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Abstract
Over the last few years, the manufacturing technology of mini-unmanned aerial 
vehicles (mini-UAVs), also known as mini-drones, has been experiencing a sig-
nificant evolution. Thus, the early warning optical drone detection, as an important 
part of intelligent surveillance, is becoming a global research hotspot. In this arti-
cle, the authors provide a prospective study to prevent any potential hazards that 
mini-UAVs may cause, especially those that can carry payloads. Subsequently, we 
regarded the problem of detecting and locating mini-UAVs in different environments 
as the problem of detecting tiny and very small objects from an aerial perspective. 
However, the accuracy and speed of existing detection algorithms do not meet the 
requirements of real-time detection. For solving this problem, we developed a mini-
UAV detection model called Upgraded-YOLO based on the state-of-the-art object 
detection method of YOLOv5. The proposed model is able to perform real-time 
tiny/small flying object detection. The main contributions of this research are as fol-
lows: firstly, an air image dataset of mini-UAVs was built using a Dahua multisen-
sor camera. Secondly, a strategy of instance augmentation is proposed, in which we 
added small appearance of mini-drones to samples of the custom air image dataset. 
Thirdly, in addition to hyperparameter tuning and optimization operations, shallow 
layers are added to improve the model’s ability to detect mini-UAVs. A comparative 
study with several contemporary object detectors proved that the Upgraded-YOLO 
performed better. Therefore, the proposed mini-UAV detection technology can be 
deployed in a monitoring center in order to protect a strategic installation even in 
low-visibility conditions.
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1 Introduction

The International Civil Aviation Organization (ICAO) denotes by “drone” any 
unmanned aerial vehicle (UAV). Furthermore, the Air Force Special Operations 
Command (AFSOC) gave additional three names for a drone: a flying robotic sys-
tem, an unmanned aircraft system (UAS), and a micro air vehicle (MAV) [1, 2]. So, 
to simplify, an UAV is an aircraft either controlled by a pilot via RF remote control  
or autonomously following a mission planner through a flight controller. In the  
same context, the NATO (North Atlantic Treaty Organization) classification  [3] 
and Lykou et al.  [4] mention that UAVs weighting between 2 and 25 kg are called 
mini-UAVs. So, a mini-UAV can carry an operating payload up to 15 kg, e.g., the 
DJI MATRICE 600 which weighs 10kg is capable of carrying a 6-kg payload for  
16 min [5]. Over the last few years, the manufacturing technology of mini-unmanned 
aerial vehicles (mini-UAVs), also known as mini-drones, has been experiencing a 
significant evolution. There are multiple usages for mini-UAVs, including precision 
agriculture for spraying operation, professional aerial photography, and industrial 
applications [6]. Figure 1 illustrates two types of mini-UAVs that transported higher 
payloads. Figure 1(a) illustrates DJI Agars T16 mini-UAV equipped with a spray tank 
that can carry up to 16 L [7]. And, Fig. 1(b) shows DJI MATRICE 600 trying to carry  
and release a payload. However, the polyvalence of this type of flying gadgets made  
it accessible to everyone, particularly terrorist groups. Therefore, we can conclude 
that the detection of mini-UAVs before serious attacks is of the utmost interest.

Consequently, in this work, we will treat the issue of detecting and localizing 
mini-UAV in diverse environments as a problem of small object detection air image. 
To set the record straight, an air image or ground-to-aerial perspective image is 
mostly a picture of a flying object that must include sky background part, taken by 
a ground-based imaging system, typically used to monitor no-fly zones or restricted 
areas.

The real-time object detection applied to UAV monitoring is really crucial. Nev-
ertheless, these applications need early detection of objects so that they can be used 
later as inputs for other  reactions. Due to early detection, the appearance of the 
objects is generally small. In general, the aim of small object detection is to detect 

Fig. 1  Two examples of mini-UAVs carrying payloads: (a) DJI Agars T16; (b) DJI MATRICE 600
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objects that belong to the image and are small in size, which implies that the objects 
of interest either have a large physical appearance but occupy only a small area in an 
image, or have a really small appearance [32, 34, 35, 37]. Improvements in object 
detection algorithms allow faster and more accurate results.

The most recent methods using deep convolutional neural networks (deep CNN) 
usually involve several steps. First, specify the objects of interest in the image, then  
go through the deep CNN for feature extraction and afterwards classify them using 
supervised classification techniques. Finally, mix the results between the objects to 
properly mark the bounding box. In deep CNN models, there are mainly two types  
of state-of-art object detectors. The first type is the two-stage detectors, such as faster 
R-CNN (region-based convolutional neural networks) [8] that uses a region proposal 
network to generate regions of interests in the first stage, and mask R-CNN [9] that 
sends the region proposals down the pipeline for object classification and bunding 
box regression. Such models perform well in terms of accuracy, in particular the 
faster R-CNN with an accuracy of 73% mAP, but due to their very complex pipe-
line, they perform poorly in terms of speed with 7 frames per second (FPS), which 
restricts its application for real-time object detection. The second type of detectors is 
the single-stage detectors such as SSD (single-shot detector) [10] that runs a convo-
lutional network on input image only once and calculates a feature map, and YOLO 
(you only look once) [11] that treats object detection as a simple regression problem 
by tacking an input image and learning the class probabilities and bounding box 
coordinates. Such models (SSD and YOLO) are proposed by considering both accu-
racy and processing time.

Especially YOLO performs well compared to previous region-based algorithms 
in terms of speed with 45 FPS while maintaining a good detection accuracy more 
than 63% mAP. Although the speed and accuracy were good, YOLOv1 (YOLO  
first version)  [11] made some remarkable localization errors. In other words, the 
bounding boxes predicted by YOLOv1 are not accurate. So, to overcome the defi-
ciencies of YOLOv1, the creators of YOLO launched YOLOv2 (YOLO second ver-
sion) [12] where the two limitations of; (i) similarity of the predicted bounding box  
to the ground truth and (ii)  the percentage of total relevant objects correctly clas-
sified were resolved without impairing the accuracy of the classification. Moreo-
ver, YOLOv2, called also YOLO9000 [12], gained a speed of 59 FPS and mAP of 
77.8% in experiments on the PASCAL VOC 2007 dataset [13, 14]. Furthermore, in 
YOLOv3 (YOLO third version) [15, 16], the main improvement is the addition of 
multi-scale prediction. In addition, YOLOv3 brought further enhancements in terms 
of speed and accuracy. In experimenting with the MS COCO  [17, 18] dataset, it 
obtained 33% AP score and achieved a real-time speed of approximately 75 FPS 
on Tesla V100. In February 2020, Joseph Redmon, the creator of YOLO, stopped 
researching in the field of computer vision research. However, YOLOv4 (YOLO 
fourth version) was released on 23 April 2020 and YOLOv5 on 10 June 2020 by 
other researchers. While YOLOv4 [19, 20] was released in the Darknet framework, 
YOLOv5 [20–25] has been released in the Ultralytics PyTorch framework. Despite 
the fact that YOLOv4 can reach 43% AP on MS COCO  [26] and 65 FPS speed, 
the developers of YOLOv5 claim that in a YOLOv5 Colab notebook, running a 
Tesla P100, they found inference times of up to 0.007 s per image, meaning 140 



 Operations Research Forum (2022) 3:60

1 3

60 Page 4 of 27

frames per second (FPS) [24]. In contrast, YOLOv4 achieved 50 FPS after having 
been converted to the same Ultralytics PyTorch library [21]. Not only that, they also 
mentioned that YOLOv5 is smaller. Specifically, the YOLOv5 file weights 27 mega-
bytes. However, it weights for YOLOv4 (with Darknet architecture) 244 megabytes. 
So, YOLOv5 is about 88% smaller than YOLOv4 [52].

