index number). Suppose the short-
est route for train m1 consists of 1 - 6 — 5 — 9, while that for train m2 consists of
7 — 6 — 5 — 4. Because m1 must double-back at node 35, it also uses edge (5, 4) to
make this move. Thus, m1 and m2 both require using edges (6, 5) and (5, 4), creating a
potential conflict. If m1 departs at time 0, it will occupy edge (6, 5) from time 5 to time
17, and will occupy edge (5, 4) from time 10 to time 24. If m2 departs at time 0, it will
occupy edge (6, 5) from time 5 to time 15, which conflicts with m1’s use of this edge.
We thus delay the time m2 begins on this edge by 12 time units until time 17 (when m1
completes traversing this edge). After incorporating this delay, m?2 arrives at edge (5, 4)
at time 22. However, this edge is not completed by m1 until time 24, introducing an addi-
tional delay of 2 time units for m2 before it can proceed along this edge. Train m2 thus
experiences a total delay of 14 time units along its path in order to allow m1 to complete
its usage of conflicting edges. We update the times m2 occupies the edges along its route
as well as the total time associated with the route accordingly. The resulting adjustments
to the times during which m2 occupies each edge along its route are shown in Fig. 8.

This route-delay procedure is then applied to each of the K shortest routes for m2.
After adjusting each of the K shortest route lengths for m2, we select the route with
the earliest completion time and choose this as the fixed route for m2. This same
procedure is then applied to each additional train in index order, introducing delays
for each route as necessary, and selecting the shortest of the K routes for the train
after accounting for necessary delays within each route. Observe that our approach
begins each train’s route as early as possible, only delaying a train as needed, i.e.,
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when it arrives at a conflicting edge. An alternative approach would delay the start
time of the train by the total amount of delay required, resulting in the same desti-
nation arrival time for the train. In our implementation, we chose the former con-
vention, using the non-delay scheduling approach discussed in Kanet [30], although
neither approach is guaranteed to dominate the other in general.

Our heuristic approach, therefore, transforms the railyard into a shortest path network
and first determines the K shortest routes for each train on its associated blocked subnet-
work, accounting for edges occupied during double-back moves along each route. For each
train in index sequence, and for each of the K shortest routes, we adjust each route length
by introducing delays needed to resolve conflicts with higher indexed trains, and choose
the route with the smallest destination arrival time. The pseudo-code in Algorithms 1 and
2 below encodes our heuristic approach, where M denotes the set of trains, K denotes the
number of shortest routes considered for each train, and FinalRoutes contains the list of
finalized train routes. Observe that the time required to solve the K shortest paths problems
for | M | trains is no worse than O(K | M |n?), while the route-delay conflict resolution phase
of our heuristic algorithm requires O(K|M|?) time. Thus, the heuristic time is bounded
by OK|M|max{n2,|M|}. Because we typically expect n’>>> |M|, we write this as
O(K|M|n?}. Thus, the heuristic approach contains low-order polynomial-time complexity
and, therefore, can be expected to scale seamlessly to problems of very large size.

Algorithm 1 FindFinalRoutes(M, K)
for train m € M do
Find K shortest routes and sort in nondecreasing order of length: P™ =
{P™...P}
for path P/ € P do
for edge c € P" do
if train m performs double-back after ¢ then
Use Depth-First-Search to determine edges train m uses in
double-back move
Add double-back edges to P after edge ¢
end if
end for
Let train m start time equal zero
for edge ¢ € P[" do
Determine begin and end time for train m on edge ¢
end for
end for
end for
Add P} to FinalRoutes
for (train m € M and m # 1) do
for route P/™ € P™ do
call ResolveConflict(P/", Final Routes)
end for
Let PZ. ;i route D€ the shortest route in P™
Add PZ.; route to Final Routes
end for
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Algorithm 2 ResolveConflict(P/™,Final Routes)
for route p € FinalRoutes do
for edge ¢ in route P/ do
if the time interval for edge ¢ in p and P;™ overlaps then
Calculate delay necessary to resolve conflict
Adjust occupancy time of edge ¢ and its successor edges in P;"
by adding delay
Extend occupancy time of edges spanned during delay time by
delay units
end if
end for
end for

