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Abstract
Combinatorial applications such as configuration, transportation and resource allo-
cation often operate under highly dynamic and unpredictable environments. In this 
regard, one of the main challenges is to maintain a consistent solution anytime 
constraints are (dynamically) added. While many solvers have been developed to 
tackle these applications, they often work under idealized assumptions of environ-
mental stability. In order to address limitation, we propose a methodology, relying 
on nature-inspired techniques, for solving constraint problems when constraints are 
added dynamically. The choice for nature-inspired techniques is motivated by the 
fact that these are iterative algorithms, capable of maintaining a set of promising 
solutions, at each iteration. Our methodology takes advantage of these two proper-
ties, as follows. We first solve the initial constraint problem and save the final state 
(and the related population) after obtaining a consistent solution. This saved con-
text will then be used as a resume point for finding, in an incremental manner, new 
solutions to subsequent variants of the problem, anytime new constraints are added. 
More precisely, once a solution is found, we resume from the current state to search 
for a new one (if the old solution is no longer feasible), when new constraints are 
added. This can be seen as an optimization problem where we look for a new fea-
sible solution satisfying old and new constraints, while minimizing the differences 
with the solution of the previous problem, in sequence. This latter objective ensures 
to find the least disruptive solution, as this is very important in many applications 
including scheduling, planning and timetabling. Following on our proposed meth-
odology, we have developed the dynamic variant of several nature-inspired tech-
niques to tackle dynamic constraint problems. Constraint problems are represented 
using the well-known constraint satisfaction problem (CSP) paradigm. Dealing with 
constraint additions in a dynamic environment can then be expressed as a series of 
static CSPs, each resulting from a change in the previous one by adding new con-
straints. This sequence of CSPs is called the dynamic CSP (DCSP). To assess the 
performance of our proposed methodology, we conducted several experiments on 
randomly generated DCSP instances, following the RB model. The results of the 
experiments are reported and discussed.
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1 Introduction

1.1  Background

A constraint satisfaction problem (CSP) is a well-known framework for represent-
ing and solving discrete combinatorial problems [1]. Using the CSP paradigm, a 
problem under constraints is represented by a set of variables defined on finite and 
discrete domains, and a set of constraints restricting the values that the variables 
can simultaneously take. Checking for a consistent scenario to the problem will 
then consist of looking for a complete assignment of values to all the variables such 
that all the constraints are satisfied. Given that the CSP is an NP-complete problem, 
checking for its feasibility requires a backtrack search algorithm of exponential cost. 
In order to address this challenge in practice, constraint propagation has been pro-
posed to detect inconsistencies earlier, which will save time for the backtrack search 
algorithm. Note that metaheuristics have also been proposed to solve the CSP by 
trading running time for the quality of the solution returned. Indeed, while these 
techniques do not guarantee to return a complete solution, they can be a good alter-
native, especially for hard-to-solve problems.

1.2  Problem Statement and Motivations

One of the main challenges we face when solving a CSP is when the related prob-
lem needs to be solved in a dynamic environment. In this regard, constraints might 
be added or removed dynamically. This can be the case of interactive applications 
such as configuration systems, where requirements are added or removed by the user 
[2–4]. Constraint restriction and relaxation can also occur due to external events, 
such as a faulty machine in scheduling applications or a blocked road in transporta-
tion systems [5]. In the case of over-constrained CSPs, we might need to relax some 
of the constraints in order to establish the feasibility of problem.

In this paper, we focus on constraint addition (or restriction). Here, we define the 
related problem as an optimization one where we look for a new scenario satisfying 
the old and new constraints, while minimizing the differences between the new sce-
nario and the old feasible solution. This latter objective ensures to find the least dis-
ruptive solution, as this is very important in many applications as we stated earlier. 
In this regard, we define the dynamic CSP (DCSP) as a series of static CSPs, each 
resulting from a change in the previous one, as a result of adding new constraints. 
The goal, when solving a DCSP, is to maintain the consistency of the CSP every 
time constraints are added. In this regard, if a current solution needs to be updated 
in order to meet new constraints, then the related process should be performed in 
an incremental manner to reduce the time cost. In addition, in applications such as 
scheduling, timetabling or resource allocation, the revised solution should be as 
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close as possible to the old one, i.e., a new consistent configuration requiring mini-
mum changes from the previous one. For instance, if we need to reschedule hospital 
personnel, for instance, we should look for the least disruptive solution (the one with 
minimal changes) [6]. The same should apply for flights rescheduling, as a consid-
erable change in the assigned flights gates in an airport will have a large impact on 
passengers’ comfort and can increase the chances for missing flights.

In the past years, several attempts have been made to address these two objec-
tives. One of these works consists of constraint recording methods that record any 
constraint which can be deduced from the previous CSP (in sequence) and used in 
the new one [7, 8]. Local repair methods have been proposed and work through local 
modifications of the previous solution in order to obtain a new one [6, 7]. This basi-
cally consists in resuming the search in the neighborhood of the old solution. There 
is of course no guarantee in this case to find the new solution as the algorithm can be 
trapped in a local optimum. This challenge has been addressed through random walk 
strategies as well as looking for a good balance between a global and a local search 
through exploration and exploitation, as done in metaheuristics [9].

1.3  Our Contributions

Given the incremental nature of a DCSP, we propose a solving methodology that 
works as follows. After solving the initial CSP (the first one in the sequence of 
CSPs, forming the DCSP), we save the final state that leads to the obtention of the 
corresponding solution. This saved state will then be used as a resume point for find-
ing new solutions to subsequent CSPs, any time new constraints are added. More 
precisely, once a solution is found for a given CSP problem, we check if this latter is 
consistent with the new added constraints. If this is not the case, then we resume the 
search from the current saved state to search for the closed solution satisfying the 
old and new constraints.

The above strategy requires an algorithm that works in an iterative manner, 
to maintain the consistency of the problem anytime new constraints are added. 
Metaheuristics and especially nature-inspired techniques are iterative and there-
fore suited to implement our iterative approach. In addition, unlike stochastic local 
search (SLS) (the other metaheuristics approaches) [6], nature-inspired techniques 
maintain a set of potential solutions. Having this set of alternatives will make the 
dynamic process of looking for the next solution more efficient in terms of search 
time. Indeed, this process is performed by a strategy that looks for a good balance 
between exploitation and exploration. In this regard, we first apply more exploitation 
in order to find the solution locally (so it will be as close as possible to the previous 
solution). In case we are not successful, we start conducting more exploration until a 
new feasible scenario is found.

Following on this proposed methodology, we have developed the dynamic variant 
of several nature-inspired techniques and reported the details of each in Sects. 4 to 9.

To assess the performance of these techniques, in terms of running time and qual-
ity of the obtained solutions, we conducted several experiments on DCSP instances, 
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randomly generated using a modified version of the known RB model [10]. The 
results of the experiments are reported and discussed.

This paper is a continuation of previous works we conducted to solving DCSPs, 
respectively, using particle swarm optimization (PSO) [11] and discrete fireflies 
[12]. While the focus of these two papers is on particular nature-inspired techniques, 
we report in this submission a general methodology that we apply to different 
nature-inspired techniques.

