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Abstract
Optimization and its related solving methods are becoming increasingly important 
in most academic and industrial fields. The goal of the optimization process is to 
make a system or a design as effective and functional as possible. This is achieved 
by optimizing a set of objectives while meeting the system requirements. Optimiza-
tion techniques are classified into exact and approximate algorithms. Nature-inspired 
(NI) methods, a sub-class of approximate techniques, are widely recognized for pro-
viding efficient approaches for solving a wide variety of real-world optimization 
problems. In this paper, we discuss many scenarios where we can or cannot use dif-
ferent NI methods in tackling real-world optimization problems. We also enrich our 
survey with many studies for the reader to prove the efficiency and efficacy of using 
NI methods to tackle many real-world applications. Therefore, NI methods should 
be considered as alternative reliable approaches in the absence of exact methods to 
provide satisfactory solutions.

Keywords Optimization · Nature-inspired algorithms · Swarm Intelligence · 
Evolutionary Computation · Genetic Algorithms

1 Introduction

Constraint optimization is a search process for finding the best solution(s) meeting a 
set of problem requirements (constraints) and optimizing one or more objectives [1]. 
The main challenge is to find the optimal solution (assuming one single objective  
function) in a reasonable amount of time. Optimization algorithms are classified into: 
exact and approximate. While they guarantee to return the optimal solution, exact  
algorithms are limited, in practice, by their exponential time cost. For those problems 
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where these methods fail to return an optimal solution within a reasonable time, 
approximate methods including metaheuristics can be a good alternative. Indeed, 
metaheuristics do not explore the entire search space, and therefore trade the quality  
of the solution returned for the running time. Metaheuristics include nature-inspired 
(NI) which mimic a natural phenomenon from biology, physics, or ethology [2].

In the last decades, there has been a lot of attention devoted to NI algorithms, which 
are classified into: single-based and population-based solutions. In 1960s, L.J Fogel 
et al. introduced the basic concept of Evolutionary Programming (EP) [3]. In 1964, 
Rechenberg et al. introduced the evolutionary strategies (ESs). In 1975, John Holland 
introduced the basic concept of genetic algorithms (GAs)  [4]. In 1983, Kirkpatrick 
et al. proposed the simulated annealing (SA) algorithm that is inspired by the simulated  
annealing phenomena  [5]. In 1995, Kennedy and Eberhart introduced the particle 
swarm optimization (PSO) algorithm that mimics the movement of a flock of birds [6]. 
In 2002, Passino introduced the bacterial foraging (BF) algorithm that is built on the 
foraging behavior of E. coli bacteria  [7]. In 2007, Atashpaz-Gargari introduced the 
first idea of imperialist competitive algorithm (ICA) that is built on the imperialist 
competitive idea  [8]. In 2013, Cheng et  al. introduced the competitive swarm opti-
mizer (CSO) that is built on the same concept of PSO with some diffirences [9]. There 
are many other NI algorithms that have been proposed and achieved promising results 
[10]. In the paper, we review just few algorithms that have been implemented in too 
many different applications and proved their efficacy.

The focus of our paper is on when we can use NI algorithms, and what the main 
drawbacks of using them. The remaining of this paper is structured as follows. Sec-
tion 2 presents an overview of optimization algorithms, including exact and approxi-
mation methods. Section 3 describes the basic concept of single-solution based NI 
algorithms, such as SA. Section 4 presents the population-based NI algorithms. Sec-
tion 4.1 outlines the basic steps of Evolutionary Computation (EC) techniques: GAs, 
ESs, and EP are discussed as examples of EC algorithms. Section  4.2 presents a 
special class of NI algorithms called “Swarm Intelligence” (SI). The last sections 
describe the methodology to assess, in practice, the performance of a NI technique.