The development of new versions of YOLO has not finished. On Oct 28, 2021, 
Yuxin et al. [53] have launched the YOLOS (you only look at one sequence). It is 
a series of object detection models based on the vanilla Vision Transformer with 
the fewest possible modifications and region priors, as well as inductive biases 
of the target task. In addition, Sahin and Ozer [55] recently released an improved 
YOLO framework, called YOLODrone, for detecting objects in aerial images 
taken by drone. To summarize, YOLOv5 claims to be fast, and has a very light 
model size compared to the contemporary series of YOLO [54].

This paper focuses on detecting mini-drones based on ground to aerial perspective  
images, more precisely on the AI techniques used for early detection and locali-
zation. The goal is to obtain a real-time and accurate deep-CNN object detector  
which will be able to correctly detect and locate mini-drones that may probably carry 
a payload, in order to start a neutralization system. The main contributions of this  
work can be summarized as follows: 

1. We collect air images of flying mini-UAVs in a real environment using our Dahua 
multi-sensior camera [30], the majority of which contain flying mini-UAVs in 
poor visibility conditions. Subsequently, we build a custom dataset of air images 
of different types of flying mini-UAVs, called “Mini-UAVs air image dataset,” 
which provides a benchmark to evaluate the performance of the proposed detec-
tion model. The own custom air image dataset will be made public for future 
research.

2. We come up with a strategy of instance or object augmentation, in which we add 
tiny/small objects to the samples of our air image dataset. So, in our work, we 
denote by tiny/small objects, the mini-UAVs that occupy a small portion of the 
field of view in real world environment.

3. We develop a mini-UAV detection model by redesigning the YOLOv5 object 
detector  [21, 23] from scratch. So, the redesigned model which is named 
“Upgraded-YOLO” (i.e., assuming that we will upgrade or mutate the model by 
modifying its internal structure and narrowing its depth in order to adapt it to the 
detection of tiny/small objects) aggregates more shallow feature information to 
focus on the detection of small flying objects in air images.

Experimental results show that our proposed Upgraded-YOLO outperforms the 
general YOLOv5 and other contemporary object detectors in detecting flying 
mini-UAVs in air images.

The remainder of this paper is organized as follows. We present an instance 
augmentation strategy in Sect. 3.1.3. A mini-UAV real-time detection algorithm 
is presented in Sect. 3.2, and the results are discussed in Sect. 4. Finally, Sect. 5 
concludes the study.
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2  Related Work

2.1  Overview of Low‑Visibility Conditions in Aerial Perspective

The relatively high latitude of Tunisia and its geographical stretch from north to 
south give it contradiction climatic zones: sub-humid in the extreme north, and 
desert with dusty environment in the south. So, the Tunisian climate is characterized 
by a number of meteorological phenomena or meteors (see Fig. 2) which will conse-
quently disturb the visibility and therefore have an impact on video surveillance and 
the detection of flying drones from the ground.

Under such conditions, many computer vision and image processing algorithms 
suffer from the visibility degradation, since most of them treat clear scenes under 
good weather. Therefore, in our work, we took these phenomena into consideration 
when constructing our training air image dataset (that contain flying mini-UAVs). 

Fig. 2  Examples of phenomena observed in the Tunisian atmosphere. Most of them exhibit significant 
visibility degradation: (a) fog, (b) mist, (c) haze, (d) duststorm
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Among these phenomena, the following are particularly noteworthy: (a) The fog is 
produced by the suspension in the atmosphere of very small water droplets or ice 
particles. This phenomenon reduces horizontal visibility at the earth’s surface to less 
than 1km, and the humidity is close to 100% (see Fig. 2a). (b) The mist is produced 
by microscopic water droplets suspended in the atmosphere. The mist appears gray-
ish and the visibility is between 1 and 5 km (see Fig. 2b). (c) The haze is the suspen-
sion in the atmosphere of dry, extremely small, and invisible particles which is the 
result of fumes or airborne dust, sand, or even sea salt particles. It appears bluish 
on a dark background and yellowish on a light background. Visibility in the haze is 
between 1 and 5 km, and relative humidity can reach 60% (see Fig. 2c). (d) The dust-
storm is caused by dust or sand particles being powerfully lifted from the ground by 
a strong, turbulent wind, usually reducing visibility to less than 1km (see Fig. 2d).

2.2  Issues in Object Detection

The deep detectors generally consist of two parts: one is a skeleton pre-trained on 
ImageNet, and the other (called the head) is the main part used to predict the cat-
egory and bounding box of the object. In addition, object detectors developed in 
recent years usually have some layers inserted between the skeleton and the head, 
and usually used to collect feature maps at different stages. We can call it the neck of 
the object detector  [21, 24]. So, the detector needs to meet the following conditions: 

1. Higher input network scale (resolution) used to detect multiple small objects;
2. Higher layers: higher receptive fields to cover the expanding scale of the input 

network;
3. More parameters improve the model’s ability to detect multiple objects of differ-

ent sizes in a single image.

In summary, the general object detector consists of the parts presented by Fig. 3.
Despite of these works, research in this area is far from complete and many diffi-

culties remain. An interesting summary of some of the challenges is presented in the 
review by Agarwal et al. [28].

• Scale variance: the variation in size of the objects to be detected represents an 
important lock, especially when the gap is large. The image pyramid approach 

Fig. 3  Concept of architectural object detection for aerial perspective image
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is one of the oldest and most effective methods for detecting objects at differ-
ent scales. The disadvantage of this operation is the high computational cost 
of repeating the convolutions after each scaling step. The data augmentation 
method could be used as an alternative to enrich the training examples by apply-
ing transformations on the original images. However, the most used approach 
by state-of-the-art detection models (e.g., yolov5) is called anchors. Anchors are 
pre-calculated bounding boxes at different scales and aspect ratios, which are 
provided as a reference during training to ensure detection at different scales.

• Rotation variance: often solved by data augmentation by applying rotations to 
the training set images, thus showing the network rotated examples. This solu-
tion is limited to the rotation resolution of rigid objects (e.g., a drone) and does 
not apply to deformable objects (e.g., a cat).

• Domain adaptation: Most of known detection networks are pre-trained on huge 
datasets like ImageNet or COCO [17]. The models thus have a very high gener-
alization capacity except in very specific use cases where the content is very dif-
ferent. So, domain adaptation application is therefore necessary. The most widely 
adopted solution is transfer learning, which re-train the network by changing its 
top layers with a small set of data corresponding to the task in question.

• Occlusions: This problem, which exists in most applications, is an issue since 
some of the information is hidden. Thus, providing examples containing occlu-
sions in the training dataset may partially solve the problem but will not repre-
sent all forms of occlusion.

• Small objects: detecting small objects is more difficult than detecting medium 
or large ones. This is due to many factors such as lack of associated information, 
inaccurate localization, and confusion of objects with the background image.  
So, to overcome this problem, solutions vary in terms of complexity from sim-
ple scaling to the use of surface networks, coarse and fine networks to a super- 
resolution method that could be implemented with a GAN learning to represent 
small objects with higher resolutions. In addition, low image resolution could 
cause the same problems and thus require a super-resolution method.