2  Related Works

Over the past three decades, several research works for tackling DCSPs have been 
reported. All the methods proposed either rely on iterative local search methods or 
a dynamic variant of systematic search techniques. In [6], the authors proposed a 
repair-based approach to manage dynamic constraints. This approach relies on a 
local search method based on iterative deepening. The latter method explores the 
neighborhood of the initial solution in order to find the closest one satisfying the old 
and the new constraints. In [13], the authors report on a backtrack search method, 
called nogood recording, to deal with both static and dynamic CSPs. Here, the 
standard backtrack search algorithm has been adapted as follows. When the algo-
rithm reaches a solution in a leaf node that violates some of the constraints, it will 
be tagged as a nogood solution. Every time a nogood solution is built, it will be 
enhanced through different strategies like backjumping and constraint forbidding. In 
[8], the authors proposed an approach that reuses the solution of the initial CSP to 
solve the new one. The idea was motivated by the design of a scheduling system for 
a remote sensing satellite. The main goal here is to minimize the changes between 
the old and the new schedules. In [7], we investigated the applicability of system-
atic and approximation methods for dealing with dynamic temporal CSPs, where 
both numeric and symbolic temporal information are considered. The dynamic sys-
tematic search method relies on incremental constraint propagation. The latter is 
based on new dynamic arc and path consistency algorithms that we propose. The 
dynamic systematic search method has been compared to both genetic algorithms 
(GAs) and stochastic local search techniques. In both of these methods, when con-
straints are added, the neighboring areas of the previous solution are explored until 
a new solution is found or the maximum number of iterations is reached. Finally, in 
[14], a branch-and-bound method has been proposed to solve DCSPs with minimal 
perturbation.

While the above methods were successful in solving DCSPs with small and 
medium size, when the problem scales up, these techniques suffer from their expo-
nential time complexity (in the case of exact methods) or the fact of being trapped 
in local optimum (in the case of iterative local search). To address this challenge, 
we rely on nature-inspired techniques as they are more efficient in escaping local 
optimum, thanks to our proposed methodology including the right balance between 
exploration/exploitation, in addition to the fact of maintaining a set of promising 
potential solutions at each iteration.
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3  Proposed DCSPs Solving Methodology for Nature‑Inspired 
Techniques

3.1  CSP Definition

A CSP is a tuple (X, D, C) including a set of variables X = {X1,… ,Xn} , and their 
related domains, D = {D1,… ,Dn} , where each domain Di contains a finite set of 
possible values for variable Xi . The set of constraints C restricts the values that the 
variables can simultaneously take. A solution to a CSP is a complete assignment of 
values to all the variables such that all constraints are satisfied. Note that there might 
be one, many, or no solution to a given CSP [1]. A binary CSP is a CSP where all 
the constraints have arity less than or equal 2. While we consider CSPs where con-
straints can be of any arity, in the illustrative examples and experiments, we assume 
that CSPs are binary, where each constraint is defined in extension (defined as a 
subset of the Cartesian product of the domains of the involved variables) and has 
arity 2.

Table 1 lists a set of constraints for a given CSP with six variables defined on 
domain D = {1, 2, 3, 4, 5} . Note that, in this example, we represent each constraint 
with the list of ineligible tuples between the related pairs of variables.

3.2  CSP Representation in Nature‑Inspired Techniques

We represent a CSP potential solution (complete assignment of values to all the var-
iables) with a chromosome, as shown in Table 2. While “chromosome” is a term 
normally used for GAs, it corresponds to particles (individuals, fireflies, bees, … , 
etc.) in other nature-inspired techniques. In this regard, each of the nature-inspired 
techniques we present in the next sections will start the search with a set of (ran-
domly generated) particles.

We define the fitness function by the number of violated constraints implied by 
the related complete assignment (chromosome). For instance, the fitness function for 
the potential solution in Table 2 is equal to 2 as it violates two constraints listed in 

Table 1  CSP constraints: lists of 
ineligible tuples (X

�
,X

�
) (1,1) (1,2) (2,2) (3,1) (4,5)

(X
�
,X

�
) (1,1) (2,2) (3,4) (4,4) (1,3)

(X
�
,X

�
) (1,2) (5,1) (3,3) (3,2) (4,1)

(X
�
,X

�
) (2,2) (1,1) (1,5) (1,3) (2,4)

(X
�
,X

�
) (1,1) (1,2) (1,3) (2,4) (2,3)

(X
�
,X

�
) (1,1) (2,2) (2,3) (1,4) (1,5)

Table 2  Potential solution 
represented as a chromosome

Variables �
�

�
�

�
�

�
�

�
�

�
�

Chromosome 1 3 1 2 1 1

Page 5 of 33    28Operations Research Forum (2022) 3: 28



1 3

Table 1: 
(
X3,X4

)
 and 

(
X5,X6

)
 . A chromosome with fitness 0 corresponds to a consist-

ent solution.
To measure the similarity between two solutions, we use the Hamming distance 

which corresponds to the number of values that both solutions do not share. The 
Hamming distance between two solutions Si and Sj with n variables, dH(S1 , S2) , is 
calculated, as follows:

In particular, the Hamming distance between two identical solutions is equal to 0, 
while the Hamming distance between two solutions not having any value in com-
mon is equal to the number of variables, n.

3.3  DCSPs Solving Methodology

As stated before, a DCSP is a sequence of CSPs, CSP1,… ,CSPi,CSPi+1,… ,CSPn , 
where CSPi+1 is obtained by adding Cnew constraints to CSPi . More precisely, the set of 
constraints for CSPi+1 , Ci+1 = Ci

⋃
Cnew where Ci is the set of constraints of CSPi . To 

solve a DCSP using a given nature-inspired technique, we propose a methodology that 
relies on a good balance between exploration and exploitation, to maintain a consistent 
solution for each CSPi , with minimum perturbation. This is achieved using the follow-
ing two steps. 

1. Solve the initial CSP, CSP1 and save the last population that leads to a consistent 
solution, S1 . In addition to S1 , the population contains other individuals (elite 
particles) that can be used in case of a constraint restriction.

2. Solve the sequence of CSPs as follows. After solving CSPi , when adding a set of 
new constraints Cnew to CSPi , we first check if the solution to CSPi is still feasible 
for CSPi+1 . If this is not the case, then we resume from the last population that lead 
to the solution of Ci and start searching locally, through exploitation, for a new 
solution satisfying Ci+1 with minimum perturbation (the new solution should be 
as close as possible to the solution of CSPi ). In this regard, two fitness functions 
will be used: number of violated constraints (to ensure consistency) and similarity 
(enforced using the Hamming distance). We will rely here on elite particles that 
we saved from the previous state. If no new solution can be obtained, then we 
will start gradually performing more exploration until we get one satisfying the 
old and new constraints ( Ci+1 ), while meeting the distance objective.

In the following sections, we will describe how the above methodology applied in the 
case of each nature-inspired technique we consider.

(1)dH
(
Si, Sj

)
=

n∑
k=1

(Si,k ≠ Sj,k)
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4  Self‑Adaptive Discrete Firefly Algorithm (SADFA)

The firefly algorithm (FA) has been developed by [15] and is based on idealized 
behavior of fireflies flashing characteristics, according to the following three govern-
ing rules.

