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Abstract
For the problem of allocating indivisible goods to agents, we recently generalized 
the probabilistic serial (PS) mechanism proposed by Bogomolnaia and Moulin (J 
Econ Theory 100(2):295–328, 2001). We generalized the constraints with the fixed 
quota on each good to a set of inequality constraints induced by a polytope called 
polymatroid (Fujishige et al. in ACM Trans Econ Comput 6(1):1–28, 2018. https://​
doi.​org/​10.​1145/​31754​96; Math Program 178(1–2):485–501, 2019). The main 
contribution of this paper was to extend the previous mechanism to allow indiffer-
ence among goods. We show that the extended PS mechanism is ordinally efficient 
and envy-free. We also characterize the mechanism by lexicographic optimization. 
Finally, a lottery, an integral decomposition mechanism is outlined.

Keywords  Probabilistic serial mechanism · Ordinal preference · Polymatroids · 
Independent flows · Submodular optimization · Integral decomposition

1  Introduction

We consider the problem of allocating a set of indivisible goods to agents according 
to their ordinal preferences for goods. A common fair mechanism used in practice is 
the random serial dictatorship: agents are randomly ordered (with a uniform distri-
bution over permutations), and they successively pick their favorite good from those 
available in a realized order.
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In a seminal paper, Bogomolnaia and Moulin proposed an efficient and fair mech-
anism called probabilistic serial (PS), which allocates goods to agents through the 
simultaneous eating algorithm with uniform speed [1]. The PS mechanism can be 
outlined as follows.

Consider each good as an infinitely divisible object with a quota that agents eat 
during some time intervals.

Step 1. Each agent eats away from his/her favorite good at the same unit speed, 
then proceeds to the next step when some of the favorite goods are completely 
exhausted.
Step s > 1 . Each agent eats away from his/her remaining favorite good at the 
same unit speed, then proceeds to the next step when some of the favorite goods 
are completely exhausted.

Since then PS mechanism has been significantly studied; see, for example, [2–10] 
and references therein for more details.

PS mechanism was extended by Fujishige et  al. by generalizing the constraint 
with the fixed quota on each good to a system of linear inequalities induced by a pol-
ytope called polymatroid [11, 12]. The extension also included multi-unit demands 
by agents and a lottery on indivisible goods. The present study aims to complete the 
generalized PS mechanism given by Fujishige et al. by allowing agents’ indifference 
among goods.

1.1 � Motivation and Related Work

The main contribution of the work given by Fujishige et al. [11, 12] is to enlarge 
the constraint on goods from a fixed set to a family of sets. Figure 1 illustrates an 
example containing three (type of) goods {a, b, c} to show the difference of the set-
tings of goods in the assignment given by Bogomolnaia and Moulin [1], and the 
one given by Fujishige et  al. [12]. In the left graph, each good has a fixed quota 
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Fig. 1   The settings of goods considered in the assignment problems: (left) the fixed set (the circle point); 
(right) a family of sets (the area bounded by thick lines), the base polyhedron B defined in Sect. 2
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qa = qb = gc = 1 , which is the assignment problem considered by Bogomolnaia and 
Moulin. The area bounded by the thick lines of the right graph is the base polyhe-
dron (defined in Sect. 2) considered by Fujishige et al. [12]. Apparently, that the left 
set of goods is a special case of the right one. For a more detailed explanation of the 
motivation of the extended assignment mechanism with submodularity, their appli-
cations, or other related topics, refer to numerous examples (mainly expressed in the 
matching and flows) and the discussions provided in [12].

The well-known Birkhoff–von Neumann theorem that every bistochastic matrix 
can be expressed as a convex combination of permutation matrices plays a crucial 
role in implementing the PS mechanism developed by Bogomolnaia and Moulin 
[1]. Our extended PS mechanism depends on the results of submodular optimiza-
tion, such as the integrality of the independent flow polyhedra [13, 14]. There are 
other generalizations of the PS mechanism. For example, Budish et al. [5] consid-
ered the laminar constraint called a bihierarchy on both the set of agents and the set 
of goods. Fixing a set E, a family F  is called laminar if for all X, Y ∈ F  we have 
X ⊆ Y , Y ⊆ X , or X ∩ Y = � . We draw an example for goods {a1, a2, b} in Fig.  2 
with the laminar structure {{a1}, {a1, a2}, {b}} , where the quotas qa1 , q{a1,a2}, qb are 
integers, and good a1 should be allocated to a sub-group of agents in [5]. The lami-
nar structure of the good setting is different from the base polyhedron, the latter is 
more general in the assignment, as indicated in [12].

Moreover, the PS mechanism allowing indifference among goods was general-
ized by Katta and Sethuraman [8]. The following is an example of the assignment 
problem treated by Katta and Sethuraman [8] with the set of agents {1, 2, 3} , the set 
of goods {a, b, c} , and the preference profile defined as follows:

Agent 1 is indifferent between a and b, but prefers both of them to c; agent 2 prefers 
a to b to c, and agent 3 prefers a to c to b. They handled the problem by solving the 
parametric max-flow problems in succession and using the matching under dichoto-
mous preference proposed by Bogomolnaia and Moulin [15].

The present study aims to complete the extension of the PS mechanism with 
multi-unit demands and submodular constraints on goods given by Fujishige et al. 

1 {a, b} c

2 a b c

3 a c b

Fig. 2   The setting of goods 
(the thick line) under a laminar 
structure {{a1}, {a1, a2}, {b}} 
with quotas qa1 , q{a1,a2}, qb
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[11, 12] by generalizing the preference profile on the full domain, including indiffer-
ence among goods. Instead of the max-flow problem, we need to treat the independ-
ent flow problem given by Fujishige in [13]. Our extended mechanism and other 
related works are summarized in Sect. 1.2.

Bogomolnaia and Moulin [15] suggested that in the mechanism design, the three 
enduring goals are efficiency, incentive-compatibility, and fairness. It was shown by 
Katta and Sethuraman that the above example of three agents, three goods, including 
indifferent preference cannot be ordinal efficient, envy-free, and (weakly) strategy-
proof.1 As shown in Fig. 1, since our work is an extension of the one given by Bogo-
molnaia and Moulin as well as Katta and Sethuraman, on the incentive front, the 
proposed mechanism is not strategy-proof, even in weakly meaning. We also discuss 
the strategy-proof in Concluding remarks.

1.2 � Our Contributions

First, we define some notations and introduce informally the concepts used to evalu-
ate the assignment mechanism.

Let N = {1,… , n} be a set of agents and E be a set of goods. For i ∈ N , a, b ∈ E , 
we write a ≻i b if agent i prefers good a to b. Let U(≻i, e) ≡ {e� ∈ E ∣ e� ≻i e} ∪ {e} 
be the upper contour set of good e at ≻i . An assignment is a matrix P ∈ ℝ

N×R
≥0

 , where 
the entry P(i, e) ≥ 0 denotes the portion or the probability of good e agent i obtained.

Sd-dominance, ordinally efficiency, sd-envy-freeness: Fix an agent set N, a good 
set E and a preference profile (≻i |i ∈ N) . For any two assignments P and Q, we 
say that P sd-dominates Q if 

∑
e�∈U(≻i,e)

P(i, e�) ≥
∑

e�∈U(≻i,e)
Q(i, e�) for all e ∈ E and 

i ∈ N . We say that an assignment is ordinally efficient if it is not sd-dominated by 
any other assignment. Ordinal efficiency is also related to other efficiencies [16]. We 
say that assignment P is sd-envy-free if 

∑
e�∈U(≻i,e)

P(i, e�) ≥
∑

e�∈U(≻i,e)
P(j, e�) for all 

i, j ∈ N . Envy-freeness is a criterion of fairness among various concepts, which are 
summarized in the concluding chapter of the handbook by Thomson [18].