2  Overview of Optimization Algorithms

In [11], Archetti et al. classified global optimization algorithms into two main cat-
egories: exact (deterministic) and approximate (probabilistic), as shown in the tax-
onomy presented in Fig.  1. In addition, Fister et  al. classified many swarm intel-
ligence and bio-inspired algorithms in a well-organized way  [12]. A taxonomy of 
data-driven metaheuristics has also been reported by El Ghazali in [13].

2.1  Exact and Approximate Algorithms

Exact methods are systematic search techniques that explore the entire search space 
in order to find the optimal solution, such as dynamic programming, backtracking 
and its variants, branch-and-bound, and constraint programming techniques [14]. 
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These algorithms are deterministic, meaning that they follow the same search path 
across different runs for solving the same problem instance. While they guarantee 
to return the optimal solution, in some cases, these methods can be unpractical due 
to their exponential time cost, especially when dealing with NP-hard problems [15]. 
Exact algorithms can be used to solve hard optimization problems that have different 
levels of difficulties, such as size of the problem, hardness (tightness) of the con-
straints, and nonlinear characteristics. For example, in [16], the traveling salesman 
problem has been successfully solved for different instances using an exact method. 
In other words, some large instances might be solved by exact methods in a reason-
able time frame, while smaller instances fail to be solved. For many NP-hard prob-
lems, there is a region, called the phase transition, that includes the hardest problems 
to solve, regardless of the problem size. The phase transition can be seen as the bor-
derline between solvable and unsolvable problems [17].

Approximate algorithms are built upon the concept of randomness guided by 
different rules, without a guarantee of convergence. NI algorithms represent well-
known and efficient subclass of approximate algorithms that is inspired by differ-
ent natural phenomena. NI are considered general-purpose algorithms, and they are 
suitable for a wide range of problems and problem instances. This class of algo-
rithms have one (single-solution-based algorithms) or more (population-based 
algorithms) candidate solutions (also called agents). These latter are evaluated and 
rewarded with fitness values. Candidate solutions change over time depending on 
the application of operators, following some random parameters. NI techniques are 
designed following a trade-off between two main strategies: exploration and exploi-
tation  [10]. Exploration, also known as diversification, is the process of exploring 
a wider search space. Exploitation, also known as intensification, is the process of 
exploiting the best solutions found and intensifying the search locally. Using a good 
balance between these two strategies will help delivering satisfactory solutions in 
a reasonable time frame for black-box problems (problems that do not have clear 

Fig. 1  Optimization algorithms classification
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properties) and large-size industrial problem instances. NI have been used in many 
different industrial applications and has proven both efficiency and efficacy [18, 19]. 
In addition, this class of algorithms is the corner stone of many machine learning 
techniques [13]. The main disadvantage is that inconsistency cannot be proven for 
those overconstrained problems; however, it has the ability to efficiently produce 
good solutions.

2.1.1  Why and When to Use NI Algorithms

The choice of an appropriate algorithm for a given optimization problem is an open 
question in the optimization research community. There is no claim that a specific 
optimization problem can be solved with only one optimization algorithm, but the 
selection process of the right algorithm to solve a given problem in a reasonable time 
frame using minimal resources is a difficult and a tedious task. For instance, a dis-
continuous objective function cannot be effectively solved using a classical gradient-
based approach, such as hill-climbing, while the highly nonlinear problems can be 
solved with NI population-based methods [20]. Similarly, a constraint problem can be 
solved in polynomial time if its constraint graph representation is a tree [14].

There are several factors should be taken in consideration: the size of the problem 
(small, medium, and large), the type or structure of the problem (linear or nonlinear,  
continuous or discrete), the time limit  [10] (fast or slow), the desired quality of  
solutions (exact or approximate), the availability of resources, the easiness of imple-
menting the algorithm [20]. The structure of an optimization problem plays a sig-
nificant role over the size of the problem, because some easy–medium and large-size 
problems could be solved by exact algorithms in reasonable time frame. In some 
cases, a user needs an efficient algorithm to reduce the number of function evalua-
tions (time), because each iteration may take few hours or even weeks as in case of 
optimizing the mixing index of biomass optimization problem.