2.3  Visualization of YOLOv5 Network Structure

YOLO is a technique based on regression. Instead of selecting the relevant part of 
an image, it predicts classes and bounding boxes for the entire image in a single run 
of the algorithm. So, the idea of YOLO is originated from the extension of the basic 
CNN idea for classification and detection tasks. The YOLO series (from YOLOv0 
to YOLOv7) is a regression method based on deep learning. So, the latest release 
of YOLOv5 that we have modified in this work [20–24] is basically modified on the 
structure of YOLOv3 [15].

As shown in Fig. 4, the YOLO series architecture is divided into three function-
ally different parts, called backbone network, neck network, and head or detect net-
work  [19, 24]. This is a division found in the architecture of many recent image 
detection models [29].
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The backbone part is a convolutional neural network which extracts feature 
information from the input image by multiple convolution and pooling. So, it 
aggregates different fine-grained images and forms image features.

The backbone is the body of the network, which will enable all the decisions 
made by the network. In simple terms, it can be seen as a converter that converts 
the input image, a data format difficult to process by AI (artificial intelligence), 
into a set of information characterized by some features (such as the presence of 
shapes, colors, textures, ...) from which it is easy to recognize objects. It is thus 
composed of a series of successive layers.

As shown in Fig. 5, there are four different layers: focus structure, CBNS (con-
volution, batch normalization, and SiLU activation function), C3B (Bottleneck 
with 3 CBNS), and SPP (spatial pyramid pooling).

The backbone is usually trained separately on image classification competi-
tions such as the ImageNet challenge [56], which include hundreds of thousands 
of images with a wide range of content such as animals, vehicles, and plants. 
This diversity of content forces the backbone to learn a wide variety of features 
in terms of size, color, and shape of the elements it observes and thus be more 
robust and able to extract useful features regardless of the image presented to the 
backbone.

The second part of Yolov5 is the neck network, a series of feature aggregation 
layers of mixed and combined image features. As shown in Fig. 5, there are four dif-
ferent layers in this part: CBNS, C3B, concatenation, and upsampling. The neck has 
the role of extracting the relevant features from all the layers of the backbone, and 
combining them into useful features for our detection task. Indeed, not all the layers 
included in the backbone learn the same information: the first set of layers, generally 
of higher spatial resolution, will detect features that are often simpler (the presence 
of lines, colors) and smaller. The last set are the lower resolution layers that tend to 
provide more complex features (e.g., the combination of specific shapes and colors 
such as a metal circle with a hole for a car rim) and large objects. The neck makes it 
possible to integrate and combine features of different resolutions and complexities, 
to allow detection of small and large, simple and complex features.

Fig. 4  Basic architecture of the YOLO series network presented as backbone, neck, and detect (head)
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Finally, the head is responsible for the final decision of the network. Based on the 
information provided by the neck, it will detect the elements of interest by drawing 
bounding boxes around them and it will, furthermore, give the nature of every object 
present in each bounding box.

In terms of general architecture, Yolov5 is similar to its predecessors Yolo and 
other models in the literature. It is therefore time to see the real reason for the differ-
ence in performance. The bag of freebies is a set of enhancements with no impact  
on the architecture of a network, which can be used free of charge, with no cost of mod-
ification on an existing network. It gathers all the improvements that can be applied  
during the network learning such as the loss function, data augmentation, and cross 
mini-batch normalization. The bag of specials is, on the contrary, a bag containing 

Fig. 5  YOLOv5 structure diagram
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improvements that require specific modifications to the architecture of a network. It 
contains recent advances in the scientific literature that improve the performance of 
the network without decreasing its speed [23, 27, 29].

3  Method and Dataset

3.1  Custom Air Image Dataset Construction

To construct our own air image dataset, called “Mini-UAVs air image dataset,” we 
proceeded through the following steps: data collection, data augmentation, object 
augmentation, and data annotation.

3.1.1  Methodology of Collection

The dataset is collected using internet videos and our Dahua multisensor cam-
era [30], mainly including rotor mini-UAV, like four-rotor UAV (i.e., DJI-Phantom4, 
DJI-Marvic), and six-rotor UAV (i.e., DJI-Matrice 600, DJI Agars T16). Some sam-
ples are shown in Fig. 6. A total of 4560 sample images are used in this experiment 
which are divided, randomly, into 3100 images for training and 1460 images for test-
ing purposes.

3.1.2  Data Augmentation

Data augmentation is a technique that allows researchers to greatly increase the vari-
ety of data that is available for model training, without the need to gather new data. 
Thus, the purpose of data augmentation in the training dataset is to create diversity 
and overcome overfitting by artificially increasing the training samples [28]. In our 
work, traditional data augmentation methods such as adding noise, cropping, flip-
ping, rotation, brightness, and contrast are used. Moreover, another technique is pro-
posed, in which a number of meteorological phenomena such as dust, mist, and fog 
(see Subsect. 2.1) are added to images of our dataset (see Fig. 7).

3.1.3  Object Augmentation Strategy

The detection of tiny/small objects in an image or video is a research topic in com-
puter vision that tries to develop technologies and techniques in order to detect low-
ercase instances  [31]. The possibility of appearance of tiny/small objects is much 
more numerous than those of other objects due to their limited size, which creates 
confusion in the detector to locate these objects among several others located in 
the vicinity or having the same size (or appearance). Thus, it is difficult to distin-
guish tiny/small objects from the background. In general, a tiny/small object has 
two definitions  [32–36]. The first is related to object dimension in the real world 
while the other is related to a threshold on the surface occupied by the object in the 
image [32–34, 37]. Although all modern detection models are effective for medium 
and large objects, they are not very efficient in detecting small objects. For example, 
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it is really hard for a model to see a micro/mini-drone flying from 2000m away. This 
is because there are some obstacles in tiny/small object detection. First, lowcase 
objects need appearance information required to distinguish them from background 
or similar classes. Second, the places of low case objects have a lot of possibilities. 
That is to say, the required precision for accurate localization is higher [35]. So, in 
this paper, we are going to demonstrate how we can improve the performance of a 
detector to detect and classify small flying objects. In our contribution, based on the 
following references [32–39], we have grouped the flying objects according to the 
following distribution shown in Table 1.

The size of objects is measured as the number of pixels in each of the bounding 
boxes that describe the spatial location of a mini-UAV. To push our model to focus 
more on tiny/small objects, we perform an augmentation based on the copy-and-
paste strategy that increases the number of tiny objects in each image of our dataset. 

Fig. 6  Sample images of own custom “Mini-UAVs air image dataset”
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As mentioned in Fig. 8, our augmentation strategy consists of two phases. The first 
phase consists in finding different appearances of tiny/small objects (micro/mini-
drones in flight with low appearance) and generating their masks. The second phase 
consists in searching, in our dataset, the images that contain objects of bounding  
box (BB) size < 322.

Thus, the tiny/small objects that are prepared in the first phase will be pasted in 
random places of these images, as presented in Fig. 9, generating the labels of these 
new tiny/small objects in an automatic way.

Figure 10 shows the percentages (portions) of mini-UAVs (flying objects) of dif-
ferent sizes, for our own custom dataset: before and after object augmentation. So,  
this figure shows our contribution related to the increase of tiny/small objects in the air  
images of the “mini-UAVs dataset” (train and test sub-datasets).