Gender: Fireflies are unisex meaning that they can be attracted to each other 
regardless of their gender.
Attractiveness: Each firefly is only attracted to the fireflies that are brighter than 
itself. The attractiveness is proportional to the brightness which attenuates over 
distance. The brightest firefly moves randomly.
Fitness function: The brightness of a firefly represents its solution quality and is 
calculated with a fitness function that is defined according to the problem being 
solved.

In order to tackle constraint satisfaction problems (CSPs), we developed the dis-
crete version of FA [16] that we call discrete FA (DFA). In this regard, we rede-
fined the distance, attractiveness, fireflies movement and the fitness function in order 
to consider discrete spaces. More precisely, we consider the Hamming distance 
(described earlier) and define the attractiveness parameter � as the probability of 
replacing the values assigned to some variables with the corresponding values of the 
better solution (according to the fitness function). � is here the parameter control-
ling the convergence rate of fireflies. Therefore, larger values of � will cause a faster 
convergence of the fireflies, often to a local optimum solution. In order to balance 
exploitation and exploration, the following solution diversification mutation opera-
tors are used: 

1. Random Resetting Mutation (RRM): RRM assigns random values to randomly 
chosen variables and is an appropriate method for problem spaces consisting of 
lists or strings of arbitrary elements like integer values. The main advantage of 
RRM is that every point in the problem space can be reached from any arbitrary 
solution in the problem space, which will increase diversity.

2. Scramble Mutation (SM): Here, a subset of contiguous variables are selected and 
their values are shuffled or scrambled randomly (assuming all variables have the 
same domain).

3. Inversion Mutation (IM): In this method, a randomly chosen sequence of values 
(corresponding to a partial assignment) is reversed end to end.

Table  3 shows how RRM, SM and IM mutations are, respectively, applied to the 
potential solution in Table 2.

In [17], we have proposed a dynamic version of DFA in order to get a new solu-
tion for a DCSP with minimal perturbation. The dynamic variant of DFA is called 
self-adaptive discrete firefly algorithm (SADFA) and works, in an incremental way, 
following our general methodology we presented previously. More precisely, when 
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new constraints are added to a given CSP, we first check if the current solution is 
still feasible. If it is not the case, then the � movement will search locally for the 
new solution that is the closest possible to the current one. The key point here is to 
use elite fireflies, i.e., those good fireflies that have been already discovered by the 
algorithm when looking for the current solution. These correspond to potential solu-
tions satisfying most of the constraints. In order to prevent the algorithm from being 
trapped in a local optimum, we control its progress trend and apply diversification 
anytime this situation is detected. This is performed by watching both the similar-
ity and the number of violated constraints during the search. In this regard, we use 
two controlling parameters that we call CPQ and CPS to detect if SADFA has been 
trapped in a local optimum. Using Eqs. 2 and 3, these two parameters monitor the 
progress of the algorithm over a given number of iterations (corresponding to the 
window size). If there is not enough progress, then the diversification rate (dr) of the 
algorithm will be increased.

In the above equations, IN is the current iteration number, WS is the window size, 
GBQ(i) is the quality of the global best solution at iteration i. GBS is the similarity 
between the global best solution at iteration i and the previous best solution. Here, 
the window size determines the number of iterations to be considered to determine 
if an acceptable progress has been made by the algorithm. If CPQ and CPS are less 
than the user-defined threshold values, dr is increased. Algorithm 1 lists the pseu-
docode of our diversification adjustment procedure according to the progress of the 
search algorithm.

StepSize, a number in [0,1), is the increasing or decreasing diversification rate of the 
algorithm. In our experiments, we consider StepSize = 0.05 . Diversification.Flag = 1 
indicates that dr is changing. When the progress of the algorithm is weak, the proce-
dure (as shown in Algorithm 1) starts to increase dr of the algorithm to help it escape 
the local optimum by producing diverse solutions. After escaping this trap, dr should 
return to normal to emphasize on the local search in order to maintain the similarity 
between the producing solutions and the previous solution found so far. Algorithm 2 
lists the pseudocode of SADFA. According to the progress rate of the algorithm, the 

(2)CPQ(IN) =

∑IN

i=IN−WS+1
�(GBQ(i) − GBQ(i − 1))�

WS

(3)CPS(IN) =

∑IN

i=IN−WS+1
�(GBS(i) − GBS(i − 1))�

WS

Table 3  A chromosome 
representing a potential solution

Variables �1 �2 �3 �4 �5 �6

Chromosome (S) 1 3 1 2 1 1
RRM (S) 1 5 1 3 1 1
SM (S) 3 1 2 1 1 1
IM (S) 1 2 1 3 1 1
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values of the controlling parameter of the mutation rate will change dynamically and 
this will help the algorithm to escape the local optimum traps. The potential solutions 
achieved by the elite fireflies, we mentioned earlier, have high degree of similarity to 
the best solution, and the key idea is to search the neighboring areas of those solutions, 
unless a higher rate of diversification is required. 

Since both fitness functions (number of constraints violations and similarity) are 
equally important and not conflicting, we consider the same weight for both when 
deciding on the diversification rate. As we can see in Algorithm 2, at each iteration, the 
global best is updated according to these two fitness functions.

5  Discrete Particle Swarm Optimization (DPSO)

Particle swarm optimization (PSO) is a nature-inspired swarm-based optimization 
algorithms following the collective intelligent behavior of systems like fish schooling 
and birds flocking [18, 19]. In PSO, every particle position is influenced by its own best 
position, pbest, as well as the best position made by other particles so far, gbest. Every 
particle position represents a potential solution for the given optimization problem and 
a set of particles form a swarm which moves throughout the problem spaces. The posi-
tion of particle i is represented by a vector Xi = (xi1,… , xid) . Particle i moves accord-
ing to its velocity defined as a vector Vi = (vi1,… , vid) . At each time step, velocities 
and positions of particles are updated according to Eqs. 4 and 5:

Here, n is the number of particles, w is the inertial weight, Vt
i
 is the velocity of par-

ticle i at iteration (time step) t, c1, c2 are acceleration coefficients, r1, r2 are random 

(4)Vt+1
i

= w × Vt
i
+ c1r1 × (pbestt

i
− Xt

i
) + c2r2 × (gbestt

i
− Xt

i
)

(5)Xt+1
i

= Xt
i
+ Vt+1

i
, i = 1,… , n
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values in [0,1], pbestt
i
 is particle i best achievement so far, Xt

i
 is the position of parti-

cle i at iteration t and gbestt
i
 is the best achievement of all particles so far.

To convert the continuous PSO to a discrete one (that we call discrete PSO or 
DPSO), we have defined the operators, × , + and −, listed in Eqs. 4 and 5. In this 
regard, we have proposed new operators, ⊗ , ⊕ and ⊖ , as shown in the new equa-
tions for discrete PSOs: 6 and 7 [11].