Totally lexicographical optimization: This is the concept suggested by Bogomol-
nai [4] to characterize the PS mechanism. For each agent i, we define ri(k) to be the 
sum of P(i, e) for agent i’s top preference up to kth one over goods. Rearrange ri(k) 
for all i and all k in the non-increasing order, denote it as a vector ( ri(k) ). Then, an 
allocation with the lexicographical maximizer, ( r∗

i
(k)) , is the totally lexicographical 

optimization allocation.
In our problem setting, constraints on goods can be a polyhedron called polyma-

troid. Budish et al. also extended the PS mechanism on a family of sets [5]. They 
assume a layer structure; ours include and generalize their mechanism as discussed 
in [12].

Now, the contributions of the paper can be outlined as follows:

1  Ordinal efficiency and envy-freeness are defined later. An assignment mechanism is strategy-proof if an 
agent cannot obtain a better off allocation by falsifying the true preference.
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–	 We propose two algorithms: In Algorithm I, agents only provide the top prefer-
ences, or goods that are accessible to each agent. Algorithm II is a generalization 
of the PS mechanism provided by Bogomolnaia and Moulin [1] with full prefer-
ence domains. We show that our mechanisms keep the main desired properties, 
ordinal efficiency and sd-envy-freeness.

–	 Totally lexicographical optimization, maximin or leximin maximizer, is a unified 
characterization of PS presented by Bogomolnaia [4]. Lexicographical optimiza-
tion related to submodular functions has been solved by Fujishige [19]. We also 
show the lexicographical characterization of our mechanism.

–	 The mechanism of the lottery outlined for allocating indivisible goods is a gener-
alization of the decomposition of the doubly stochastic matrices. The result can 
also be applied to the generalization of some assignments’ efficiencies as studied 
by Doğan et al. [16].

–	 Our mechanism is based on some preliminary results. One key fact is that the 
composition function of the adjacency of a graph and monotonic submodular 
functions keeps submodularity. The result certainly applies to other cases.

1.3 � Organization of the Paper

The remainder of the paper is organized as follows. In Sect. 2, we describe the prob-
lem, notations, independent flows, and preliminary results. Sections 3 and 4 provide 
algorithms. The efficiency and fairness of the proposed mechanism are presented 
in Sect. 5. Section 6 gives a lexicographical characterization. Section 7 provides a 
mechanism of the lottery for assigning indivisible goods. Section 8 gives the con-
cluding remarks.

2 � Definitions and Preliminaries

2.1 � Model Description and Fundamentals

Let N = {1, 2,… , n} be a set of agents and E be a set of goods. Each agent i ∈ N has 
a preference relation ⪰i . Let ≻i and ∼i be the strict preference and the indifference 
binary relations, respectively, induced by ⪰i . Let ⪰= (⪰i∣ i ∈ N) denote the prefer-
ence profile. Each agent i ∈ N wants to obtain a certain number of goods d(i) ∈ ℤ>0 
of any types at most in total. We refer to d(i) as the demand upper bound of agent 
i. Denote agents’ total demand vector by � = (d(i) ∣ i ∈ N) ∈ ℤ

N
>0

 . Constraints on 
goods are defined as follows.

A pair (E, �) of a set E and a function � ∶ 2E → ℝ≥0 is called a polymatroid if the 
following three conditions hold (see [14, 17]): 

(a)	 �(�) = 0.

(b)	 For any X, Y ∈ 2E with X ⊆ Y  we have �(X) ≤ �(Y).
(c)	 For any X, Y ∈ 2E we have �(X) + �(Y) ≥ �(X ∪ Y) + �(X ∩ Y).
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The submodular function � is called the rank function of the polymatroid (E, �) . We 
assume 𝜌(E) > 0 in the sequel. For a given polymatroid (E, �) , the submodular poly-
hedron P(�) of (E, �) is defined by

and its base polyhedron by

where x(X) =
∑

e∈X x(e) for all X ⊆ E . The submodular inequality implies that the 
intersection of B(�) with each constraint equality is nonempty, in other words,

For a polymatroid (E, �) , it should be noted that B(𝜌) ⊆ ℝ
E
≥0

 and B(�) ≠ � (refer to 
[12, 14] for more details). The polytope P(+)(�) ≡ P(�) ∩ℝ

E
≥0

 is called the independ-
ent polytope of a polymatroid (E, �) , and each vector in P(+)(�) is called an independ-
ent vector (see Fig. 3).

Next we denote a random assignment problem by �� = (N,E,⪰,�, (E, �)) . 
Given a �� , an assignment, also called an expected allocation, is a nonnegative 
matrix P ∈ ℝ

N×E
≥0

 satisfying 

	 (i)	
∑

e∈E P(i, e) ≤ d(i) for all i ∈ N,

	 (ii)	
∑

i∈N Pi ∈ B(�),

where P(i,  e) represents the number of copies of good e agent i obtained, 
and ith row denoted by Pi is the total goods allocated to agent i. We assume ∑

i∈N d(i) ≥ �(E) indicating that the goods are in high demand or non-disposal. By 
our problem setting, a random assignment problem is finding a matrix P with vector 
(pe ∣ e ∈ E) ∈ B(�) to satisfy efficiency and fairness, where pe =

∑
i∈N P(i, e).

When we rewrite the submodular inequality as

P(𝜌) = {x ∈ ℝ
E ∣ ∀X ⊆ E ∶ x(X) ≤ 𝜌(X)}

B(�) = {x ∈ P(�) ∣ x(E) = �(E)},

(1)𝜌(X) = max{x(X) ∣ x ∈ B(𝜌)}, ∀X ⊆ E.

O

x(2)

x(1)

P(+)(ρ)

B(ρ)

O

x(1)

x(2)

x(3)

P(+)(ρ)

B(ρ)

Fig. 3   Base polyhedral B(�) and independent polytopes P(+)(�) , where the thick line or the area bounded 
by thick lines are base polyhedral
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(2) is called “diminishing return,” economies of scale, or economies of scope. Sub-
modular functions are used in various disciplines, such as combinatorics, operations 
research, information theory, and machine learning. The concept of the base poly-
hedron of a polymatroid is equivalent to the core of a convex game due to Shapley 
[21]. Well-known submodular functions include cut functions of graphs and hyper-
graphs, entropy, mutual information, coverage functions, and budget additive func-
tions. It is also known that any set function can be expressed as the difference of two 
monotone nondecreasing submodular functions [20]. For an assignment problem 
�� = (N,E,⪰,�, (E, �)) , submodular property (2) allows preferred goods sharing 
more portion of total resources if preferred goods are chosen earlier. For example, 
when assigning a task to a person, submodularity means higher specialty bringing 
higher effect. Consider the following Example 1.

In the following, we write one element set {e} as e for simplicity.

Example 1  Consider agent set N = {1, 2, 3, 4} and good get E = {a, b, c} with an all 
“1” demand vector 1. The most preferred goods for all agents are given as follows. 
They are called acceptable goods under dichotomous preference (Bogomolnaia and 
Moulin [15]).