As shown in Fig.  10, in the train and test datasets, there are more tiny/small 
objects than medium and large objects. Approximately more than 50% of objects are 

Fig. 7  Sample images of the Mini-UAVs air image dataset after data augmentation with meteorological 
phenomena usually observed in Tunisian climate. (a) Dust. (b) Mist. (c) Fog

Table 1  Size distribution of the 
mini-UAVs in air images by 
subheadings

Object Size in pixels

Tiny From 82 to < 162

Small From 162 to < 322

Meduim From 322 to < 962

Large > 962
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tiny ( area < 162 ), more than 16% are small ( 162 < area < 322 ), more than 4% are 
medium ( 322 < area < 962 , and less than 3% are large ( area > 962).

3.2  Upgraded‑YOLO for Mini‑UAV Object Detection in Air Images

3.2.1  Model Architecture

In order to implement an optical early warning detection system, a flying target (i.e., 
unauthorized mini-UAV), which necessarily has a small or even tiny appearance,  
must be detected. The size of distant mini-UAVs in the sky background is very 
small; and the receptive field size of YOLOv5 is not enough to detect these tiny fly-
ing objects. This is the reason of improving the architecture of YOLOv5. As shown 
in Fig. 11, we did two improvements to the original YOLOv5 architecture: 

Fig. 8  Workflow of adding tiny/small instances; BB: bounding box contains an object

BB<322?

No

Add tiny/small
objects

Yes

Training

find BB size
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Fig. 9  Sample images of our dataset before (a and c) and after (b and d) tiny/small object augmentation

Fig. 10  Size distribution of tiny/small objects in air images before (a) and after (b) tiny/small object aug-
mentation
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 i. A fourth scale (marked with dashed yellow rectangle in Fig. 11) is added to 
the three scales of YOLOv5 feature maps to capture more texture and contour 
information of tiny/small objects as mini-UAVs.

 ii. Feature maps from the backbone network are brought into the added fourth 
scale (represented by the red line) to reduce feature information loss of mini-
UAVs.

The YOLOv5 final part consists of three detection tensors. So, YOLOv5 applies 
8, 16, and 32 downsampling of the initial image to detect objects at different resolu-
tions. For example, given an image of resolution 416Ã—416 as input to YOLOv5, 
features of input are extracted by the backbone network of YOLOv5. To precisely 
detect different sizes of the targets, 3 different scales of boxes are predicted, which 
are expressed as T1, T2, and T3 in the followed framework. In our mini-UAVs, air 
image dataset experiments, we predicted 3 boxes at each scale, which means the 
tensor is NÃ—NÃ—[3*(1+1+4)] for 1 class probability (confidence score), 1 class 
(mini-UAV) predictions, and 4 surrounding box position coordinates. Here, N is fea-
ture maps size of T1, T2, and T3, which are 13, 26, and 52, respectively. So, the 
problem of lacking appearance information is related to different image resolutions. 
For example, if the image resolution is low, it may prevent the detector from detect-
ing very small objects. In these cases, the information needed to detect very small 
objects will be very limited. Indeed, in YOLOv5, if the object of interest occupies 
a size of 8*8 pixels on an image with a resolution of 416*416, then it will be repre-
sented by only one pixel in the final feature maps. Therefore, any object smaller than 
8*8 will be disappeared. Subsequently, this architecture of YOLOv5 is insufficient 
for the detection of tiny objects. Therefore, the main idea of our proposal is to add 

Fig. 11  Anatomy of the Upgraded-YOLO for mini-UAV detection in air images
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a detection level (scale 4 in Fig. 11) with a high resolution that is able to extract 
more features for tiny objects. For this purpose, we added a level that reduces the 
resolution only four times (i.e., the input image was downsampled with a stride of 
size 4). In fact, our proposed architecture aims in detecting tiny objects, that is why 
we have added a higher resolution detection level that generated a tensor T4 of size 
104*104*18. The addition of the later consists of adding seven layers as indicated 
in Fig. 11 by a yellow box, of which the upsample layer increases the resolution and 
then the output of this layer will be concatenated with the output of layer three of 
the backbone part. In addition, the connection represented by the red line is added to 
bring the feature information from the backbone network into the added fourth scale 
of the neck network. Based on the idea of residual networks, this connection can 
improve gradient back propagation, to prevent the gradient from being erased, and 
reduce the loss of the feature information of very small flying objects.

3.2.2  The Loss Function

The loss of YOLOv5 [22] is a multi-task loss that contains three terms: the first for 
localization loss or bounding box regression loss (denoted as Lossbox ), the second 
for classification loss (denoted as Lossclass ), and the third for object loss or confi-
dence loss (denoted as Lossobj) [29]. The total loss (Loss Total) can be written as:

Next, we will go into the details of the three losses we used in the proposed 
Upgraded-YOLO network [40].

where �box , �obj , �class are hyperparameters or scalars to weight each loss function,

• B is the number of bounding boxes predicted for each tile,
• S2 is the number of cells (grids) that input images are divided into,
• K denotes the number of classes,

(1)LossTotal = Lossbox + Lossobj + Lossclass
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• Pc
truth

 equals 1 if the ground-truth belongs to the i-th class and 0 otherwise 
(binary indicator),

• Pc
pred

 is the predicted probability for the i-th class,
• P

obj

truth
 equals 1 if the ground-truth bounding box belongs an object (drone) and 0 

otherwise,
• P

obj

pred
 is the probability the predicted bounding box contains an object inside,

• � ∈ [0,+∞] is a focusing parameter or a modulating factor,
• � ∈ [0, 1] is a balancing parameter, is also useful for addressing class imbalance,
• The loss is similar to categorical cross entropy, and they would be equivalent if 

� = 0 and �i = 1,
• Here Lobj

i,j
 and Lobj

i
 are indicator functions such that: Lobj

i,j
= 1 if box j and cell i are 

matched together, 0 otherwise (1 if object appears in cell i and j-th box detects it, 
0 otherwise), Lobj

i
= 1 if cell i has an object present, 0 otherwise.

• The CIoUtruthbox
predbox

 is called the complete-IoU between the predicted box and the 
ground-truth box [41].

• (1 − CIoU
truthbox
predbox

) is the complete IoU loss which ensures three geometric meas-
ures, i.e., overlap area, central point distance, and aspect ratio [41].

4  Experimental Results and Evaluation

4.1  Experimental Setting

Experiments in this paper have been performed using the machine learning frame-
work PyTorch 1.9. At the beginning of our work, training trials were performed, 
with 100 epochs, on the Kaggle platform with a GPU NVIDIA TESLA P100, 16 
GB of memory, Driver version: 450.119.04, and CUDA version: 11.0. The neural 
network training and testing were performed on a workstation equipped with an 
AMD Ryzen 9 5900X 12-Core Processor 3.70 GHz, NVIDIA Geforce RTX 3070 
GPU, and NVIDIA TESLA T4 GPU. The model building, training, and result test-
ing are all completed under the V1.9 of PyTorch framework, using the V11.1.0 of 
CUDA parallel computing architecture and at the same time integrating the v8.2.2 
of cuDNN acceleration library into the PyTorch framework to accelerate computer 
computing capabilities. The ADAM optimizer with a learning rate of 0.001 was 
used for the training optimization. The training was performed with an input image 
size of 416*416, a batch size on a GPU of 8 frames, and a number 8 of dataloader’s 
workers.