(6)
Vt+1
i

= w⊗ Vt
i

���
exploration

⊕ c1r1 ⊗ (pbestt
i
⊖ Xt

i
) ⊕ c2r2 ⊗ (gbestt

i
⊖ Xt

i
)

���������������������������������������������������������������������
exploitation

(7)Xt+1
i

= Xt
i
⊕ Vt+1

i
, i = 1,… , n
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As stated in Eq.  6, exploitation and exploration strategies are controlled by 
three controlling parameters, w, c1 and c2 . A high value of w encourages explora-
tion, while a low value encourages exploitation of the algorithm [20]. Similarly, 
low values of c1 and c2 allow the particles to stray from the promising areas trying 
to discover more quality solutions, while high values of c1 and c2 result in mov-
ing toward pbest and gbest. In DPSO, and using the operator ⊗ , w determines the 
percentage of the variable values that will be passed from Vti to Vt+1

i
 . The rest of 

Vt+1
i

 values will be generated randomly. Table 4 reflects this process in a concrete 
example.

Similarly, c1r1 and c2r2 correspond to the percentage of values to keep from 
(pbestt

i
⊖ Xt

i
) and (gbestt

i
⊖ Xt

i
) , respectively. This operation is again enforced 

through ⊗ . The operator ⊖ allows the selection of the values that are in pbestt
i
 

(respectively gbestt
i
 ) and not in Xt

i
 ( ⊖ can be seen as a set difference operation). 

Table 5 reflects this process on a concrete example. The new position of particle 
i, Xt+1

i
 , is computed according to Eq. 7.

To solve a DCSP, we follow our general methodology presented in the Intro-
duction section and rely on a good balance between exploration and exploitation 
with minimum perturbation, as described in [11]. 

Table 4  w effect on Vt
i Vti 4 3 2 5 1 3 4 5 5 4

w = 0.4 ↓ ↓ ↓ ↓

w⊗ Vti 2 1 2 5 3 3 4 2 4 4

Page 11 of 33    28Operations Research Forum (2022) 3: 28



1 3

6  Discrete Focus Group Optimization Algorithm (DFGOA)

FGOA is a new metaheuristic algorithm proposed in [21] for optimization prob-
lems. This algorithm is inspired by the collaborative behavior of a group’s mem-
bers sharing their ideas on a given subject.

In [22], we have proposed a discrete version of FGOA that we call DFGOA. We 
define the impact factor parameter for each potential solution based on its quality as 
shown in Eq. 8.

IF(i) is the impact factor of participant i which will take an important role in the next 
steps to affect the other participants’ solutions, IFt+1(i) is the new impact factor of par-
ticipant i, nPop is the population size, Nvar is the number of variables of the problem, 
rand() generates a random number in (0,1) and F(Si) and F(Sj) are the fitness values 
for solutions i and j, respectively. IC(j), the impact coefficient, is a random number in 
(0,1) and is assigned to each solution. In this regard, a set of nPop random numbers is 
generated and based on the qualities of solutions are assigned to each solution. (The 
higher quality a solution has, the larger the value will be assigned to.)

Table 6 illustrates the process for a minimization problem for a set of given solutions 
with associated qualities.

In a discrete problem space, affecting a solution can be interpreted as replacing its 
variables’ values with the corresponding variables’ values of the better solution with an 
appropriate probability, in order to avoid the immature convergence of the algorithm. In 
our proposed algorithm, this replacement is done by considering IF() as the probability 
of this replacement. We normalize the impact factor between 0 and 1 according to (9).

(8)IFt+1(i) = IFt(i) +

nPop∑
j=1

rand() × (|F(S(i)) − F(S(j)|) × IC(j)

Nvar

m

(9)IF(i)Normalized = 1 −
F(s(i)) − F(Best solution)

F(Worst solution) − F(Best solution)

Table 5  c1r1 effect on Xt
i

pbestt
i

4 3 2 5 1 3 4 5 5 4
Xt
i

2 3 1 5 1 4 2 3 5 2
pbestt

i
⊖ Xt

i
4 2 3 4 5 4

c1r1 = 0.5 ↓ ↓ ↓

c1r1 ⊗ (pbestt
i
⊖ Xt

i
) 2 3 2 5 1 4 4 5 5 2

Table 6  Assignment of impact 
coefficient IC(i) to each solution 
for a given instance problem

S1 S2 S3 S4 S5 S6 S7 S8

F(S(i)) 21 20 18 14 10 7 8 2
Generated 

Random 
values

0.71 0.51 0.07 0.18 0.40 0.59 0.24 0.14

IC(i) 0.18 0.21 0.24 0.40 0.51 0.63 0.59 0.71
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Here, F(Best solution) and F(Worst solution) are the expected qualities of the best and 
the worst solutions. In fact, the larger IF(i) is, the more chance participant i ( Si ) has 
to impact the other participant’ solutions. This replacement is done according to (10).

Rep(Si, Sj) is the replacement equation, and rnd is a random number in (0,1). Table 7 
indicates the steps through which S2 is being affected by S1 . According to this figure, 
the corresponding variables in two solutions with equal values remain unchanged. 
However, the other variables’ values of S2 are replaced with probability IF(13) = 0.3 
by the corresponding variables’ values of S1.

At the first, second and fourth steps above, the variables’ values of S2 remained 
unchanged. However, in the third and fifth steps S2 variables’ values are replaced by 
those of S1 , resulting in S2 = [3 1 2 4 2 1].

In the proposed method, we use a controlling parameter called CP to detect if the 
FGOA has been trapped in local optima solutions. In the case that an algorithm has 
been trapped in local optima solutions it cannot make further improvements. This 
parameter through (1) monitors the progress trend of the algorithm and if for some 
iterations not enough progress has been made by the algorithm, this parameter ena-
bles a randomization method to diversify the solutions.

IN is the current iteration number, WS is the window size, and GB(i) is the global 
best solution in iteration i. Here, window size determines the number of iterations 
to be considered to determine if an acceptable progress has been made by the algo-
rithm. If CP is less than the user-defined threshold value, the algorithm activates a 
new randomization method called IF Randomization (IFR).

We have employed the IF Randomization method for diversifying the solutions. 
According to this method, based on the impact factor (IF) of a solution, a variable value 
of a given solution is replaced with another value which is randomly chosen from its 

(10)Rep(Si, Sj) =

⎧
⎪⎨⎪⎩

Sj(k) ← Si(k)

if Sj(k) ≠ Si(k)

and rnd < IF(I)

(11)CP =

∑IN

i=IN−WS
(GB(i) − GB(i − 1))

WS

Table 7  Steps showing how 
participant 2 ( S2 ) is affected by 
participant [22] 1 ( S1)

�
�

�
�

�
�

�
�

�
�

�
�

S1 ∶ 1 3 2 4 1 1
S2: 3 1 3 4 2 3
S1 → S2

1st step → 3 4
2nd step → 3 1 4

3rd step → 3 1 2 4

4th step → 3 1 2 4 2

5th step → 3 1 2 4 2 1
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domain with probability (1 − IF)2 (as shown in Table  8). The probability (1 − IF)2 
causes higher-quality solutions to be subject to less changes in their variables values.

Algorithm 5 lists the pseudocode of the proposed DFGOA for solving DCSPs. 
Here, the window size and threshold value determine the sensibility of the algorithm 
to stagnation of the algorithm. In fact, these two parameters control the probabil-
ity of applying IF randomization to the solutions. By initializing these parameters 
appropriately, the emphasis of DFOGA will be on exploitation first and then explo-
ration, as described in our general solving methodology. 