Suppose that a rank function � on goods E is given by (see Fig. 4)

An expected allocation is the following nonnegative matrix

(2)�(X) − �(X ∩ Y) ≥ �(X ∪ Y) − �(Y), ∀X, Y ∈ 2E,

i The most preferred goods
1 a ∼1 b
2 a ∼2 c
3 a
4 b

�(X) =

{ |X| if X ∈ 2E ⧵ {{a, b},E}

|X| − 1 if X ∈ {{a, b},E}

Fig. 4   Graph G = (V ,E) with 
edge set {a, b, c} and rank 2

c
a

b
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Since 
∑

i∈N Pi = (pa, pb, pc) = (1∕3, 2∕3, 1) ∈ B(�) , P is an assignment according 
to our definition. We show that assignment P is efficient and fair in the following 
sections.

The following lemma is fundamental in the theory of polymatroids and submodu-
lar functions.

Lemma 1  Given a vector x ∈ P(�) and X, Y ⊆ E , if x(X) = �(X) and x(Y) = �(Y) , 
then we have x(X ∪ Y) = �(X ∪ Y) and x(X ∩ Y) = �(X ∩ Y) . That is, the x-tight sets 
are closed with respect to the set union and intersection.

For a polymatroid (E, �) and a non-empty subset F ⊆ E , define �F ∶ 2E⧵F → ℝ by 
�F(X) = �(X ∪ F) − �(F) for all X ⊆ E ⧵ F . We call (E ⧵ F, �F) a contraction of the 
polymatroid (E, �) by F. Moreover, define �F ∶ 2F → ℝ by �F(X) = �(X) for all 
X ⊆ F . We call (F, �F) a reduction of (E, �) by F. For any nonempty F1,F2 ⊆ E with 
F1 ⊂ F2 we put �F2

F1
= (�F2 )F1

 , which is called a minor of (E, �) . The following result 
is well known.

Proposition 1  A minor of a polymatroid is also a polymatroid.

The mechanisms proposed in the following sections are the iteration of taking 
minors of (E, �) . By Proposition 1, we have the invariance of submodularity under 
minors.

2.2 � Independent Flows

To treat the problem with indifference preference, we need to solve the independent 
flow problems during the extended algorithms provided in Sects. 3.2 and 4.2 .

Consider a (directed) graph G = (V ,A) with a vertex set V and arc set A, which 
has a set S+ of entrances and a set S− of exists, where S+ and S− are disjointed sub-
sets of V (see Fig. 5 and refer to the paper given by Fujishige et al. [22]). Each arc 
a ∈ A has a capacity c(a) > 0 . We also have a polymatroid �+ = (S+, �+) on a set 
S+ of entrances and another polymatroid �− = (S+, �−) on a set S− of exits. Denote 
the present network by N = (G = (V ,A), S+, S−, c,�+ = (S+, �+),�− = (S−, �−)) . A 
function � ∶ A → ℝ≥0 is called an independent flow if it satisfies

P =





a b c

1 0 1
3 0

2 0 0 1
3 1

3 0 0
4 0 1

3 0





(3)0 ≤ �(a) ≤ c(a) ∀a ∈ A,

Operations Research Forum (2021) 2: 5252   Page 8 of 30
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where �� ∈ ℝ
V is the boundary of � defined by

and �+� ∈ ℝ
S+ and �−� ∈ ℝ

S− are defined by

Some examples of independent flows are given in [12].
The independent flow considered in each iteration of Algorithms I & II (in the 

case of divisible goods) is based on an underlying bipartite graph G = (V ,A) with 
vertex set V = N ∪ E and arc set A ⊆ N × E . Here N = S+ and �+ is a modular func-
tion defined by a demand upper bound vector � ∈ ℝ

N
>0

 , while S− = E and �− = � 
(note that V ⧵ (S+ ∪ S−) = � ). The capacity is c(a) = ∞ for all arc a ∈ A . For sim-
plicity, we have the following notations N = (G = (V ,A), S+, S−, c, (S+, �+), (S−, �−)) 
as N = (G = (N ∪ E,A),�, (E, �)) (see Fig. 6).

The following fact is closely related to Sect. 7, a lottery of assigning indivisible 
goods to agents (see, for example, [12, 14]).

Theorem 1  Let (E, �) be a polymatroid with integer-valued rank function � ∈ ℤ
E . 

Then B(�) (resp. P(+)(�)) is an integral polyhedron, i.e., the convex hull of integral 
vectors.

Theorem  2  Let P∗ ⊂ ℝ
A be the set of all independent flows � in a network 

N = (G = (V ,A), S+, S−, c, (S+, �+), (S−, �−)) . Suppose the capacity function c and 
the rank functions �+ and �− are integer-valued, then P∗ is an integral polytope. 

(4)��(v) = 0 ∀v ∈ V ⧵ (S+ ∪ S−), �+� ∈ P(+)(�
+), �−� ∈ P(+)(�

−),

(5)��(v) =
∑

(v,w)∈A

�(v,w) −
∑

(w,v)∈A

�(w, v) ∀v ∈ V ,

(6)�+�(v) = ��(v) ∀v ∈ S+, �−�(v) = −��(v) ∀v ∈ S−.

∂+ϕ ∈ P(+)(ρ+)

P+ = (S+, ρ+)

S+
V \ (S+ ∪ S−)

a

c(a)

S−

∂−ϕ ∈ P(+)(ρ−)

P− = (S−, ρ−)

Fig. 5   Independent flow network N

Operations Research Forum (2021) 2: 52 Page 9 of 30 52
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Moreover, the same integrality property holds if we consider the set of independent 
flows of fixed integral value �+�(S+) or �−�(S−).

2.3 � Bipartite Graphs

Fix a bipartite graph G = (N ∪ E,A) . Let � ∶ 2N → 2E , and for X ⊆ N , � (X) denotes 
the set of vertices E adjacent to at least one vertex of X, i.e.,

Lemma 2  Given a bipartite graph G = (N ∪ E,A) , for any X, Y ⊆ N , we have

Proof  We only show the latter case. The first one can be done following the same 
approach.

If e ∈ � (X ∩ Y) , we have at least one i ∈ X ∩ Y  , which means that good e is adja-
cent to both X and Y. Therefore e ∈ � (X) ∩ � (Y).2 	�  ◻

(7)� (i) ={e ∈ E ∣ (i, e) ∈ A},

(8)� (X) =
⋃
i∈X

� (i).

(9)� (X ∪ Y) = � (X) ∪ � (Y),

(10)𝛤 (X ∩ Y) ⊆ 𝛤 (X) ∩ 𝛤 (Y).

d(n)

∂+ϕ ≤ d

d(1)

N
N × E (∞ )

E

...

...

∂−ϕ ∈ P(+)(ρ)

Polymatroid (E, ρ)

Fig. 6   Independent flow network N  with an underlying bipartite graph

2  The cardinality of �  , |� | , is a submodular function (Lemma 2.1 in [31]).

Operations Research Forum (2021) 2: 5252   Page 10 of 30



1 3

Lemma 3  Fix a bipartite graph G = (N ∪ E,A) . If � is a monotone submodular 
function on E, then the composition �◦� ∶ 2N → ℝ of functions �  and � is also a 
monotone submodular function on N.

Proof  For ∀X, Y ⊆ N , we have

where the first inequality follows from the submodularity of � , and the second one 
follows from Lemma 2 and the monotonicity of �.