The first step to solving an optimization problem is to analyze its time and space 
complexity, and determine whether the problem can be reduced to a tractable one 
from the literature. In other words, a user might search in literature for the same or 
similar problem to the one that the user wants to tackle. The next step is to find the 
best appropriate optimization algorithm to solve that given problem in a time frame 
fit the user requirements. User should be careful and follow the recommended tun-
ing parameters from literature to avoid a deteriorated performance of the selected 
algorithm. Otherwise, a related problem could be found, so that its methodology 
might be followed. We also want to highlight those portfolio-based algorithm selec-
tors that can be used as guidance for the appropriate choice of the nature-inspired 
technique depending on the problem instance features and properties [21].

Exact algorithms are the best choice whenever they can be used to solve or assist 
in solving a given problem within a reasonable time frame, such as some polynomial 
time problems and some large-scale linear continuous problems. Therefore, it will 
be an unwise decision to use NI algorithms to solve easy optimization problems, 
where an exact algorithm is available.
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On the other hand, the use of NI algorithms is desirable and can be advantageous 
for approximate solutions. Using NI algorithms can be the best choice when a sim-
plified model is used or the model parameters are estimated using inexact or limited 
data [22]. For such problems that are inaccurately represented (due to incomplete/
uncertain information about constraints or objectives), using approximate methods 
can be better than time-consuming exact methods. In addition, NI algorithms could 
be used when a reliable exact method is unavailable or the available exact method is 
computationally undesirable (excessive time and or space). In those cases, NI algo-
rithms can sometimes produce a reasonably good solution with minimal time and 
space requirements. NI algorithms can also be used to enhance the performance of 
an existing exact method by providing good starting solutions or guiding the search. 
Furthermore, NI algorithms have been recommended to be used to save time when 
the same problem is going to be solved frequently, because they are simple to imple-
ment and easy to understand. Moreover, they help to gain insight into complex prob-
lems, while using minimal resources [23].

3  Single‑Solution‑Based NI Algorithms

Single-solution-based (SS-based) NI class of algorithms is also known as trajectory 
methods. Any member of this class starts with a single agent, candidate solution, 
and improves its fitness value in each generation (iteration). The candidate solu-
tion moves through neighborhoods or search trajectories within a predefined search 
space [24]. The trajectories are produced by an iterative mechanism and move from 
one position to another in the predefined search space. This class performs two fun-
damental operations into two phases: generation and replacement. In the following 
subsection, we discuss the SA algorithm, a popular and well-known single-solution-
based NI algorithm.

3.1  Simulated Annealing Algorithm

Annealing is a physical process where a certain alloy of metal, glass, or crystal is 
heated above its melting point. Then, it is cooled until it is eventually frozen into a 
perfect crystalline structure. The annealing process can produce high-quality materi-
als. The SA algorithm is a single-solution-based algorithm, and it is also known as 
Boltzmann annealing. It updates its candidate solution by random ascent that moves 
to avoid being trapped in a local minimum. It is considered a Monte Carlo algorithm 
for finding a global minimum for continuous functions. According to Boltzmann 
distribution, the probability of a physical system ( P� ) being at state � with energy E� 
at temperature T is given by:

where KB is the Boltzmann constant, T is the absolute temperature, and Z is a partial 
function described by:

(1)P� =
1

Z
e
(
−E�

KB
T)
,
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where the summation is over all states � with energy E� at temperature T. The 
Boltzmann distribution exhibits uniform preference for all states at high T regard-
less of the energy. However, when T decreases to zero, only states with minimum 
energy have nonzero probability of occurrence.