7  Dynamic Harmony Search (DHS) Algorithm

The harmony search (HS) optimization algorithm is a population-based metaheuris-
tic algorithm which was developed by Geem et al. in 2001 [23] based on improvi-
sation process of jazz musicians. Improvisation process stands for the attempt of 
a musician to find the best harmony that can be achieved in practice [24]. Three 
options can be considered when a skilled musician aims at improvising on a music 
instrument, a) to play a memorized piece of music exactly, b) to play a piece similar 
to what he/she has in their memory and c) to play newly composed notes [15].

These three options were considered by the Geem as the main components of 
the HS algorithm which were introduced as harmony memory, pitch adjustment and 
random search to the algorithm [15].

The harmony memory has a valuable role in HS algorithm and that is to ensure that 
good harmonies are considered when generating new solutions. This component is 
controlled by a parameter called harmony memory considering rate, HMCR ∈ [0, 1] . 
In fact, this parameter determines the ratio of considering elite solutions (harmonies) in 
generating a new solution. If this parameter is set to a small value, the algorithm con-
siders a small number of elite solutions; therefore, it converges to the optimal solution 
too slowly. On the other hand, if it set to a large value, the emphasis of the algorithm 
will be on using the solutions in the memory and therefore other good solutions are not 
explored. This does not lead to discovering better solutions.

The next component is pitch adjustment, which has the same application as the 
mutation operator in genetic algorithms, is stated as follows:

(12)Xnew = Xold + BW ∗ �
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Here, Xold is the solution (pitch) in the memory, BW is the bandwidth, � is 
a random value in (0,1) and Xnew is the new solution. This component gener-
ates solutions slightly different from those in the memory by adding small 
random values to the solutions in memory. The degree of pitch adjustment can 
be controlled by pitch adjustment rate parameter PAR. The low value of PAR 
together with the small value of BW can reduce the exploration which results 
in discovering a portion of the problem space instead of the whole problem 
space.

The third component of the HS algorithm is randomization. The main role 
of this component is to encourage the diversity of the solutions. Randomi-
zation ensures that all regions of the problem space are accessible by the 
algorithm.

7.1  Harmony Search Algorithm for CSPs

The HS algorithm was developed to tackle continuous optimization problems. In 
order to deal with CSPs which is a discrete problem, HS features must be changed 
to suit the discrete problem spaces. The steps of converting the HS algorithm to 
its discrete version are discussed below. At the initialization step, the algorithm 
randomly generates HMS (harmony search size) solutions as the initial popula-
tion. In this step, potential solutions are generated by assigning random values 
(from the variables domains) to CSP variables.

The next step is to redefine the pitch adjustment equation presented in Eq. 12. 
The new definition of the pitch adjustment is presented in Eq. 13:

(13)Xnew = (BW ⊙ 𝜖)⊗ Xold

Table 8  Process of 
diversification of a solution 
considering probability (1 − IF)2

�
�

�
�

�
�

�
�

�
�

�
�

S1 1 3 2 4 1 1
Select variables 

with probabil-
ity (1 − IF)2 ∶

? ↓ ↓ ? ? ↓

Choose new val-
ues for selected 
variables:

4 3 2 2 3 1
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Through pitch adjustment, slight changes by adding small random values are made 
in the current solution in order to improve it. The new definition of the pitch adjust-
ment component has the same impact on the current solutions. Through the new 
definition, the variables’ values of the current solution will be replaced by randomly 
picking values from variables’ domain in the hope to improve the current solution. 
In Eq. 13, we defined ⊙ and ⊗ as follows. ⊙ is the multiplier and BW ⊙ 𝜖 is a prob-
ability value in (0,1). In fact, this latter term determines the probability of replacing 
the variables’ values of Xold with new values picked up randomly from variables 
domain. ⊗ applies these changes to Xold . Figure 1 shows this operation through an 
example. Here, BW ⊙ 𝜖 is equal to 0.6 which corresponds to 60% replacement of 
values.

The last component is randomization that encourages diversity of the solutions. 
This will ensure that a larger search space will be considered by the algorithm. To 
boost the diversity of the solutions, we employ the GA mutation operator. In this 
regard, different mutation operators have been developed so far, including the fol-
lowing three that we presented in Section 4: Random resetting mutation (RRM), 
scramble mutation (SM) and inversion mutation (IM).

7.2  DHS for DCSPs

Our solving method consists of taking advantage of the exploitation and explo-
ration features of the HS algorithm. These two features are controlled by PAR 
and HMCR. High values of HMCR and PAR encourage exploration, and low val-
ues will favor exploitation [15]. By initializing these parameters appropriately, 
we will get a suitable strategy (with minimum perturbation) for the HS algo-
rithm to efficiently solve DCSPs. In this regard, we consider our general solving 
methodology.

Since both objectives are equally important and not conflicting, we consider the 
same weight for both when deciding on the diversification rate. Algorithm 6 pre-
sents the pseudocode of our proposed DHS method. The algorithm first starts with 
the generation of HMS potential solutions (harmonies) and stores them in a har-
mony memory (HM). These harmonies are then evaluated (according to their num-
ber of violated constraints and their distance to the old solution). The global best 
solution is then identified. The algorithm then performs a series of iterations where 
new harmonies are generated and altered (following the exploration and exploita-
tion strategies). The global best and the set of harmonies are then updated. The 

Fig. 1  Application of 
(BW ⊙ 𝜖)⊗ X

old
 to a given 

individual
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most challenging issue here is to sort the potential solutions since their qualities 
are assessed based on the two objectives. To do so, we propose an aggregation of 
the number of violated constraints and the distance to the best solution that can be 
achieved.

8  Bee Colony for DCSPs

8.1   Artificial Bee Colony Algorithm

The artificial bee colony (ABC) optimization algorithm, proposed by Karaboga 
[25], is a population-based optimization algorithm which simulates the forag-
ing behavior of real bee colonies in the nature. Agents of the ABC algorithm are 
divided into three class of bees, recruited bees, onlooker bees and scout bees, and 
each class of bees shoulders responsibilities [26]. Recruited bees search the food 
sources around the location they have in their memories and keep the onlooker 
bees updated about the quality of the food sources they are visiting. Onlooker bees 
based on the information they are receiving from recruited bees select the new 
food sources (the higher-quality ones) and also search around the selected food 
sources in the hope of discovering new and more quality food sources. Scout bees 
are recruited bees that abandoned their food source in order to discover new food 
sources [25].

In the initialization step, SN number of food sources are generated according to 
Eq. (14):

where Xi is the food source i, Xmin,j and Xmax,j are lower and upper bounds of the 
dimension j ( j = 1,… , n ). Each food source is assigned to a recruited bee, and it 
then generates a new food source in its neighborhood using Eq. (15):

�i,j is a random value in [−1, 1] which controls the step size of the algorithm. The 
large value of ∅ will result in a large difference between the previous solution and 
the current one. In this situation, there is possibility that the algorithm loses the right 
path to the optimal solution. On the other hand, the small step size will result in 
immature convergence. In other words, the exploration and exploitation balance of 
the algorithm is controlled by ∅ . k ≠ i ∈ {1,… , SN} which is chosen randomly. Vi 
then will be evaluated and compared to the Xi , if it is of higher quality than it, Xi 
will be replaced by it. 