The monotonicity of composition function �◦�  is obvious. 	� ◻

3 � Random Assignment with Top Preferences

In Sect.  2.1, we define the random assignment problem, �� = (N,E,⪰,�, (E, �)) . 
In this section, we consider a special case, the model with two choices for goods, 
acceptable (top preference) or not (or others).3 The allocation for a general model is 
basically the algorithm iteration provided in this section. For simplicity, we assume 
that the demand upper bound vector d is all “1” entries denoted by 1 (we will treat 
the general case in the next section).

�(� (X)) + �(� (Y)) ≥ �(� (X) ∪ � (Y)) + �(� (X) ∩ � (Y))

≥ �(� (X ∪ Y)) + �(� (X ∩ Y)),

λ

∂+ϕλ = λ1

λ

N
A (∞)

...

...

...

E

...

...

∂−ϕλ ∈ P(+)(ρ)

Polymatroid (E, ρ)

Fig. 7   Independent flow network N(�)

3  It is called dichotomous preferences in papers [8, 15].
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3.1 � Maximal Saturated Sets and the Social Welfare Concept

For the problem considered here, a special case has been solved by Katta and 
Sethurama [8]. They treated the problem through the maximal flow in a network. 
A natural generalization is the constraints of polymatroids on goods as follows (see 
Fig. 7).

Considering a network N(�) ≡ (G = (N ∪ E,A), ��, (E, �)) with a parameter 
� ≥ 0 , where (i, e) ∈ A if and only if good e is the top preference of agent i and agent 
i may have more than one good as top preference. Let �� ∶ A → ℝ≥0 denote an inde-
pendent flow in N(�) . We increase the parameter � = �+��(i) (∀i ∈ N) to maximize 
the goods shared by agents while keeping constraints on goods �−�� ∈ P(+)(�) . 
These can be formulated as:

Note that 𝜆̄ in (11) is equivalent to

In (12), Z is the set of goods “blocking”4 the increasing of � . Then there exists Z ≠ ∅ 
such that ��(Z) = �(Z) if 𝜆 > 0.

For 𝜆̄ in N(𝜆̄) , let Ȳ  be defined as

where Ȳ  is unique by Lemma 1.

Lemma 4  Let Ȳ  and 𝜑𝜆̄ be defined as above, and let

Then, we have

Proof  Consider the following relations (see Fig. 8 for more illustration):

The first inequality in (16) follows from the definition of X̄ , i.e., no flow of 𝜆̄|X̄| 
can leave 𝛤 (X̄) , but there may be some flows from N ⧵ X̄ to 𝛤 (X̄) . The second one 
is the independent flow constraint in (11). For the third inequality in (16), we have 
𝛤 (X̄) ⊆ Ȳ  by the definition of X̄ . The inequality comes from the maximality of Ȳ  
and the monotonicity assumption of � . The last equality follows from the definition 
(13) of Ȳ .

(11)𝜆̄ = max{𝜆 > 0 ∣ 𝜕−𝜑𝜆 ∈ P(+)(𝜌)}.

(12)𝜆̄ = min{𝜆 > 0 ∣ 𝜕−𝜑𝜆(Z) = 𝜌(Z), Z ⊆ E}.

(13)Ȳ = max{Y ⊆ E ∣ 𝜕−𝜑𝜆̄(Y) = 𝜌(Y)},

(14)X̄ = {i ∈ N ∣ 𝛤 (i) ⊆ Ȳ} = 𝛤 −1(Ȳ).

(15)𝜆̄|X̄| = 𝜕−𝜑𝜆̄(𝛤 (X̄)) = 𝜌(𝛤 (X̄)) = 𝜌(Ȳ).

(16)𝜆̄|X̄| ≤ 𝜕−𝜑𝜆̄(𝛤 (X̄)) ≤ 𝜌(𝛤 (X̄)) ≤ 𝜌(Ȳ) = 𝜕−𝜑𝜆̄(Ȳ).

4  The term was used by Katta and Sethurama [8].
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Next we show that for each i ∈ N ⧵ X̄ , the independent flow 𝜑𝜆̄ satisfies 
𝜑𝜆̄(i, e) = 0 for every e ∈ Ȳ  . Otherwise, we can decrease a small amount flow 𝜖 > 0 
of arc (i, e) and increase the same value 𝜖 > 0 of (i, e�) , the existence of arc (i, e�) fol-
lows from i ∉ X̄ . This is possible since Ȳ  is the maximal saturated set that does not 
contain e′ . However, this contradicts the saturation of Ȳ  with 𝜆̄ . Hence, we have

Thus, all the inequalities in (16) are satisfied with equalities. 	�  ◻

We can introduce an egalitarianism social welfare concept by Dutta and Ray 
[23] and mentioned by Bogomolnaia and Moulin [15]. Let X̄∗ ⊆ N be a maximal set 
satisfying

Here X̄∗ is unique because of Lemma 3.5 Define 𝜆̄∗(> 0) by

From the above discussions and Lemma 4, we obtain:

(17)𝜆̄|X̄| = 𝜕−𝜑𝜆̄(Ȳ).

(18)X̄∗ ∈ arg min
�≠X⊆N

𝜌(𝛤 (X))

|X| .

(19)𝜆̄∗ ≡
𝜌(𝛤 (X̄∗))

|X̄∗| = min
�≠X⊆N

𝜌(𝛤 (X))

|X| .

X̄

...

λ̄

λ̄

λ̄

λ̄

N
A (∞)

...

Ȳ

E

0

...

...

λ̄|X̄| ∂−ϕλ̄(Ȳ ) = ρ(Ȳ )

�

Fig. 8   Illustrative network for (16) and Remark 1

5  By Lemma  3, the composition �◦� ∶ 2N → ℝ is a submodular function. Denote �◦�  by � ′ , the 
uniqueness of X̄∗ in (18) then follows from the same discussion as the one given by Katta and Sethurama 
[8].
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Proposition 2  Given a network N(�) = (G, ��, (E, �)) , let X̄∗ and 𝜆̄∗ be 
defined as in (18) and (19), respectively, and let 𝜑𝜆̄∗ be an independent flow in 
N(𝜆̄∗) = (G, 𝜆̄∗�, (E, 𝜌)) . Then we have

and ( ̄𝜆∗, X̄∗ ) coincides with ( ̄𝜆, X̄ ) in (11) and (13).

Observation 1  Suppose that 𝜆(i) > 0 ( i ∈ N ) is the boundary of vertex (agent) i in 
N(�) . Then (19) becomes

i.e., each �(i) ( i ∈ N ) receiving the same value, the average determined by (18). If 
some agents obtain more portion, then there exists at least one agent who gets less 
allocation than 𝜆̄∗ determined by (21). Maximizing the minimizer of �(i) ( i ∈ N ) is 
the principle of (extended) PS mechanism, and the lexicographic optimum is gener-
alized in Sect. 6.

3.2 � Algorithm

During the execution of the following Algorithm I, we construct a network Np(�) 
( 1 ≤ p ≤ min{|N|, |E|} ) in each iteration on smaller sets Np ⊆ N and Ep ⊆ E . 

Algorithm I6

Intput: A random assignment problem RA= (N,E,⪰, �, (E, �)).
Output: An expected allocation matrix P ∈ ℝ

N×E
≥0

.
Step 0: Put N1 ← N , E1 ← E , �1 ← � . Put p ← 1.