Several studies have been conducted to enhance the performance of the SA 
search algorithm in terms of accuracy and convergence rate. In [25], Harold et al. 
introduced a variant of SA that replaces the Boltzmann probability density with the 
Cauchy probability density. In [26], the generalized SA was proposed to generalize  
both Cauchy annealing  [25] and Boltzmann annealing  [5]. Microcanonic anneal-
ing (MA) is a variant of SA, that is built on the Creutz algorithm rather than the 
Metropolis algorithm [27]. In [28], Dueck et al. introduced a variant of SA known as 
threshold accepting (TA) methods. In [28], the results showed that TA outperforms 
SA in terms of search time.

3.2  Advantages, Limitations, and Applications of SS‑based Algorithms

In general, SS-based methods are effective, because they provide sufficient knowl-
edge about their behavior. In case of large instances, SS-based algorithms might per-
form better than population-based (P-based) algorithms  [29]. SS-based algorithms 
achieved a competitive performance against P-based algorithms on different Trave-
ling Thief Problem (TTP) instances [29]. SA is more suitable for the job shop sched-
uling problem than other algorithms, such as a tailored heuristic algorithm [30]. SA 
is the most dominant SS-based NI algorithm that has been used extensively in recent 
decades. The main advantage of SA is that it is a simple search algorithm to imple-
ment, and it is appropriate for solving black-box optimization problems [31, 32]. In 
addition, SA has a fast convergence compared to exact methods and other heuristic 
algorithms, and it is suitable to be used with problems that have a large number 
of local minima [33]. In [34], SA achieved better results than Bayesian algorithms 
(they are variations on a method developed by H. J. Kushner) in terms of computa-
tion time and number of function evaluations in optimizing the results of a computer 
simulation. In [30], the results showed that SA produced better results than tailored 
heuristic algorithm in solving the job shop scheduling problem. SA has been used in 
optimal design problems where many researchers consider SA as a tool in the devel-
opment process of optimal experimental design [35–38].

There are some limitations of using SS-based algorithms. They suffer from many 
function evaluations to reach the global optimum, which increase in search time [32]. 
The initial temperature of the cooling schedule should be set to an appropriate high 
value, which is another issue. A low initial temperature may cause the algorithm to 
get stuck in a local minimum, and a high initial temperature may cause difficulty in 
reaching the global optimal solution. In addition, the number of iterations at each tem-
perature step should be large enough to exploit each region in the search space [32]. 
Furthermore, the cooling schedule should be carefully selected, because it may affect 

(2)Z =
∑

�

e
(
−E�

KB
T)
,
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the quality of solutions. Users who have limited knowledge about SA may find the 
selection process of these parameters to be difficult. SA is not suitable for problems that 
have a limited number of local minima [33]. In SA, the neighborhood operators cannot 
effectively deal with clustered data when solving the vehicle routing problem. Thus, it 
is recommended to combine the improved SA with a data clustering method, such as 
k-means clustering [39]. In [40], it was shown that SA does not guarantee to solve a 
large instance of graph coloring problem. The authors suggested to split the time inter-
val into several runs and return the minimum value over all runs.

SA was proposed to solve combinatorial optimization applications, and it has been 
successful in this regard. For instance, in [41], Emden et al. applied the SA algorithm  
to solve the airline crew pairing problem. In  [42], Rosmalina et al. implemented SA 
along with a heuristic method to solve the railway crew scheduling problem. In [177], 
Wong et al. successfully implemented SA to solve the layout-routing of electronic cir-
cuits problem. In [170], Supatcha et al. implemented the SA algorithm along with a hill- 
climbing local search method to solve large-scale aircraft trajectory planning. In [39], 
an improved SA variant was applied to solve the vehicle routing problem with time 
windows. In  [40], Alper et  al. applied the SA algorithm to solve the graph coloring 
problem. In [31, 43], Delahaye et al. implemented the SA algorithm to solve two NP-
hard combinatorial optimization problems: the traveling salesman problem and the 
knapsack problem. SA has been implemented as well to solve continuous optimization 
problems. In  [44], the enhanced simulated annealing (ESA) variant was proposed to 
solve multimodal functions. In [45], David et al. have adapted SA for solving the quad-
ratic assignment problem. In [46], Alfonsas introduced an adapted version of SA called 
M-SA-QAP that has an advanced formula for calculating the initial and final tempera-
ture, and he proposed an original cooling schedule with oscillation that allows for both 
decreasing and increasing the temperature.