We can determine a worst-case bound on the performance of the application of this
heuristic to a problem with | M| trains as follows. Let P denote the shortest path for train
m € M and assume that a feasible solution exists in which each train traverses its short-
est path sequentially, i.e., one at a time in sequence. Letting j = arg max,,¢) {P]'},
observe that P’ provides a lower bound on the time required for all trains to reach their
final destmatlons. Then a bound on the optimality gap can be expressed as

Z”’EMF—PIW x 100% = Z’E’Zj—m"’ % 100%. For the special case in which all trains’ short-

est path lengths are identical, this bound equals (|M| — 1) X 100%. More generally, let
f= S P (Wthh 1mphes 1-f= M) Then the optimality gap bound can be

meM ZmeM 1

expressed as equal to T X 100% = ( % - 1) X 100%.
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Fig.9 Greedy randomized selection of routes
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5.4 GRASP Extension

This section discusses the GRASP metaheuristic approach and how it can be incor-
porated into our heuristic approach. GRASP (Greedy Randomized Adaptive Search
Procedure) is a multi-start metaheuristic (i.e., the procedure is initiated at a number
of different starting points). At each iteration, an initial feasible solution is identified
and a local minimum is found by exploration of a defined neighborhood of solutions.
The best solution among all locally optimal solutions found using different starting
points is then retained as the heuristic solution. Resende and Ribeiro [31] explain
the basics of implementing GRASP and how to link it to other metaheuristics for an
improved result. In the following, we describe our adoption of the GRASP concept
for improving our heuristic approach using a greedy randomized approach.

Resende and Ribeiro [31] define a restricted candidate list (RCL) as a list of ele-
ments (routes) whose incorporation within a partial solution at each step results in
the smallest increase in the partial solution’s objective function value. We adopt
their value-based procedure to form such an RCL. They define c(e) as the incremen-
tal cost of each element. An element in our case corresponds to a particular route
for a given train, and we define cost as the route’s total time (considering delays and
double-backs). At each iteration, routes with incremental cost within the selection
interval [¢™", ¢ 4+ q(c™* — ¢™M)] are selected to form the RCL, where a € [0, 1].
A route from the RCL is then randomly selected and incorporated within the par-
tial solution. In other words, this interval determines the routes with the smallest
increase in the partial objective function. As a grows, an increasingly randomized
selection occurs, whereas with smaller values of a we restrict the RCL to the best
routes in terms of total time. Figure 9 depicts the basic steps of this approach.

Note that in this algorithm, at each partial solution, the selection interval is
updated. The advantage of this approach is that it permits consideration of routes
that do not locally minimize total time, but which may provide the possibility of a
lower final objective function value. In this way, the shortest route is not necessarily
selected at each step. However, as we discussed before, if we set @ equal to zero, the
route with minimum total time is indeed selected at each step. In our experiments
we set a = 0.33. Algorithm 3 provides the pseudo-code for this approach, including
a multi-start step that solves the problem multiple times and reports the best overall
solution.
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Algorithm 3 Greedy Randomized Heuristic
CandidateList < ()
for train t € T do
Find K shortest routes for t: P* = {P}... PL}
for path P! € P! do
for edge ¢ € P! do
if train ¢ performs double-back after ¢ then
Use Depth-First-Search to determine edges train ¢ uses in
double-back move
Add double-back edges to P} after edge ¢
end if
end for
Add P} to CandidateList
end for
end for
BestSolution + ()
BestValue < oo
for m = 1,...,MaxIterations do
Final Routes < ()
CandidateList,, < CandidateList
while CandidateList,, # () do
for route r in CandidateList,, do
Determine begin and end time for r on all of its edges
call ResolveConflict(r, Final Routes)
set ¢(r) as the end time of last arc of r
end for
find ¢™™ and ¢™**
calculate interval < [c™", c™" + qc™eT — ¢min))
define RCL as the set of routes whose cost lie within the interval
selectedRoute < randomly select a route from RCL
add selectedRoute to Final Routes
update CandidateList,, by removing the K routes associated to
selected Route’s respective train
end while
if maximum time among routes in F'inal Routes is less than BestV alue
then
BestSolution < Final Routes
BestValue < maximum time among routes in Final Routes
end if
end for