4.2  Evaluation Metrics for Mini‑UAV Detection

The following standard criteria are exploited to quantitatively evaluate and compare 
the detection accuracy: Intersection over union (IoU) is one of the most used tools in 
machine learning to measure the accuracy of an object detection model. Moreover, 
this criterion compares the detected predicted region with the ground truth region in 
a way that is proportional to the size of the object being searched. Also, the regions 
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being compared can be bounding boxes that locate drones. Therefore, the overlap-
ping ratio between the detected box ( BD ) and the ground truth box ( BGT ) is the 
measure of IoU [42–44].

For object detection, IoU is used to determine how many objects were detected cor-
rectly and how many false positives were generated. Generally, a 0.5 ∗ IoU ratio for  
each prediction at the training stage is targeted. This means that if the network  
predicts an object with a detected box that overlaps with the ground truth box by at 
least 50% , it is considered as a true prediction. By defining the true positive (TP) as  
the number of correct detections with IoU > 0.5 , the false positive (FP) as the num-
ber of false detections (like a bird that was detected as a drone) or detected more 
than once, and the false negative (FN) as the number of drones that are not detected 
or detected with IoU ≤ 0.5 , the precision and recall scores [45], which are used to 
measure the performance of a detection model, are calculated as:

where precision shows how accurately the model has detected the drones. Recall 
is described as the number of truly detected drones over the sum of truly detected 
drones and undetected drones in the image. In order to properly evaluate the perfor-
mances of our object detector, average precision (AP) has been used, with precision 
(P) and recall (R). From all these indicators, it is now possible to draw the precision 
curve as a function of the recall. It will allow, thanks to the computing of the area 
under this curve, to define the average precision (AP) of the proposed model.

Therefore, the mean average precision (mAP) is defined as the mean of AP across 
all categories (M):

If the IoU threshold has been set to 0.5 or 50%, the mAP is called mAP_0.5 or 
mAP@50. mAP_0.5 ∶ 0.95 means mAP with 0.5 < IoU < 0.95.

(5)IoU =
�BD

⋂
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⋃
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(6)P =
TP
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(7)R =
TP

TP + FN
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P(R)dR
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4.3  Results

4.3.1  Parameters and Hyper‑Parameters Optimization

Our proposed model has two different types of parameters:
Model parameters or network parameters: these are related to the size and topol-

ogy of neural networks which have an influence on model performance. Therefore, 
for our model, they are initialized randomly (from scratch) to avoid symmetry, which 
could potentially affect the training process, and learned during model training.

Hyper-parameters are parameters that have an influence on the speed and qual-
ity of the learning process such as learning rate and decay. The determination of 
these hyper-parameters can be done manually by trying all possible values. But this 
is very time consuming as the number of possible combinations is very high. There-
fore, in our work, we have applied the hyperparameter evolution that uses a genetic 
algorithm (GA) to automatically find the optimal hyper-parameter  [46, 47]. Thus, 
crossover and mutation are the main genetic operators in the GA. So, the mutation is 
used, with a probability of 90% and a variance of 0.04, to create new offspring based 
on a combination of the best parents from all previous generations [48].

To evolve the hyper-parameters of our model (Fig. 12), we trained it, for 50 epochs, 
300 times (300 generations) by maximizing the fitness score, which is defined as follows:

4.3.2  Experimental Analysis and Discussion

Figure  13 shows performance metrics and loss functions change curves, for the 
training validation. These curves correspond to the baseline (YOLOv5 small) and 
the Upgraded-YOLO, both trained on the Mini-UAVs air image dataset. The loss 
function indicates the performance of a given predictor in detecting the input data 
points in a dataset. The smaller the loss, the better the detector is at modeling the 
relationship between the input data and the output targets.

Line plots created in Fig. 13 show two different types of loss. Those represented in 
Fig. 13(a), (b) are associated to both of the losses related to the given cell containing an  
object during the training: the confidence loss or objectness loss ( obj_loss ) and the pre-
dicted bounding box loss ( box_loss ). In other words, the box_loss represents how well the  
model can locate the center of an object and how well the predicted bounding box covers 
an object, while the objectness loss determines whether there are objects in the predicted 
bounding box. Based on Fig. 13(a), we can conclude that as the number of iterations grad-
ually increases, baseline and Upgraded-YOLO algorithm curves gradually converge, and  
the loss values become smaller and smaller. When the two models are iterated 250 times, 
the loss values are basically stable and the network basically converges. On one hand, 
Fig. 13(a) shows that the baseline (blue curve) had the smallest objectness loss. Thus, for  
300 training epochs, the loss of confidence in the baseline is 0.0007, whereas for the 
Upgraded-YOLO (red curve) it reached 0.0014. So, when we added a fourth level to 

(10)qf = 0.1mAP_0.5 + 0.9mAP_0.5 ∶ 0.95
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our proposed model, we actually increased the number of detected object parts. Con-
sequently, this leads to an increase in the number of bounding boxes predicted by each 
cell. Moreover, as mentioned by the authors in reference [15]: “If a bounding box prior is 
not assigned to a ground truth object it incurs no loss for coordinate or class predictions, 
only objectness”; it means that all the box predictions contribute to the objectness loss 
which is an accumulation of losses related to each given cell containing an object during 
the training, whereas the Upgraded-YOLO had a slightly superior loss.

Fig. 12  Fitness (y axis) vs hyper-parameter values (x axis) of the base scenario trained on “mini-UAV 
dataset.” Yellow indicates higher concentrations. Vertical distributions indicate that a parameter has been 
disabled and does not mutate
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On the other hand, Fig. 13(b) shows that the box loss value of our Upgraded-YOLO  
was much lower than that of the baseline model because the mutation (the changes 
in the anatomy of YOLO to detect tiny/small objects) of our proposed model has 
brought an improvement in terms of prediction of the bounding box that covered the 
target object. So, the mutation of YOLO, by injecting a neural structure capable of 
detecting the most part of an object, reduces errors between the ground truth and the 
predicted bounding box. Hence, we have pushed the box loss to better teach the net-
work to predict a better CIoU. Since only the best-fitting boxes in each spatial cell 
contribute to the box loss, we get better results with our model. Also, it can be seen 
that the number of true positive (TP) or the number of detections with IoU > 0.5 is 
augmented. Hence, the better results were obtained by our model in Fig. 13(c)–(f). So,  
the general trend of performance metrics ( mAP_0.5 ∶ 0.9 , mAP_0.5 , precision and 
recall) was roughly the same for the two models (Upgraded-YOLO and the baseline). 
But, the curves of the baseline have a jitter range almost during the whole train-
ing process. However, the timing of jitter for the Upgraded-YOLO during the early 
stage was shorter than that of the baseline, with a smaller jitter amplitude. Generally, 
the observation of the jitter phenomenon during the training of a detection model is 
due to the added noise, and it is due to local minima. So, every time the optimizer 
converges towards the local minimum, the performance metrics increases. But with 
good learning rate, the model learns to jump from these points and the optimizer will  