Step p: Construct Np(�) = (G = (Np ∪ Ep,Ap), ��, (Ep, �p)) . Compute
 𝜆p = max{𝜆 > 0 ∣ 𝜕+𝜑 = 𝜆�, 𝜕−𝜑 ∈ P(+)(𝜌p)}

 by solving the associated independent flow ��p
 of Np(�p).

 Let Tp ⊆ Ep be the maximal saturated set of �−��p
 and Xp = � −1(Tp) . Put

  P(i, e) ← ��p
(i, e) for e ∈ Tp if i ∈ Xp

  Np+1 ← Np ⧵ Xp, Ep+1 ← Ep ⧵ Tp otherwise.

 If Ep+1 ≠ �,7 put �p+1 ← �T1∪…∪Tp
 and go to the beginning of Step p.

 Otherwise stop and return P.

 Note that by Proposition 2, we have 0 = 𝜆0 < 𝜆1 < … < 𝜆k for some k ≤ |E| during 
the execution of Algorithm I.

(20)𝜌(𝛤 (X̄∗)) = 𝜕−𝜑𝜆̄∗ (𝛤 (X̄∗)) = 𝜆̄∗|X̄∗|,

(21)𝜆̄∗ ∈ arg max
N(𝜆(i))

min
i∈N

𝜆(i),

6  We omit bar over notations and specify them by iteration steps.
7  By our assumption of 

∑
i d(i) ≥ �(E) , resource E exhausted before all demands by agents satisfied, 

hence Ep ( p ≥ 1 ) are used as the termination condition.

Operations Research Forum (2021) 2: 5252   Page 14 of 30



1 3

Remark 1  By a little abuse of language, from Proposition  2, if we take a cut 
X̄ ∪ 𝛤 (X̄) in NT (𝜆̄) such that no arc with infinite capacity leaving the cut, then the 
capacity of the cut is 𝜆̄(|N| − |X̄|) + 𝜌(𝛤 (X̄)) ≠ ∞ . Moreover, the flow entering the 
cut is zero. Then, we have 𝛤 (X̄) ⊆ Ȳ  and 𝜌(𝛤 (X̄)) = 𝜌(Ȳ) . (Refer to Fig. 8.) Hence, 
the associated nonzero flows of each agent are saturated within the same step p. Pre-
cisely, if P(i, e) > 0 and P(i, e�) > 0 with e ∼i e

� , then {e, e�} ⊆ Tp . The fact is cru-
cial in the sequential proofs later for the preference profile including the indifference 
relation.

Example 1 (Continue): For p = 1 , N1(�) is constructed and an independent flow in 
N1(�1) is shown in Fig. 9.

We obtain the saturated set T1 , X1 = � (T1) and the maximal �1 to satisfy the con-
straints on goods as follows,

Note that a ∼1 b with P(1, a) ≥ 0 and P(1, b) ≥ 0 , both a and b are saturated at Step 
1 as stated in Remark 1. All flows entering node 2 are toward c and the flow to 
a ∈ T1 is zero making �1 reach the maximum 1/3. This is the fact discussed in Obser-
vation 1 and the proof of Lemma 4.

T1 = {a, b}, X1 = {1, 3, 4}, �1 =
1

3
.

4

1

3

2 0

1/3

1/3

1/3

1/3

N1

c
1/3

b

a

1

E1

1/3
1/3

1/3

0 ≤ f ≤ 1/3

1/3− f

Fig. 9   Independent flow ��1
 of N1(�1) in Example 1

1

N2

2 c
1

E2

1

Fig. 10   Independent flow ��2
 of N2(�2) in Example 1
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For p = 2 , the corresponding N2(�2) is shown in Fig. 10. Thus we obtain

We note that the allocation is not unique, unlike in the case of a strict preference 
profile. This occurs when two, or more goods saturate simultaneously.

For the efficiency and fairness of Algorithm I, we will show them in a more gen-
eral case for Algorithm II.8

It is worth noting that a similar scheme treating a general case is provided in [19] 
as an extension of the one in [24].

4 � Random Assignments on Full Preference Domains

This section provides a mechanism for our original model, i.e., assign goods among 
agents over a preference profile ⪰ = (⪰i∣ i ∈ N) and a demand upper bound vector 
� = (d(i) ∣ i ∈ N) ∈ ℤ

N
>0

 with submodular constraints on goods.

T2 = {c}, X2 = {2}, �2 = 1.

P =





a b c

1 f 1
3 − f 0

2 0 0 1
3 1

3 0 0
4 0 1

3 0



 0 ≤ f ≤ 1/3.

d(n)λ

∂+ϕλ = λd

d(1)λ

N
A(∞)

...

...

...

E

...

...

∂−ϕ ∈ P(+)(ρ)

Polymatroid (E, ρ)

Fig. 11   Independent flow network N(�) = (G = (N ∪ E,A), ��, (E, �))

8  It shuld be pointed out that Algorithm I is not exactly a special case because Np ⊂ N ( p > 1 ) does not 
occur in Algorithm II, it clearly is a simpler case.
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4.1 � A Corollary of Proposition 2

Similar to the discussion of Sect.  3.1, the parametric network 
N(�) = (G = (N ∪ E,A), ��, (E, �)) is given in Fig. 11.9 Let X̄∗ be the maximal set 
satisfying

and let 𝜆̄∗(> 0) be defined by

Corollary 1  Let X̄∗ and 𝜆̄∗ be defined as in (22) and (23), respectively, and let 𝜑𝜆̄∗ be 
the associated independent flow in N(𝜆̄∗) . Then we have

Proof  We can view each agent i containing d(i) subagents, and the result follows 
from Proposition 2◻

(22)X̄∗ ∈ arg min
�≠X⊆N

𝜌(𝛤 (X))∑
i∈X d(i)

,

(23)𝜆̄∗ =
𝜌(𝛤 (X̄∗))∑

i∈X̄∗ d(i)
.

(24)𝜌(𝛤 (X̄∗)) = 𝜕−𝜑𝜆̄∗ (𝛤 (X̄∗)) =
∑
i∈X̄∗

d(i)𝜆̄∗.

d(n)(cp(n) + λ)

...

d(1)(cp(1) + λ)

N
Ap(∞)

...

...

...

Ep

...

...

∂−ϕλ ∈ P(+)(ρp)

Polymatroid (Ep, ρp)

Fig. 12   Independent flow network Np(�) for Algorithm II 

9  Here, �� ∈ ℝ
N
≥0

 can be viewed as a modular function on N given in Sect. 2.2.

Operations Research Forum (2021) 2: 52 Page 17 of 30 52



1 3

4.2 � Algorithm

Here, agents’ available top preferred goods are added in each iteration after saturated 
goods being removed, unlike Algorithm I, and also the agents’ set is N throughout 
Algorithm II. Moreover, a cumulated capacity function cp ∈ ℝ

N
≥0

 is introduced and 
updated to compensate those agents, not in the inverse of the saturated good set in 
the later steps (also refer to Example 2). 

Algorithm II

Input: A random assignment problem �� = (N,E,⪰,�, (E, �)).
Output: An expected allocation matrix P ∈ ℝ

N×E
≥0

.
Step 0: Put c1 ← � ∈ ℝ

N , p ← 1. Let E1 contain agents’ most preferred goods.
Step p: Construct Np(�) = (G = (N ∪ Ep,Ap), ��, �p, (Ep, �p)) , where Ap =

 {(i, e) ∣ e is i’s most preferred good in Ep} (see Fig. 12). Compute �p by
 solving independent flow ��p

 as follows,
𝜆p = max{𝜆 > 0 ∣ 𝜕+𝜑𝜆 = (d(i)(cp(i) + 𝜆) ∣ i ∈ N), 𝜕−𝜑𝜆 ∈ P(+)(𝜌p)}.