6 Computational Results

This section presents computational results for randomly generated sample railyard
networks and examines the relative performance of the optimization model solution
and that provided using the GRASP Extended (GE) heuristic, with a total of 100
restarts per problem instance and K =4 and a = 0.33. Instances of the optimiza-
tion model were solved using CPLEX callable libraries in JAVA, while the heuristic
solution approach was coded in JAVA. All solutions were run on a machine with
an Intel Core i7 processor at 2.50 GHz, and with 8GB of RAM. The solver’s paral-
lel processing allowed up to four threads, which was determined by the computer’s
logical processors.
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Fig. 10 A test instance sample network. The colored railcars illustrate a set of train origins and destina-
tions; in this instance, three trains must move from their origins to destinations, while one train (shown
in gray) requires no movement. The main line is represented by a dashed line and is not generally consid-
ered for in-railyard moves and, therefore, does not require slot assignments

A sample instance of a network representation for the exact approach is presented
in Fig. 10, which shows the slots and sample origin and destination locations for
railcars. For each sample network representation developed for testing, multiple ori-
gin and destination pairs were considered for railcars of various lengths. The num-
ber of slots needed for these sample networks ranged from as few as 25 to as many
as 132. Our test instances considered a total number of cars and/or trains on the
network ranging from 4 to 15, while the required time horizon ranged from 25 to 80.
Note that in practice, in order to determine the time horizon required for the exact
method, we can run the heuristic and use the resulting number of periods required as
an upper bound on the objective function for the exact approach. However, in these
tests, our goal was to have an independent and unbiased comparison between the
two approaches. Therefore, we set the time horizon without knowledge of the bound
given by the heuristic solution, and solely based on the visual representation of the
network instance. Our test instances contained at least two trains (two sets of rail-
cars) such that their routes contains a potential conflict. In other words, although the
number of railcars, trains, and network structures were randomly created, the origins
and destinations for railcars were assigned to ensure shared paths or track segments
for different trains. This ensures instances that may result in either train delays or the
use of parallel tracks, such that a train may use an alternative path where available
(i.e., a path that is not the train’s shortest path from origin to destination).

Our goal in creating randomly generated problem instances was to benchmark the
heuristic solution methods against a known optimal solution where possible. As dis-
cussed in Sect. 5.3, the heuristic method we propose contains low-order polynomial-
time complexity, and can therefore be implemented to provide fast solutions to large
problems in practice. The exact approach, on the other hand, as our computational
tests show, has difficulty in solving the comparably small-size test cases we con-
sidered. Note that although the network size of the problem instances we consid-
ered may not be as large as those found in real-sized railyards, the density of these
problem instances is comparable and representative of problem density in practice. In
other words, the number of simultaneously moving railcars at any given time in our
instances is less than 20% of the slots, and attempts to simultaneously move a higher
percentage of trains in practice would be unrealistic, either due to a limited num-
ber of available locmotives, because of the high potential for gridlock, or because
doing so would require a greater number of cars per train than is typically found in
practice.
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Table 1 Performance Comparison and Computational Results

Exact Solution Compared  # of Sampl % of Sampl Avg. Exact Model Avg. Heuristic Model
to Heuristic Solution Solution Time (sec) Solution Time (sec)
Exact = Heuristic 53 42% 505 35

Exact > Heuristic 17 14% 3600 36

Exact < Heuristic 55 44% 792 35

Total 125 100% 1052 35

Recall that the optimization model requires dividing the railyard network into
discrete slots, and its solution provides a period-by-period location of each railcar,
while the GE heuristic approach transforms the railyard into a shortest route net-
work. Both approaches result in collision-free routes that account for the complexity
imposed by switches and double-back moves while allowing simultaneous moves.
Comparative results for 125 randomly generated problem instances of comparably
small size (relative to practice, with less than 140 track slots) are reported in Table 1.
Note that the table only reports comparative results for problem instances such that
we were able to determine a feasible solution within an hour using the exact model.
(As the table shows, the exact approach was not able to determine an optimal solu-
tion in 17 of the 125 instances, which shows a solution time of 3600 s.)