(14)xi,j = xmin,j + Rand(0, 1)(xmax,j − xmin,j)

(15)vi,j = xi,j + �i,j(xi,j − xk,j)
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When the recruited bees finished their search, they share the information about 
the location of their food sources and their nectar amounts with the onlooker bees by 
performing special dance in the dance area in their colony. Onlooker bees then assess 
the quality of the food sources based on the information that was passed to them 
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by the recruited bees and then with a probability related to the quality of the food 
sources choose food source sites [25]. For probabilistic selection, different functions 
can be considered; the most well-known of them are Roulette wheels, ranking-based 
and tournament selections. In this work, we use Roulette wheel selection which is 
expressed based on the fitness of the food sources (solutions) as follows:

fi is the fitness value of food source i.
Based on the evaluated p

i
and the information taken from the recruited bees, an 

onlooker bee selects its food source. The onlooker bee explores its neighboring 
areas using Eq. 2 in order to find a better solution. It then will replace its solution 
with a better discovered solution.

When a food source Xi cannot be further improved through a defined number of 
trials, the corresponding recruited bee abandons the food source. This bee is now 
known as scout and following Eq. (17) randomly searches for another food source.

8.2   Discrete ABC for CSPs

To convert the continuous ABC algorithm to a discrete one, all the features of the 
ABC algorithm including all the equations must be redefined, so they suit the defini-
tion of the discrete problems like CSPs.

The initial population of bees is generated by assigning the random values from 
variables’ domain to the variables of the solutions. The solutions here are repre-
sented as chromosome of variables. After the generated solutions were assigned 
to recruited bees, they try to locally improve the solutions by searching neighbor-
ing areas of their solutions (food sources). To do so, we need to redefine the Vi as 
follows:

where

Here, we need to define our new operators ⊗ and ⊖ . The idea is that the algorithm 
randomly selects a food source site K for each recruited bee in their neighborhood. 
Then, the recruited bees need to move toward that new site. In discrete problem, 
spaces moving from one solution to another means to share more identical values 
with that solution. Operator ⊖ identifies the variables of the first solution that have 

(16)pi =
fi∑NS

j=1
fj

(17)xi,j = xmin,j + Rand(0, 1)(xmax,j − xmin,j)

(18)vi,j = w⊗ (xi,j ⊖ (⋎i))

(19)⋎i,j = �i,j ⊗ (xi,j ⊖ xk,j)
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different values from the one the bee is going to move toward. After identifying the 
variables with different values, their values will be replaced by the corresponding 
variables’ values of solution XK with the probability �i,j (a value in (0,1)). The appli-
cation of ⊗ is to replace the variables’ values of Xi with XK considering the replace-
ment probability �i . Figure 2, with an example, shows the procedure of calculating 
⋎i = �i,j

⨂
(xi,j ⊖ xk,j) . And then ⊖ compares xi,j and ⋎i to identify the different vari-

ables. Then, ⊖ compares xi,j and ⋎i to identify the different variables.
When the differences have been identified, those variables of xi,j will be 

replaced by corresponding variables’ values of ⋎i with probability w . Figure  3 
shows the procedure for w = 0.5.

The quality of the solutions is evaluated based on the number of violated con-
straints. The less constraints a solution violates, the more quality that solution 
is. Vi then will be assessed using defined fitness function. If it has higher quality 
than Xi, it will replace it. The improvement in developing every food site is moni-
tored using parameter C. If for defined number of trials, the expected improve-
ment has not been achieved, the algorithm replaces that site with a randomly gen-
erated site (solution).

8.3   Discrete ABC (DABC) for DCSPs

As discussed earlier, the exploitation and exploration features of the ABC algo-
rithm are controlled by ∅ . From previous discussion, we know that the high 
value of ∅ encourages the exploration and the low value encourages the exploi-
tation of the algorithm [27]. Although ∅ is a random parameter which cannot 
be set manually, we can still control it by determining the right intervals to 
meet the problem requirements. By initializing this parameter appropriately, 
exploitation will be emphasized first, followed by exploration, as per our solv-
ing methodology.

Algorithm 7 presents the pseudocode of DABC. 

Fig. 2  An example of calculat-
ing ⋎i = �i,j

⨂
(xi,j ⊖ xk,j)

Fig. 3  An example of calculat-
ing w

⨂
(xi,j ⊖ xk,j)
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9  Discrete Mushroom Reproduction Optimization (DMRO)

In [28], we introduced a new nature-inspired optimization algorithm, namely mush-
room reproduction optimization (MRO) inspired and motivated by the reproduc-
tion and growth mechanisms of mushrooms in nature. MRO follows the process of 
discovering rich areas (containing good living conditions) by spores to grow and 
develop their own colonies. In fact, this algorithm mimics the way mushrooms 
reproduce and migrate to rich areas with adequate nourishment, moisture and light. 
The reproduction model is twofold: a) producing spores and b) distributing them 
randomly in the environment. This reproduction mechanism leads to bigger mush-
room colonies located in different regions with suitable living conditions. The 
searching agents are parent mushrooms and spores. The transporter mechanism is 
the artificial wind that stochastically distributes spores in different locations of the 
problem space. The probability of developing colonies in rich areas is higher than 
poor areas. In fact, rich areas are those containing high-quality solutions and prob-
ably the optimal one. In the initial phase, a mature mushroom (the parent), located 
in the problem space, distributes spores throughout the problem space. If no wind is 
blowing and the living conditions in the neighboring area are good, then upon land-
ing, spores germinate and grow (local search).

Equation (20) calculates the new location of spore j of colony (parent mushroom) 
i (Xi,j ). Here, Xparent

i
 is the location of the parent i and Rand(0,1) generates a ran-

dom number in (0,1). However, if the wind is blowing, spores are moved to different 
parts of the problem space and land in new locations. Next, spores grow and become 
mature mushrooms. Eqs. (21) and (22) present the movement of the spores induced 
by wind.

Here, X∗
i
 and X∗

k
 are the parent solutions of the colonies i and k, Ave(i) is the average 

of solutions quality of colony i, Tave is the total average of all colonies, Rand(−�, �) 
is a vector that determines direction movement of the wind, rs ∈ (0, 1) is the size of 
random step and Rand(−r, r) is the random movement of the spores to their neigh-
boring areas with radius r.

This searching process of production and distribution is repeated, and some 
spores will ultimately find the richest area. In the final phase, the main operation, 
consequently the colony expands locally and quickly. This will result in finding the 
optimal solution.

The initial version of MRO, described above, was introduced to tackle continues 
optimization problems [28]. To apply it to discrete optimization problems, such as 

(20)Xi,j = X
parent

i
+ Rand(0, 1)

(21)Xi,j = X
parent

i
+Movewind

j

(22)
Movewind

j
= (X∗

i
− X∗

k
) ×

(
Ave(i)

Tave

)m

× Rand(−�, �) × rs + Rand(−r, r)
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CSPs, the features of the algorithm must be converted to discrete features to be able 
to deal with a discrete problem space which is the space of all possible combinations 
of variables values. The steps that must be taken to convert continuous MRO to dis-
crete MRO are discussed below.