 Let Tp ⊆ Ep be the maximal saturated set of �−��p
 and Xp = � −1(Tp) . Put

  P(i, e) ← ��p
(i, e) for e ∈ Tp, cp(i) ← 0 if i ∈ Xp,

  cp+1(i) ← cp(i) + �p if i ∈ N ⧵ Xp,

  Ep+1 ← (Ep ⧵ Tp) ∪ {e ∣ e is agents’ most preferred available good}.

 If Ep+1 ≠ � , put �p+1 ← �T1∪…∪Tp
 , then go to the beginning of Step p.

   Otherwise, ( Ep+1 = �) return P.

 Note that the capacity vector �p makes the agents in the inverse of saturated goods 
get more portion (larger �p ) without sacrificing other agents’ allocation because of 
indifference among these goods. The same concept is stated in Remark 1.

Example 2  Consider agent set N = {1, 2, 3, 4} , good set E = {a, b, c, d} and demand 
upper bound vector � = � . Agents’ preference profile is given as follows.

4

1

3

2 0

1/3

1/3

1/3

1/3

N1

c
1/3

b

a

1

E1

1/3

1/3

1/3

0 ≤ f ≤ 1/3

1/3− f

Fig. 13   Independent flow �1 of N1(�1) in Example 2
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The polymatroid ( E, � ) constraint on goods is defined by

For Step p = 1 , network N1(�1) and its independent flow are shown in Fig. 13. The 
step is the same as in Example 1 (Continue) shown in Fig. 9.

We have saturated set T1 and in-flow �1 for parameter � as

Then saturated set {a, b} is removed. The most preferred good for agents 1 and 2 are 
good c and agent 4’s most available preferred good d is added. Although agent 2 
does not get an allocation of good a in Step 1, the same amount 1/3 is accumulated 
to the capacity function to get the allocation of good c indifferent to good a later.

When p = 2 , we have N2(�2) as Fig. 14, where agent 2 has an accumulated capacity 
1/3. We obtain

Following the same arguments, we have

1 a ∼1 b ≻1 c ≻1 d

2 a ∼2 c ≻2 b ≻2 d

3 a ≻3 c ≻3 d ≻3 b

4 b ≻4 a ≻4 d ≻4 c

𝜌(X) =

{ |X| − 1 if {a, b} ⊆ X ⊆ E

|X| if {a, b} ⊈ X ⊂ E

T1 = {a, b} �1 =
1

3
.

T2 = {c} �2 =
2

9
.

T3 = {d} �3 =
7

36
.

4

1

3

2

2/9

1/3 + 2/9

2/9

2/9

N2

d
2/9

c
1

E2

2/9

1/3 + 2/9

2/9

2/9

Fig. 14   Independent flow �2 of N2(�2) in Example 2
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The output of Algorithm II is the following expected allocation:

Example 3  Consider N = {1, 2, 3, 4} and E = {a, b, c, d} again. The preference pro-
file is given by

P =





a b c d

1 f 1
3 − f 2

9
7
36

2 0 0 1
3 + 2

9
7
36

3 1
3 0 2

9
7
36

4 0 1
3 0 2

9 + 7
36



, 0 ≤ f ≤ 1/3.

4

1

3

2 0

4/5

8/5

4/5

16/5

N

c
8/5

b

a 4

4/5

E1

8/5

4/5

4/5

16/5

Fig. 15   An independent flow �1 of N1(�1) in Example 3

4

1

3

2

4/5 + 1/5

8/5 + 2/5

1/5

4/5

N

c
11/5

b
9/5

E2

5/5

10/5

1/5

4/5

Fig. 16   An independent flow �2 of N2(�2) in Example 3
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The demand upper bound vector is given by � = (4, 2, 1, 1) ∈ ℤ
N
≥0

 . The polymatroid 
( E, � ) is defined by

We have the independent flows of N1(�1) and N2(�2) shown in Figs. 15 and 16, and

are the associated saturated sets Tp and parametric values �p for p = 1, 2.

The following matrix P is the expected allocation obtained,

5 � Properties of the Mechanisms

5.1 � Ordinal Efficiency

Next we present the properties of the proposed mechanisms, the first and prominent 
one, efficiency.

Fix a random assignment problem �� = (N,E,⪰,�, (E, �)) . Let 
U(⪰i, e) ≡ {e� ∈ E ∣ e� ⪰i e} be the upper contour set of good e at ⪰i . Given 
expected allocation matrices P and Q, we say that P ordinally dominates Q if for 
each agent i with preference relation ⪰i , ith row Pi of P sd-dominates10 ith row Qi of 
Q,

1 a ≻1 b ≻1 c ≻1 d

2 a ∼2 c ≻2 b ≻2 d

3 a ≻3 c ≻3 d ≻3 b

4 b ≻4 a ≻4 d ≻4 c

(25)𝜌(X) =

{
4|X| if |X| ≤ 2

8 if |X| > 2
(∀X ⊆ E).

T1 = {a} �1 =
4

5
, T2 = {b, c, d} �2 =

1

5

P =





a b c d

1 16
5

4
5 0 0

2 0 0 8
5 + 2

5 0
3 4

5 0 1
5 0

4 0 4
5 + 1

5 0 0



.

(26)Pi ⪰sd
i
Qi

⟺

∑
e∈U(⪰i,e)

P(i, e) ≥
∑

e∈U(⪰i,e)

Q(i, e), ∀e ∈ E,

10  Here, “sd” stands for (first-order) stochastic dominance, employed in paper [1].
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with strict inequality for some i. We say that P is ordinally efficient if P is not ordi-
nally dominated by any other allocation.

Recall Remark 1, the key point in the following proofs for the mechanism over 
full domain preferences is the indifference goods of each agent with positive alloca-
tion saturated within an iteration.11 Thus, the proof schemes in the following are the 
same as those in [11, 12].

Theorem 3  The expected allocation computed by Algorithm II is ordinally efficient.

Proof  By Algorithm II, we obtain a random assignment P, a partition T1,… , Tp∗ of 
E. Let Q be an arbitrary expected allocation, and suppose that Q ordinally dominates 
P, or for each i ∈ N we have

It suffices to prove (27).
Let us denote Ei

q
 as agent i’s most available preferred goods at Step q, and let 

Q(i,Ei
q
) and P(i,Ei

q
) be defined respectively by

Suppose that for some integer q∗ ≥ 1 we have

and we execute q∗ th step (here recall that Xq = � −1(Tq) ). Then, from Algorithm II 
we have

Since Q ordinally dominates P, it follows from (29) that Q(i,Ei
q∗
) ≥ P(i,Ei

q∗
) for all 

i ∈ Xq∗ . Hence, from (29) and (30) we obtain

since 
∑

i∈Xq∗
Q(i,Ei

q∗
) ≤ �q(Tq) , and when q∗ = 1 , Eq.  (29) is void (thus holds) by 

induction. (Here, recall that 
∑q∗

q=1

∑
i∈Xq

Q(i,Ei
q
) ≤ �(T1 ∪… ∪ Tq∗ ) .) From the dis-

cussions before Theorem 3, and Algorithm II which always selects agent i’s most 
preferred available goods, we have

(27)
∑

e∈U(⪰i,e)

P(i, e) =
∑

e∈U(⪰i,e)

Q(i, e), ∀e ∈ E,

(28)Q(i,Ei
q
) =

∑
e∈Ei

q

Q(i, e), P(i,Ei
q
) =

∑
e∈Ei

q

P(i, e).