Figure 11 shows a solution comparison between the exact approach and the
GE heuristic approach. Observe that when the GE heuristic outperforms the exact
approach (because the exact approach did not complete within 1 h, and the results
reported correspond to the best solution found within an hour), the blue line lies
above the purple line. These points are associated with the 17 instances where
the exact approach was not able to find the optimal solution. Other than these 17
instances, the chart provides a representation of the proximity of the solutions
achieved by the two approaches.

Figure 12 displays a performance comparison for the exact and heuristic
approaches in terms of absolute gap and relative gap, for the 108 out of 125 prob-
lems that were solved optimally using the exact approach. Note that a difference of

Objective function value for instances

Fig. 11 Objective function values gained by exact and heuristic approaches
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Problem Size vs Absolute Gap
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Fig. 12 Relative performance of the exact and heuristic approach

zero is, of course, desirable and implies that the heuristic found an optimal solution
(which occurred in 42% of the cases). To illustrate problem instance sizes within the
graphs, we defined a measure of problem size by multiplying the number of railcars,
number of track slots, and the time horizon length.

The average absolute and relative gaps across these 108 instances were 2.6 and
15.9%, respectively. Confining these measures to the 108 problem instances in
which the exact approach finds an optimal solution provides a biased view of these
performance measures that favors the exact approach, which failed to find an opti-
mal solution within an hour for 14% of the problem instances. We note that although
the relative gap is as high as 100% in some instances, the absolute difference is
generally flat as the problem size increases, while the percentage gap decreases (as
shown by the dashed trend lines). That is, for very small problem instances, a one
unit deviation from optimality may correspond to a high percentage deviation. This
favors the use of the exact approach for small problem sizes, while applying the heu-
ristic approach to problems of larger size, both with respect to relative performance
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(optimality gap) and solution time (the heuristic solution time was around a half
minute, regardless of problem instance size in these cases).

It is important to note that 35% of the instances are solved within 5 min by exact
approach. However, Table 1 shows that the heuristic algorithm’s run-time outper-
forms the exact approach regardless of problem size. Because of this, although the
exact approach generates an optimal solution within 5 min for a relatively small per-
centage of cases, the heuristic approach is scalable to practical size instances due to
its polynomial-time complexity, while the exact approach is often unreliable, even
for this set of problem instances, which are smaller than found in practice. In prac-
tice, for example, decision makers often solve a multiple-train routing problem every
hour or so, which requires a faster solution time and greater dependability than the
exact approach is able to provide.

7 Discussion and Conclusion

This work considered the complex problem of simultaneously moving trains from
a set of initial locations to destination locations in a railyard network. Our mod-
eling and solution approaches account for track section and switch node capacity
limits, allowing at most one train on a track segment at a time. We provided an exact
problem formulation via a large-scale 0-1 optimization model and showed that the
associated problem falls into the class of A’P-hard optimization problems. We also
proposed a K-shortest-paths-based heuristic approach to minimize the total time
required for trains to reach their destinations while accounting for collision avoid-
ance. The solution methods proposed for this problem can serve as valuable input
to a simulator or a decision support system for hub managers who wish to automate
railcar repositioning decisions or evaluate different routing scenarios and options.

Our implementation did not consider the problem of attaching locomotives to
trains. That is, the implementation of the exact approach assumed that every train
requiring a move has a railcar attached, i.e., a locomotive is considered as another
railcar within a set of connected railcars. As we discussed in some detail in Sect. 5.2,
including locomotive moves within the mathematical model results in an additional
layer of complexity, requiring a nontrivial additional number of variables and con-
straints. However, a multi-phase problem solution approach similar to the one we
described in Sect. 5.2 allows for the reapplication of the heuristic in order to account
for required locomotive moves. This requires a semi-automated multi-step heuristic
procedure, where an initial problem is solved that moves locomotives from a set of
initial positions to trains. In the second step, each train with an attached locomotive
can now be moved by applying our heuristic algorithm. This same procedure can be
repeated for as many locomotive-to-train assignments as is needed to move all trains
on the network. Future work may include the development of improved methods
for solving the locomotive attachment problem, along with methods to improve the
mixed-integer programming formulation, and an in-depth analysis of the computa-
tional tradeoffs with respect to additional GRASP heuristic search time.
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