Fig. 13  Comparison of common evaluation indicators and loss curves between baseline (YOLOV5), given in 
blue curve, and Upgraded-YOLO, given in red curve. The first two plots are (a) bounding box loss (measured 
by CIoU) and (b) confidence loss in the validation dataset. The remaining four curves represent performance 
metrics of object detection task, and they are (c) mAP_0.5:0.9, (d) mAP_0.5, (e) precision, and (f) recall
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converge toward the global minimum which is the solution. Hence, our model is bet-
ter for the convergence towards the global solution. In terms of speed, the Upgraded- 
YOLO is faster than the baseline; e.g., for mAP_0.5, our model reached 91% after 11  
epochs; however, the baseline did not exceed 5%. In terms of accuracy, the curves of 
the evaluation metrics show that our model is more accurate. Furthermore, the mAP  
is used to measure the quality of the detection model. Thus, the higher the value is, 
the higher the average detection accuracy and the better the performance will be.  
Moreover, the high mAP also denotes a great performance of the training models. 
So, Fig. 13(c) shows that from the start, the mAP_0.5 ∶ 0.9 of our model is higher  
than that of the baseline. Moreover, the mAP_0.5 ∶ 0.9 of our model reaches about  
86% after 300 epochs, while the baseline reached 47% after 150 epochs and started 
overfitting until epoch 300, with a mAP_0.5 ∶ 0.9 of 45% . As the graphs in Fig. 13(d)  
show, the mAP_0.5 of our model reached 92% whereas the baseline reached 88%. As 
shown in Fig. 13(e), the precision or the exactness of the Upgraded-YOLO reached 
0.98 after 300 epochs; however, for the baseline it did not exceed 0.91. The recall 
tells us what proportion of objects was predicted to be a mini-UAV. The curves of 
Fig. 13(f) show that the completeness of our model is better than the baseline. The 
improvement in precision and recall rate of our model compared to the baseline can 
be attributed to the increase in the true positive (the number of correctly classified 
objects). Therefore, an improvement in prediction accuracy can be seen.

Furthermore, Table 2 shows mAP, precision, and recall of four models: YOLOv3-
tiny, YOLOv3, YOLOv5, and ours after a training on our air image dataset. It can be 
seen that, after 300 epochs, our method has better performance.

Compared with the results of the baseline (YOLOv5 model), the precision of 
the Upgraded-YOLO model is increased by 6.84% and the recall rate is increased 
by 9.04%. Moreover, the mAP_0.5:0.95 is increased by 40.57% and the mAP_0.5 
has improved by 9.9%. These results confirm what was mentioned at the beginning 
of this interpretation, that the performance of our model is higher than that of the 
baseline.

Moreover, Table  3 shows that after 300 epochs of training, our model has the 
lowest total loss value, which makes it more accurate and perform better than the 
three contemporary object detectors: YOLOv3-tiny, YOLOv3, YOLOv5.

To highlight the performance of our detector, we compare it to the baseline. 
The results of the test are based on 400 frames from YouTube video sequences 
captured in an outdoor environment with different drone models, and from 

Table 2  Model performance evaluation with the custom air image dataset

Performance metrics

Mini-UAV detection model mAP_0.5 mAP_0.5:0.95 Precision Recall

YOLOv3-tiny 0.4312 0.6936 0.7827 0.6989
YOLOv3 0.4641 0.8811 0.8982 0.8691
YOLOv5 0.4549 0.8846 0.912 0.8789
Upgraded-YOLO (ours) 0.8606 0.9836 0.9804 0.9693
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visible video clips shot with our Dahua multi-sensor camera. An illustration 
of the detected results related to both of the baseline model and the Upgraded-
YOLO for some samples in air images (i.e., ground to aerial perspective images) 
is shown in Fig. 14 where the red and green bounding boxes correspond to detec-
tions by the Upgraded-YOLO detector and the baseline detector, respectively.  

Table 3  Comparison of loss 
functions between our model 
and other contemporary 
detectors

Loss function

Mini-UAV detection 
model

Box_loss Obj_loss Total loss

YOLOv3-tiny 0.07621 0.0127704 0.08898
YOLOv3 0.02878 0.0008904 0.0301704
YOLOv5 0.02621 0.0007704 0.0269804
Ours 0.01257 0.001986 0.014556

(a) (b)

(c) (d)

(e) (f)

Confidence score :
*Upgraded-YOLO: 0.91
*Baseline: 0.65

Confidence score :
*Upgraded-YOLO: 0.90
*Baseline: 0.72

Confidence score :
*Upgraded-YOLO: 0.86
*Baseline: 0.62

Confidence score :
*Upgraded-YOLO: 0.87
*Baseline: 0.79

Confidence score :
*Upgraded-YOLO: 0.76
*Baseline: 0.64

Confidence score :
*Upgraded-YOLO: 0.75
*Baseline: 0.72

Fig. 14  Comparison of the detection results in air images at diverse distances and with different visibil-
ity conditions: (a) and (b) mini-UAVs in very small appearance; (c) and (d) mini-UAVs with medium 
appearance; (e) and (f) mini-UAVs flying in low visibility conditions
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For instance, in Fig. 14(a), (b), we used two frames of size 1920*1080 taken by our  
Dahua camera, which contain very far mini-drones. Indeed, the Upgraded-YOLO 
has detected the far mini-drones with a confidence score higher than 0.76, which 
is superior than that of the baseline (i.e., between 0.64 and 0.72). Accordingly, 
Fig. 14(a), (b) show that our model was efficient and outperformed the baseline 
(original YOLOv5) in the detection of mini-UAVs of tiny and small appearance.

Furthermore, the results in Fig. 14(c), (d) show that the bounding boxes of our  
model (red bounding boxes) are more adjusted with the detected mini-UAVs than 
the original YOLOv5. This was consistent with the previous evaluation, and this 
shows that our method has the lowest box loss. Finally, the last figures (lack of 
lighting for Fig. 14(e) and fog phenomena for Fig. 14(f)) show that our model per- 
forms well even under low-visibility conditions.

5  Conclusion

In this research, deep learning technology was applied to tiny/small flying object 
detection in air image. And based on the YOLOv5 object detector  [21], a high-
precision mini-UAV detection model was proposed. So, we firstly collected 
images of mini-UAVs in a real environment, using our Dahua Thermal Network 
PTZ Camera. Most of them consist of mini-UAVs flying in poor visibility condi-
tions. Then, we constructed an own custom dataset designed by “Mini-UAVs air 
image dataset,” which provides a benchmark to evaluate the performance of the 
proposed detection model, especially under low-visibility condition. In addition, 
we proposed a new strategy of instance augmentation in order to increase the 
accuracy of our model. This strategy consists of adding tiny/small objects (mini-
UAVs) to the images of our own custom dataset. As a result, in order to reduce 
the total loss, we implemented a mini-UAV detection model based on the state-of-
the-art object detection method of YOLOv5, which has recently appeared. In the 
proposed detector, called Upgraded-YOLO, a new feature fusion layer was added 
to capture more feature information about tiny and small flying objects, detected 
in air images. This paper mainly researches and develops drone-related threats 
under the requirement of a real-time flying object detector. However, fast detec-
tion still needs specific hardware configuration. In the future, we will continue to 
optimize Upgraded-YOLO especially with a huge multi-class dataset of drones. 
At the same time, we will try to deploy and integrate our model with a flying 
object tracker such as DeepSORT in order to set up an anti-UAV system [49–51].

Acknowledgements This research is supported by the Tunisian Ministry of National Defense, Science 
and Technology for Defense Lab (STD), and Military Research Center through a research and develop-
ment project.