(29)Q(i,Ei
q
) = P(i,Ei

q
) (∀q = 1,… , q∗ − 1, ∀i ∈ Xq)

(30)
∑
i∈Xq

P(i,Ei
q
) = �q(Tq) (q = 1,… , q∗).

(31)Q(i,Ei
q∗
) = P(i,Ei

q∗
) (∀i ∈ Xq∗ ),

11  Also as treated in papers [12, 26], for agent i ∈ N , we can put good e ∈ E with P(i, e) = 0 to agent i’s 
least preferred one without changing the problem if necessary.
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for some k ≥ 1 . Then the proof is complete. 	�  ◻

5.2 � Envy‑Freeness

We say that an expected allocation P is normalized envy-free (see [25]) with 
respect to a preference profile ⪰ = (⪰i∣ i ∈ N) if

where d(i) and d(j) are the integral demand upper bound of agents i, j ∈ N.

Theorem  4  The expected allocation computed by Algorithm II  is normalized 
envy-free.

Proof  It suffices to show that for each i ∈ N and e ∈ E , we have

Define

When goods in {e� ∣ e� ∼ e) are removed during the execution of Algorithm II, all 
goods U(⪰i, e) have been removed from E (refer to the description and the footnote 
before Theorem 3). It follows that for ∀j ∈ N the time spent by agent j to eat U(⪰i, e) 
given by the possible value 1

d(j)

∑
e∈U(⪰i,e)

P(j, e) is less than ti
e
 . Hence, we obtain

	�  ◻

Following the same arguments as above, we obtain the following theorem.

Theorem 5  The expected allocation computed by Algorithm I  is ordinally efficient 
and normalized envy-free.

(32)

∑
e∈U(⪰i,e)

P(i, e) =
∑

e∈Ei
1
∪…∪Ei

k

P(i, e) =
∑

e∈Ei
1
∪…∪Ei

k

Q(i, e) =
∑

e∈U(⪰i,e)

Q(i, e), ∀e ∈ E,

(33)
1

d(i)
Pi ⪰sd

i

1

d(j)
Pj (∀i, j ∈ N),

(34)
1

d(i)

∑
e∈U(⪰i,e)

P(i, e) ≥
1

d(j)

∑
e∈U(⪰i,e)

P(j, e), ∀j ∈ N.

(35)ti
e
=

1

d(i)

∑
e∈U(⪰i,e)

P(i, e).

(36)ti
e
≥

1

d(j)

∑
e∈U(⪰i,e)

P(j, e) ∀j ∈ N.
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6 � Lexicographic Characterization and Submodularity

For simplicity, we assume that the demand upper bound vector is an all “1” vector 
� . As stated above, we can view an agent i ∈ N with an integer demand upper bound 
d(i) > 1 as d(i) subagents if needed.

The lexicographic property, maximin or lexmin maximizer, presented by Bogo-
molnaia [4] is a unified characterization of PS mechanism proposed by Bogomol-
naia and Moulin [1]. The related problem, solutions of the lexicographically optimal 
base of a polymatroid was solved by Fujishge [19].

Let Q be any expected allocation matrix, define for each pair (i, e) with i ∈ N and 
e ∈ E

Moreover, denote �(Q(i, Ûi(e)) ∣ i ∈ N, e ∈ E) the linear arrangement of values 
Q(i, Ûi(e)) for all i ∈ N and e ∈ E in nondecreasing order of magnitude. For simplic-
ity, we denote �(Q(i, Ûi(e)) ∣ i ∈ N, e ∈ E) as �(Q(i, Ûi(e))) in the sequel.

The lexicographic order among �(Q(i, Ûi(e))) for all expected allocation matrices 
Q is defined as usual. For any two expected allocation matrices P and Q, suppose 
that �(P(i, Ûi(e))) = (p1,… , pk) and �(Q(i, Ûi(e))) = (q1,… , qk) for some k. Then 
we say that �(P(i, Ûi(e))) is lexicographically greater than �(Q(i, Ûi(e))) if there 
exists an integer � ∈ {1,… , k} such that pi = qi for all i = 1,… ,� − 1 and p

�
> q

�
.

We have the following theorem, the proof follows the approach for assignment 
problem studied by Bogomolnaia [4]. It is also a generalization of the result pre-
sented by Fujishige et al. [11].

Theorem 6  The expected allocation P obtained by Algorithm II is exactly the lexi-
cographic maximizer of �(Q(i, Ûi(e)) ∣ i ∈ N, e ∈ E) among all expected allocation 
matrices Q.

(Proof) Let Q be an arbitrary expected allocation matrix such that 
�(Q(i, Ûi(e))) ≠ �(P(i, Ûi(e))) . It suffices to show that �(Q(i, Ûi(e))) is lexicograph-
ically smaller than �(P(i, Ûi(e))).

Since �(Q(i, Ûi(e))) ≠ �(P(i, Ûi(e))) , there exists a pair of i ∈ N and e ∈ E such 
that Q(i, Ûi(e)) ≠ P(i, Ûi(e)) . Let (i∗, e∗) be such a pair (i, e) with the minimal value 
of Q(i, Ûi(e)).

Let rd =
∑d

p=0
�p , where �p is given in Algorithm II. Suppose that Ei∗

e∗
 appears in 

p∗ th iteration of Algorithm II. By our assumption, we have Q(i, Ûi(e)) = P(i, Ûi(e)) 
for all (i, e) such that P(i, Ûi(e)) ≤ rp∗−1 , we define P(i, Ûi(�)) = 0.

For every i ∈ N , we can verify, step by step, that at each iteration p 
(p = 0, 1,… , p∗ − 1),

(37)Q(i, Ûi(e)) ≡
∑

e∈U(⪰i,e)

Q(i, e).

(38)Q(i, Ûi(e)) = P(i, Ûi(e)) = rp < rp∗ , ∀i ∈ N, e ⪰ ei,
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where ei is the least preferred good of agent i which saturated (lastly) during first 
p∗ − 1 iterations of Algorithm II.

In iteration p∗ , if {e� ∣ e� ∼ e} ⊆ Tp∗ , we have P(i, Û(e)) = rp∗ . Otherwise 
P(i, Ûi(e)) > rp∗ , this is true for all i ∈ N . Hence, we have

By Lemma 4, Corollary 1, and Observation 1, �p∗ (and then also rp∗ ) is the maximal 
possible value satisfying the constraints. For Q, by our assumption of (i∗, e∗) , agent 
i∗ consumes some less preferred goods, i.e.,

Therefore, (38)–(40) imply that �(Q(i, Ûi(e))) is lexicographically smaller than 
�(P(i, Ûi(e))) . 	�  ◻

The relation of lexicographic preference order with simultaneous eating mecha-
nism was developed by Schulman and Vazirani [26]. Moreover, dl- (downward lexi-
cographic) and ul-(upward lexicographic) extensions are also investigated in [27].

(39)P(i, Ûi(e)) ≥ rp∗ ∀i ∈ N.