The initial population of the MRO is generated randomly by assigning randomly 
chosen values from a given CSP variables’ domain to variables of the initial solu-
tions. Two main features of the MRO are local movement which its role is to locally 
extend the colonies in order to make a local improvement in the solutions of a col-
ony and the second feature is the global movement of the spores (migration of the 
spores) induced by wind.

According to the mushrooms’ life cycle studies, mushroom colonies are more 
likely to be found in the regions that have good living condition for mushrooms. 
Once a spore found such region, it then begins to locally extend its colony by 
distributing its spores in the neighboring areas of its colony. Local extension 
of a mushroom colony was discussed in [28]; however, to fit the definition of 
CSPs, a redefined version of the local movement is required. In a CSP, the 
search space consists of all combination of values in the form of chromosomes 
(potential solutions). A local movement of a solution (spore in MRO) corre-
sponds to making a slight change in a variable value. This basically corresponds 
to moving toward the surrounding areas of a solution with radius r, as shown in 
Algorithm 8. 

The second main feature is the global movement induced by wind. Mature 
mushrooms generate spores and distribute them by wind through the environ-
ment. The wind has stochastic and unpredictable features like direction and 
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speed. Therefore, spores will be distributed stochastically throughout the 
problem space. Many spores are distributed through the environment, but 
those regions with better living conditions have more chance to host the big-
ger mushroom colonies. In fact, spores move everywhere and those reach-
ing regions with good living conditions begin to germinate and extend their 
colonies. The quality of a region is represented by the average of the quality 
of its solutions (mushrooms). The global movement is defined as shown in 
Algorithm 9.

As described in Algorithm  9, the position of a new spore is determined based 
on the location of its parent, the quality of the other regions, as well as the ran-
dom movement of spores (given that they are light, spores can move unpredicta-
bly towards different directions). The parameter rs (size of random step) controls 
the ratio of influencing a solution by other solutions. A higher value of rs together 
with a lower value of RV (number of random variables) will allow a solution to 
move rapidly toward other solutions and converge to them, while a lower value of 
rs together with a higher value of RV will increase the chance of discovering new 
regions. In other words, this process corresponds to exploitation versus exploration 
strategies, controlled by rs and RV. A high value of rs and low value of RV encour-
age exploitation, while the opposite will encourage exploration. When solving a 
DCSP, our DMRO applies exploitation and exploration, as described in our general 
methodology. 

Page 25 of 33    28Operations Research Forum (2022) 3: 28



1 3

Algorithm 10 presents the discrete MRO for tackling DCSPs. At each iteration, 
the global best is updated according to these two objectives.

10  Experimentation

10.1  Experimentation Environment and Problem Instances

In this section, we report on the experiments we conducted in order to assess the 
performance of the nature-inspired techniques we have presented, for solving DCSP 
instances, randomly generated using a variant of the RB model [10]. The RB model 
has the ability to generate hard-to-solve instances (those near the phase transi-
tion). As discussed before, a DCSP can be seen as a sequence of static CSPs, each 
obtained from the previous one by adding a set of new constraints. In this regard, we 
generate two instances for each random DCSP. The first one is simply a static CSP 
instance. The second one is obtained by adding a set of new constraints to the initial 
instance, such that we will end up with nv constraint violations of the solution to the 
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initial CSP. We also make sure that the distance between the new solution and the 
old one is equal to nv. Note that nv is set to 8 in our experiments. In this regard, if nv 
constraints need to be added in a dynamic way to produce nv violations, we proceed 
as follows. Starting from the initial randomly generated CSP, we remove nv con-
straints in order to produce the static CSP instance. These removed constraints will 
be added incrementally to the second instance. This will guarantee the consistency 
of the second instance.

Each CSP instance is generated as follows using the parameters n, p, � and r 
where n is the number of variables, p(0 < p < 1) is the constraint tightness (the 
number of incompatible tuples over the Cartesian product of the two involved vari-
ables domains), and r and � ( 0 < r , 𝛼 < 1 ) are two positive constants used by the 
model RB [10]. 

1. Select t = r × n × ln n distinct random constraints. Each random constraint is 
formed by selecting 2 of n variables (without repetition).

2. For each constraint, we uniformly select q = p × d2 distinct incompatible pairs 
of values, where d = n� is the domain size of each variable.

3. All the variables have the same domain corresponding to the first d natural num-
bers ( 0,… , d − 1).

According to [10], the phase transition Pcr is calculated as follows: Pcr = 1 − e−�∕r . 
In theory, solvable problems are those with a tightness p < Pcr . Given that the phase 
transition is 0.7, we generate CSPs (having 100 and 200 variables) with a tightness 
between 0.3 and 0.7. The consistency of each generated instance is confirmed in 
practice, using an exact method (backtrack search algorithm).

All methods, used in these comparative experiments, have been implemented 
using MATLAB R2013b. In addition to the nature-inspired techniques we described 
in this paper, we have also implemented a dynamic variant (following our general 
methodology) of the genetic algorithm we proposed in [29] for solving CSPs. The 
population size of each method is fixed to 50. For ABC, the number of employed 
bees and onlooker beers is 50. The other controlling parameters of the algorithms 
are tuned to their best.

All experiments have been performed on a PC with Intel Core i7-6700K 4.00 
GHz processor and 32GB of RAM.

The results of the experiments are reported in terms of running time (RT) in 
seconds, number of violated constraints (NVC), success rate (SR) and number of 
constraint checks (NCC). Each experiment is conducted five times, and the average 
result (one of the above parameters) is returned.

10.2  Results Regarding the First Instance

Figure 4 indicates the convergence trends of the proposed methods to the solutions 
of the instances. The left and right charts correspond to CSPs with 100 and 200 
variables, respectively. The tightness is set to 0.6 which corresponds to the hardest 
problems to solve. As we see in all the experiments, the proposed algorithms were 
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successful in finding the solution; however, different methods reveal different behav-
iors in terms of the required number of iterations to reach the solution. In the case 
of 100 variables, DFGOA, SADFA and DMRO were able to converge toward the 
optimal solution after 20 iterations, where it took a bit longer for the other methods. 
For 200 variables, SADFA is the winner, followed with GAs.

10.2.1  Results regarding the second instance

Figure 5 shows the convergence trends in terms of minimum distance (left charts) 
and number of violated constraints (right charts) when solving CSP instances with 
200 variables, and with tightness 0.4 (top charts), 0.55 (middle charts) and 0.6 (bot-
tom charts). In all charts, we can easily see how each nature-inspired technique suc-
cessfully minimizes both objectives. The number of constraints violations actually 
reaches 0 by all the methods, as we can see in the left charts (which corresponds to 
completely solving the corresponding instance). As for the quality of the solution 
returned (distance to the optimal), all methods were able to return a near-to-optimal 
distance of 10 (optimal is 8).