Author Contribution T.D. (Tijeni Delleji) presented the ideas, carried out the experiments, and writ-
ten the paper. F.S. (Feten Slimeni) contributed to programming, writing, and review. H.F (Hedi Fekih) 
contributed to review and helped in obtaining the real-time images of flying mini-UAVs. A.J. (Achref 
Jarry) and W.B. (Wadi Boughanmi) contributed to the original draft preparation. A.K (Abdelaziz Kallel) 



1 3

Operations Research Forum (2022) 3:60 Page 25 of 27 60

contributed to review and editing the final version of the manuscript. Z.C. (Zied Chtourou) took the 
responsibility of supervision. All authors have read and agreed the published version of the manuscript.

Funding This research was funded by the Military Research Center, Taeib Mhiri, Aouina, 2045, Tunis, 
Tunisia.

Data Availability The data presented in this study are available on request from the corresponding author.

Declarations 

Conflict of Interest The authors declare no competing interests.

References

 1. USAF (2009) Unmanned Aircraft Systems Flight Plan 2009-2047, Technical report, unclassified, 
United States Air Force, Washington DC, pp. 24-27

 2. Doyle DD (2013) Real-time, multiple, pan/tilt/zoom, computer vision tracking, and 3D position 
estimating system for small unmanned aircraft system metrology. DEPARTMENT OF THE AIR 
FORCE, AIR UNIVERSITY, Wright-Patterson Air Force Base, Ohio, USA. Jeffrey Maddalon

 3. Maddalon J, Hayhurst KJ, Koppen DM, Upchurch JM (2013) Perspectives on unmanned aircraft 
classification for civil airworthiness standards. Langley Research Center, Hampton, Virginia. 
NASA/TM–2013-217969

 4. Lykou G, Moustakas D, Gritzalis D (2020) Defending airports from UAS: a survey on cyber-attacks 
and counter-drone sensing technologies. Sensors 20(12):3537

 5. Official DJI website: https:// www. dji. com/ matri ce600- pro/ info (last Accessed on 23 Mar 2021)
 6. Seidaliyeva U, Akhmetov D, Ilipbayeva L, Matson ET (2020) Real-time and accurate drone detection 

in a video with a static background. Sensors 20(14):3856
 7. Official DJI website: https:// www. dji. com/ t16/ info# downl oads (Last Accessed on 23 Jun 2021)
 8. Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object detection with 

region proposal networks. arXiv preprint arXiv: 1506. 01497
 9. He K, Gkioxari G, Dollár P, Girshick R (2018) Mask R-CNN. arXiv preprint arXiv: 1703. 06870
 10. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Alexander C (2015) Berg. SSD: single 

shot MultiBox detector. arXiv preprint arXiv: 1512. 02325
 11. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object 

detection. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 
pp.779-788

 12. Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger. arXiv preprint arXiv: 1612. 08242
 13. Everingham M, Ali Eslami SM, Van Gool L, Williams CKI, Winn J, Zisserman A (2015) The Pascal 

Visual Object Classes challenge: a retrospective. Int J Comput Vis 111:98–136
 14. Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A (2010) The PASCAL Visual 

Object Classes (VOC) challenge. Int J Comput Vis 88:303–338
 15. Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv preprint arXiv: 1804. 

02767
 16. Lawal MO (2021) Tomato detection based on modified YOLOv3 framework. Sci Rep Jan 14;11(1):1447. 

https:// doi. org/ 10. 1038/ s41598- 021- 81216-5. PMID: 33446897; PMCID: PMC7809275
 17. Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Lawrence Zitnick C (2014) 

Microsoft COCO: common objects in context. in 13th European Conference on Computer Vision, 
pp. 740–755

 18. Kim D-H (2019) Evaluation of COCO Validation 2017 Dataset with YOLOv3. Journal of Multidis-
ciplinary Engineering Science and Technology 6(7)

 19. Bochkovskiy A, Wang CY, Liao HYM (2020) YOLOv4: optimal speed and accuracy of object 
detection, arXiv preprint arXiv:  2004. 10934

 20. Wang Z, Wu Y, Yang L, Thirunavukarasu A, Evison C, Zhao Y (2021) Fast personal protective 
equipment detection for real construction sites using deep learning approaches Sensors 21(10):3478

https://www.dji.com/matrice600-pro/info
https://www.dji.com/t16/info#downloads
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://doi.org/10.1038/s41598-021-81216-5
http://arxiv.org/abs/2004.10934


 Operations Research Forum (2022) 3:60

1 3

60 Page 26 of 27

 21. Ultralytics YOLOv5 and Vision AI, Madrid, Spain. Available online: http:// www. ultra lytics. com 
(Last Accessed on 03 Aug 2021)

 22. Kharel S, Ahmed KR (2021) Potholes detection using deep learning and area estimation using 
image processing, Proceedings of SAI Intelligent Systems Conference, IntelliSys 2021: Intel-
ligent Systems and Applications 296:373-388

 23. Wang X, Wei J, Liu Y, Li J, Zhang Z, Chen J, Jiang B (2021) Research on morphological detection 
of FR I and FR II radio galaxies based on improved YOLOv5. Universe 7(7):211

 24. Yan B, Fan P, Lei X, Liu Z, Yang F (2021) A real-time apple targets detection method for picking 
robot based on improved YOLOv5. Remote Sensing 13(9):1619

 25. Yang G, Feng W, Jin J, Lei Q, Li X, Gui G, Wang W (2020) Face mask recognition system with 
YOLOV5 based on image recognition. Proceedings of 2020 IEEE 6th International Conference 
on Computer and Communications, IEEE Xplore , pp. 1398-1404

 26. COCO dataset. Available online: https:// cocod ataset. org/# home (Last Accessed on 17 Sept 2021)
 27. Adibhatla VA, Chih H-C, Hsu C-C, Cheng J, Abbod MF, Shieh J-S (2021) Applying deep learning 

to defect detection in printed circuit boards via a newest model of you-only-look-once. Math Biosci 
Eng 18(4):4411-4428

 28. Agarwal S, Du Terrail JO, Jurie F (2018) Recent advances in object detection in the age of deep 
convolutional neural networks. arXiv preprint arXiv:  1809. 03193

 29. Yao J, Qi J, Zhang J, Shao H, Yang J, Li X (2021) A real-time detection algorithm for kiwifruit 
defects based on YOLOv5. Electronics 10(14):1711

 30. Dahua Technology. Available online: https:// www. dahua secur ity. com/ produ cts/ All- Produ cts/ Therm al- 
 Camer as/ Wizmi nd- Series/ TPC-8- Series/ TPC- PT862 1C (Last Accessed on 04 Aug 2021)

 31. Zhang Y, Yongliang S, Jun Z (2019) An improved tiny-yolov3 pedestrian detection algorithm. 
Digital Signal Processing 183:17-23

 32. NguyenN-D, Do T, Ngo TD, Le D-D (2020) An evaluation of deep learning methods for small 
object detection. J Electr Comput Eng 2020(3189691):18

 33. Delleji T, Fekih H, Chtourou Z (2020) Deep learning-based approach for detection and clas-
sification of micro/mini drones. In 2020 4th International Conference on Advanced Systems and 
Emergent Technologies (IC_ASET), pp. 332–337

 34. Kisantal M, Wojna Z, Murawski J, Naruniec J, Cho K (2020) Augmentation for small object 
detection. arXiv preprint arXiv:  1902. 07296

 35. Tong K, Wu Y, Zhou F (2020) Recent advances in small object detection based on deep learning: 
a review. Image and Vision Computing, Science Direct, ELSEVIER 97