(40)Q(i∗, Ûi∗ (e∗)) < rp∗ = P(i∗, Ûi∗ (e∗)).

d(n)

∂+ϕ ≤ d

d(1)

S+
W

E

...

...

...

...

...

...

...

...

...

...

∂−ϕ ∈ P(+)(ρ)

P = (E, ρ)

Fig. 17   Independent flow network N  for the decomposition mechanism
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7 � Designing a Lottery

Consider the following expected allocation P

of Example 3. The probability distribution of integral allocations can be

It is easy to check that both integral allocations in (42) satisfy demand bound 
� = (4, 2, 1, 1) and submodular constraints (25). These are independent flows dis-
cussed in Sect. 2.2.

Next we show how to decompose the expected allocation P obtained by Algo-
rithm II as a probability distribution (or a convex combination) of integral expected 
allocations, i.e.,

for some K ≥ 1 , where, Q(k) ∈ ℤ
N×E
≥0

 are expected allocations and 𝜈k > 0 for ∀k ∈ K 
and 

∑
k∈K �k = 1.

The randomized decomposition mechanism is based on the network presented by 
Fujishige et al. [22]. We present it for completeness. Figure 17 shows the following 
is a special case of Fig. 5 given in Sect. 2.2.

Let Ēi
e
≡ {e� ∣ e� ∼ e} represent the class equivalent to good e, and we suppose 

that there are ki equivalent classes with 1 ≤ ki ≤ |E| for each i ∈ N . Then we can 
write Ēi

e
 ( e ∈ E ) as Ēi

�
 for some � ∈ {1,… , ki}. Now we define a directed graph 

G = (V ,A) with a vertex set V and arc set A by

(41)P =

⎛
⎜⎜⎜⎜⎝

16

5

4

5
0 0

0 0
8

5
+

2

5
0

4

5
0

1

5
0

0
4

5
+

1

5
0 0

⎞
⎟⎟⎟⎟⎠

(42)P =
4

5

⎛
⎜⎜⎜⎝

3 1 0 0

0 0 2 0

1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎠
+

1

5

⎛
⎜⎜⎜⎝

4 0 0 0

0 0 2 0

0 0 1 0

0 1 0 0

⎞
⎟⎟⎟⎠
.

(43)P =
∑
k∈K

�kQ
(k),

(44)V =N ∪W ∪ E,

(45)W ={vi
�
∣ i ∈ N,� ∈ {1,… , ki}},

(46)A =B1 ∪ B2,

(47)B1 ={(i, v
i
�
) ∣ i ∈ N,� ∈ {1,… , ki}},
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Here, W represents the total equivalent classes for all agents. The number of arcs of 
B1 is the number of these classes and the arcs of B2 means the goods contained in 
each class.

Let � ∶ A → ℝ be an independent flow in the network 
N = (G = (V ,A), S+ = N, S− = E, �, (E, �)) satisfying 

(a)	 ∀v ∈ W ∶ ��(v) = 0,

(b)	 �+� ≤ � and �−� ∈ P(+)(�).

Recall that we omitted the capacity function in N  if it is ∞.
The decomposition mechanism12 can be given as presented by Fujishige et  al. 

[12] since the mechanism does not depend on the structure of graph G in N  . Here, 
we give an outline as follows.

Let P be an expected allocation associated with the network N̂𝜑P
 of Fig. 17, and 

let

Recall the definition of polytope P∗ ∈ ℝ
A in Theorem 2. Define the minimal13 face 

of a polyhedron P∗ containing �P by

14 Let P be an expected allocation. We begin with an independent flow 𝜑̂1 = 𝜑P in 
the network N̂𝜑P

 . Do the following (i) and (ii) until integral solution 𝜑̂t+1 is obtained 
on the boundary of polytope P∗ : 

	 (i)	 Find an integer-valued independent flow �t in N̂𝜑̂t
.

	 (ii)	 Compute 

(48)B2 ={(v
i
�
, e�) ∣ i ∈ N,� ∈ {1,… , ki},∀e

� ∈ Ēi
�
}.

(49)Â0 ={a ∈ A ∣ 𝜑P(a) = 0},

(50)Â+ =A ⧵ Â0,

(51)Î ={i ∈ N ∣ 𝜕+𝜑P(i) = d(i)}.

(52)
P∗(𝜑P) = {𝜑 ∈ P∗ ∣ ∀i ∈ Î ∶ 𝜕+𝜑(i) = d(i),∀a ∈ Â0 ∶ 𝜑(a) = 0, 𝜕−𝜑 ∈ B(𝜌)}.

(53)𝛽∗
t
= max{𝛽 > 0 ∣ 𝜑̂t + 𝛽(𝜑̂t − 𝜑t) ∈ P∗(𝜑̂t)}.

12  This is a standard procedure for finding an expression of a given point x in a relative interior of a poly-
tope P as a combination of extreme points of P.
13  The existing of the minimal face has been shown by Lemma 7.1 of paper [12].
14  Here �−� is the direct sum of base polyhedron B(�) induced by associated submodular equalities 
(49)∼(52), refer to paper [12].
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Put 𝜑̂t+1 ← 𝜑̂t + 𝛽∗
t
(𝜑̂t − 𝜑t).

 If 𝜑̂t+1 is not integer-valued, then put t ← t + 1 and go to (i).
Two key points in the above iteration are: First, 𝜑̂t is in the relative interior of the 

unique minimal face of P∗(𝜑̂t) , then we have 𝛽∗
t
> 0 . Second, the maximum of �∗

t
 in 

(53) means that the associated 𝜑̂t+1 reaches some boundary of flow polytope P∗ , arcs 
in (49) or vertices in (51) increases at least by one. Therefore, the number of itera-
tions is a polynomial of |N||A| of the underlying graph. Thus (43) can be obtained by 
a simple arithmetic calculation. Refer to paper [12] for details.

8 � Concluding Remarks

For random assignment problems with the constraint of a polytope defined by 
submodular inequalities on goods, we complete our former allocation mechanism 
by allowing agents’ indifference among goods. 

1.	 Supported by our preliminary results, Lemma 3, Proposition 2 and its corollary, 
the PS mechanism of Bogomolnaia and Moulin [1] and its extension by Katta 
and Sethuraman [8] can naturally be extended to the allocation problem with 
submodular constraints on goods. We realized the extended PS mechanism by 
Algorithm I and Algorithm II.

2.	 Theorems 3 and 4 show that the mechanisms, Algorithm I and Algorithm II, are 
ordinally efficient and normalized envy-free.

3.	 The lexicographic characterization of the PS mechanism provided by Bogomol-
naia [4] is also possible for our extended mechanism (Theorem 6).

4.	 The lottery randomized mechanisms based on our previous papers, Fujishige et al. 
[12] and [22], is outlined to assign indivisible goods for the problem settings of 
this paper.

Several other generalizations of allocation mechanisms with additional conditions 
or hybrid types have been developed, refer to the papers [2, 3, 6, 9, 10, 28] and 
reference therein. Allocating resource summation, similar to the base equality of 
polymatroids, is treated in a recent paper by Bochet and Tumennasan [29], which 
is related to single-peakedness, Zhan [30]. Finally, in the case of the dichotomous 
domain with a matroidal family of goods, we expect the strategy-proofness prop-
erty to be kept. Strategy-proofness is more delicate with submodularity. More 
general resource summation, the single-peakedness and strategy-proofness in 
assignment problems will be our further work.
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