Note that the tests reported in Fig. 5 only consider the number of iterations as 
a comparative parameter, for reaching the optimal solution. In order to see how 
does this number translate into the actual running time needed by each method to 
return the solution, we report in Table 9 the detailed results in terms of running time 
(RT), number of violated constraints (NVC), number of constraint checks (NCC) 
and quality of the returned solution. The latter (similarity or Sim.) is measured as 
the percentage of similar values to the optimal solution (100% corresponds to the 
optimal solution). CSP instances have 200 variables, with a tightness value ranging 
between 0.3 and 0.6. As noticed in the table, all the methods were successful again 
here to return a consistent solution (corresponding to 0 violated constraints). A 

Fig. 4  Convergence trend in number of violated constraints for 100 vars (left chart) and 200 vars (right 
chart)
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near-to-optimal solution (88% to 90%) is also obtained by all the techniques. There 
is, however, a noticeable difference in terms of running time, especially when the 
tightness is equal to 0.6 (which corresponds to the hardest problems to solve). In this 
regard, FGOA and ABC are the best methods in both running time and quality of 
the solution returned (similarity to the previous one), with HS coming next. We con-
ducted further experiments with 300 variables, and the results are listed in Table 10. 
Here again, FGOA and ABC show the best results, followed by HS and DPSO.

Fig. 5  Convergence trend in NVC (left chart) and distance (right chart)
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Mouhoub [7]
Note that we have implemented an exact method based on backtrack search and 

constraint propagation, as reported in [7]. This exact method has then been used 
to conduct the experiments reported in this section. Overall, the exact method per-
formed poorly (especially for high tightness values) in comparison with the results 
reported in Table 9. In the case of 300 variables (reported in Table 10), the exact 
method was not even able to find a consistent solution within the time allocated for 
the nature-inspired techniques.

Table 9  Comparative test results for CSP instances with 200 variables

Tightness 0.3 0.35 0.4 0.45 0.5 0.55 0.6

MRO RT 125.71 217.40 223.14 308.49 305.11 373.07 439.29
NVC 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NCC 8.94E+07 1.53E+08 1.54E+08 2.27E+08 2.11E+08 2.66E+08 3.23E+08
Sim. 0.88 0.89 0.89 0.89 0.88 0.89 0.89

FG RT 224.99 226.31 232.22 247.64 257.87 247.55 274.07
NVC 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NCC 1.47E+08 1.42E+08 1.48E+08 1.55E+08 1.77E+08 1.57E+08 1.92E+08
Sim. 0.90 0.90 0.89 0.90 0.88 0.89 0.89

GA RT 210.43 205.45 236.04 236.94 257.11 266.11 322.65
NVC 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NCC 1.46E+08 1.52E+08 1.75E+08 1.67E+08 1.71E+08 1.93E+08 2.37E+08
Sim. 0.89 0.90 0.89 0.89 0.90 0.89 0.89

HS RT 198.55 218.65 225.78 244.03 253.20 253.40 289.74
NVC 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NCC 1.07E+08 1.19E+08 1.23E+08 1.28E+08 1.29E+08 1.36E+08 1.61E+08
Sim. 0.90 0.88 0.89 0.90 0.88 0.90 0.90

FA RT 206.66 207.15 221.53 210.60 220.04 298.45 349.01
NVC 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NCC 1.55E+08 1.55E+08 1.56E+08 1.49E+08 1.52E+08 2.20E+08 2.57E+08
Sim. 0.89 0.89 0.89 0.89 0.89 0.89 0.87

PSO RT 208.67 234.60 235.22 295.14 298.49 297.79 312.74
NVC 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NCC 1.07E+08 1.22E+08 1.22E+08 1.58E+08 1.61E+08 1.62E+08 1.70E+08
Sim. 0.90 0.90 0.90 0.90 0.90 0.90 0.90

ABC RT 211.25 217.01 218.42 221.52 228.47 232.72 278.00
NVC 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NCC 1.49E+0.08 1.50E+08 1.57E+08 1.52E+08 1.59E+08 1.61E+08 1.86E+08
Sim. 0.90 0.90 0.89 0.89 0.88 0.90 0.89
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11  Conclusion and Future Work

We investigated the applicability of nature-inspired techniques for solving 
DCSPs. Our contribution has a significant socioeconomic impact given the highly 
dynamic behavior that most real-world problems exhibit. In this regard, our work 
is very relevant for those applications under dynamic constraints, and where any 
change in requirements has to be handled in a short amount of time. More pre-
cisely, a new consistent scenario (satisfying the old and new constraints) has to 
be found as early as possible and should not be that different from the old one. 
This latter objective is particularly important in constraint optimization problems 
such as scheduling and planning, where the new schedule should be as close as 
possible to the old one. Using our general solving methodology, we show that 
nature-inspired techniques can be used to tackle the objectives we listed above. 
This claim has been validated through several experiments conducted on ran-
domly generated DCSPs. The results of the experiments are very promising and 
encouraging. However, real-world scenarios are not random and a further inves-
tigation is needed in this regard. This has motivated us to consider, in the near 
future, further experiments on real-world scenarios, especially in the case of 
healthcare staff scheduling [30]. This latter application can be seen as preference-
based multi-objective constraint optimization problem, where the goal is to come 
up with a set of Pareto-optimal solutions that satisfy a set of requirements and 
optimizing some objectives, including personnel preferences. The challenge here 
is to maintain the Pareto-optimal set anytime there is a change in requirements. 
We also plan to tackle configuration applications, where the user interacts with 
the system by adding or removing constraints and see the corresponding changes 
in an incremental manner [2]. Finally, we will consider dynamic vehicle routing 

Table 10  Comparative test results for CSP instances with 300 variables

Tightness 0.3 0.35 0.4 0.45 0.5 0.55 0.6

MRO RT 1542.42 2458.06 2711.04 3633.94 3727.23 4501.51 4972.79
Sim. 0.88 0.86 0.86 0.85 0.80 0.80 0.80

FG RT 2733.86 2704.94 2596.73 2919.88 2951.20 3030.47 3118.97
Sim. 0.92 0.90 0.90 0.88 0.88 0.88 0.89

GA RT 2383.28 2321.07 2874.88 2822.50 3104.32 3032.29 3769.14
Sim. 0.90 0.90 0.90 0.85 0.85 0.85 0.85

HS RT 2363.04 2599.47 2572.48 2781.73 3005.58 3029.23 3515.85
Sim. 0.90 0.90 0.90 0.88 0.88 0.90 0.90

FA RT 2437.12 2419.19 2606.38 2417.10 2648.49 3442.44 4087.62
Sim. 0.88 0.90 0.85 0.85 0.85 0.80 0.80

PSO RT 2388.21 2877.00 2717.72 3351.06 3664.17 3415.45 3593.69
Sim. 0.90 0.90 0.90 0.90 0.90 0.90 0.90

ABC RT 2419.18 2460.61 2684.67 2680.60 2589.92 2630.89 3260.63
Sim. 0.90 0.90 0.88 0.88 0.88 0.89 0.89
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[5], where a new optimal path is needed when unpredictable changes (expressed 
through constraints) such as accidents occur.

Data Availability As clearly indicated in the Experimentation section of the manuscript, the data used to 
perform the experiments have been randomly generated using the RB model [10]. The Experimentation 
section provides the description on how these data were randomly generated.
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