 36. Pang J, Li C, Shi J, Xu Z, Feng H (2019) R2-CNN: fast tiny object detection in large-scale 
remote sensing images. IEEE Trans Geosci Remote Sens 57(8)

 37. Zhang Y, Bai Y, Ding M, Ghanem B (2020) Multi-task generative adversarial network for detect-
ing small objects in the wild. Int J Comput Vis pp. 1810-1828

 38. Chen C, Liu M-Y, Tuzel O, Xiao J (2016) R-CNN for small object detection. Asian Conference 
on Computer Vision ACCV, pp.214-230

 39. Du Z, Yin J, Yang J (2019) Expanding receptive field YOLO for small object detection. Journal 
of Physics. Conference Series, 3rd International Conference on Electrical, Mechanical and Com-
puter Engineering, Guizhou, China 1314

 40. Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2018) Focal loss for dense object detection. IEEE 
Transactions on PatternAnalysis and Machine Intelligence 42(2):318–327

 41. Zheng Z, Wang P, Liu W, Ye R, Ren D (2020) Distance-IoU loss: faster and better learning for 
bounding box regression. AAAI Conference on Artificial Intelligence 34(07)

 42. Rezatofighi H, Tsoi N, Gwak JY, Sadeghian A, Reid I, Savarese S (2019) Generalized intersection 
over union: a metric and a loss for bounding box regression. arXiv preprint arXiv:  1902. 09630

 43. Madasamy K, Shanmuganathan V, Kandasamy V, Lee MY, Thangadurai M (2021) OSDDY: embedded 
system-based object surveillance detection system with small drone using deep YOLO. EURASIP Jour-
nal on Image and Video Processing 2021:19

 44. Wang X, Song J (2021) ICIoU: improved loss based on complete intersection over union for bounding 
box regression. IEEE Access 9:105686–105695

 45. Zhou J, Tian Y, Yuan C, Yin K, Yang G, Wen M (2019) Improved UAV opium poppy detection 
using an updated YOLOv3 model. Sensors 19(22):4851

 46. Wicaksono AS, Supianto AA (2018) Hyper parameter optimization using genetic algorithm on 
machine learning methods for online news popularity prediction. International Journal of Advanced 
Computer Science and Applications(IJACSA) 9(12)

http://www.ultralytics.com
https://cocodataset.org/#home
http://arxiv.org/abs/1809.03193
https://www.dahuasecurity.com/products/All-Products/Thermal-Cameras/Wizmind-Series/TPC-8-Series/TPC-PT8621C
https://www.dahuasecurity.com/products/All-Products/Thermal-Cameras/Wizmind-Series/TPC-8-Series/TPC-PT8621C
http://arxiv.org/abs/1902.07296
http://arxiv.org/abs/1902.09630


1 3

Operations Research Forum (2022) 3:60 Page 27 of 27 60

 47. Chawla S (2016) Application of genetic algorithm and backpropagation neural network for effective 
personalize web search-based on clustered query sessions. International Journal of Applied Evolu-
tionary Computation (IJAEC) 7(1):33–49

 48. Kingma DP, Ba JL (2014) A method for stochastic optimization. arXiv preprint arXiv:  1412. 6980
 49. Nicolai W, Bewley A, Paulus D (2017) Simple online and realtime tracking with a deep association 

metric. arXiv preprint arXiv:  1703. 07402
 50. Jiang N, Peng X, Yu X, Wang Q, Xing J, Li G, Zhao J, Guo G, Han Z (2021) Anti-UAV: a large 

multi-modal benchmark for UAV tracking. arXiv preprint arXiv:  2101. 08466
 51. Zhao J, Wang G, Li J, Jin L, Fan N, Wang M, Wang X, Yong T, Deng Y, Guo Y, Ge S, Guo G (2021) 

The 2nd Anti-UAV Workshop & Challenge: methods and results. arXiv preprint arXiv:  2108. 09909
 52. website Roboflow. PyTorch Object Detection, YOLOv5 is Here, https:// models. robofl ow. com/ 

object- detec tion/ yolov5 (Last Accessed on 03 Dec 2021)
 53. Yuxin F, Liao B, Wang X, Fang J, Qi J, Wu R, Niu J, Liu W (2021) You only look at one sequence: 

rethinking transformer in vision through object detection. arXiv preprint arXiv:  2106. 00666
 54. Adibhatla VA, Chih H-C, Hsu C-C, Cheng J, Abbod MF, Shieh J-S (2021) Applying deep learning to 

defect detection in printed circuit boards via a newest model of you-only-look-once. Math Biosci Eng 18
 55. Sahin O, Ozer S (2021) YOLODrone: improved YOLO architecture for object detection in drone images. 

In 2021 44th International Conference on Telecommunications and Signal Processing (TSP), pp. 361-365. 
IEEE

 56. ImageNet. ImageNet Large Scale Visual Recognition Challenge 2017 (ILSVRC2017). Available 
online: https:// image- net. org/ chall enges/ LSVRC/ 2017/ (Last Accessed on 22 Jul 2022)

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement and applicable law.

Authors and Affiliations

Tijeni Delleji1,2  · Feten Slimeni1 · Hedi Fekih1,2 · Achref Jarray1 · 
Wadi Boughanmi1 · Abdelaziz Kallel2 · Zied Chtourou1

 * Tijeni Delleji 
 tijeni_dalleji@yahoo.fr

 Feten Slimeni 
 feten.slimeni@gmail.com

 Hedi Fekih 
 fekihhedi2007@gmail.com

 Achref Jarray 
 yassinejarray312@gmail.com

 Wadi Boughanmi 
 Boughanmi.wadi@gmail.com

 Abdelaziz Kallel 
 abdelaziz.kallel@crns.rnrt.tn

 Zied Chtourou 
 ziedchtourou@gmail.com

1 Science and Technology for Defense Lab (STD), Military Research Center, Taeib Mhiri, 
Aouina 2045, Tunis, Tunisia

2 SM@RTS Laboratory, Digital Research Centre of Sfax, Tunis road km 10, El-Ons City 3021, 
Sfax, Tunisia

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1703.07402
http://arxiv.org/abs/2101.08466
http://arxiv.org/abs/2108.09909
https://models.roboflow.com/object-detection/yolov5
https://models.roboflow.com/object-detection/yolov5
http://arxiv.org/abs/2106.00666
https://image-net.org/challenges/LSVRC/2017/
http://orcid.org/0000-0003-1323-8520

	An Upgraded-YOLO with Object Augmentation: Mini-UAV Detection Under Low-Visibility Conditions by Improving Deep Neural Networks
	Abstract
	1 Introduction
	2 Related Work
	2.1 Overview of Low-Visibility Conditions in Aerial Perspective
	2.2 Issues in Object Detection
	2.3 Visualization of YOLOv5 Network Structure

	3 Method and Dataset
	3.1 Custom Air Image Dataset Construction
	3.1.1 Methodology of Collection
	3.1.2 Data Augmentation
	3.1.3 Object Augmentation Strategy

	3.2 Upgraded-YOLO for Mini-UAV Object Detection in Air Images
	3.2.1 Model Architecture
	3.2.2 The Loss Function


	4 Experimental Results and Evaluation
	4.1 Experimental Setting
	4.2 Evaluation Metrics for Mini-UAV Detection
	4.3 Results
	4.3.1 Parameters and Hyper-Parameters Optimization
	4.3.2 Experimental Analysis and Discussion


	5 Conclusion
	Acknowledgements 
	References