4  Population‑Based NI Algorithms

Population-based NI algorithms use a group of solutions rather than one single solu-
tion. This class of algorithms has two main subcategories: EC and SI. In EC algo-
rithms, individuals in the population are updated through recombination and mutation 
operators. These algorithms are built on Darwin’s evolutionary theory. In SI algo-
rithms, individuals in the population communicate in an intelligent way to explore dif-
ferent regions in the search space rather than using individual cognitive abilities alone. 
These algorithms are built on collective behavior of an organized group of, e.g., insects, 
animals, or plants. P-based NI algorithms include many well-known algorithms, such 
as GAs, ESs, EP, PSO, and BF.

4.1  Evolutionary Computation Algorithms

EC algorithms are also known as evolutionary algorithms (EAs). EC algorithms are 
built on Darwinian principle of nature’s capability to evolve and adapt to their envi-
ronment. This class of algorithms includes genetic algorithms (GAs), evolutionary 
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strategies (ESs), evolutionary programming (EP), genetic programming (GP), and 
so forth. All members of this class have the same idea of simulating the evolution 
of the candidate solutions using some operators: selection, recombination, mutation, 
and reproduction. These algorithms have been successfully implemented on differ-
ent optimization problems, such as data mining and knowledge discovery [47].

4.1.1   Genetic Algorithms

GAs take the basic idea of genetics in order to artificially construct an optimization 
search algorithm that is robust and can tackle complex black-box problems [48]. In 
1975, John Holland introduced the basic concept of GAs [4]. The basic mechanism 
of GAs involves nothing more than random number generations, string copies, and 
partial string exchanges  [49]. GAs have three basic operators: initialization, selec-
tion, and reproduction. In GAs, the initial population of chromosomes (called candi-
date solutions) is generated randomly in the problem search space and then encoded 
(as binary or real value). The solution process includes many generations (itera-
tions); and each generation consists of many function evaluations (objective function 
evaluations) of candidate solutions. The size of the initial population is a controver-
sial question in the literature. One group of researchers suggested using a popula-
tion that is sufficiently large to enhance the search diversity [49]. However, another 
group of researchers introduced the term micro-genetic (microGA) that refers to a 
small initial population with reinitialization [50]. In [51], Krishnakumar conducted 
the first comparison between the microGA and the basic GA. He concluded that 
microGA is faster and provides better results when applied to two stationary func-
tions and a real-world engineering problem (a wind-shear controller task) [51].

4.1.1.1 Genetic Algorithms Variants GAs are adaptable algorithms, so that they have 
many variants in different applications. A real-coded GA (the encoding is over the 
real number) can be used for global continuous optimization problems. The crossover 
operator is the main search operator in the GA. Researchers proposed many crosso-
ver operators for the real-coded GAs. In [52], Syswerda introduced the concept of 
the Uniform Crossover (UX) operator. In [53], Ono et al. introduced a real-coded GA 
using Unimodal Normal Distribution Crossover (UNDX). In [54], Ono et al. intro-
duced a crossover approach that combines UNDX and UX. The results showed that 
the proposed crossover approach can solve more different functions than GA using 
only the UNDX. In [55], Deb et al. introduced a crossover operator called Simulated 
Binary Crossover (SBX). In [56], Sánchez et al. introduced a hybrid crossover opera-
tor that generates multiple descendants from two parents, and the best two offspings 
will replace the parents in the next generation. In [57], Eshelman et al. introduced 
the blend crossover (BLX-� ), but it faces some difficulties when it is used to solve 
non-separable functions. In  [58], Takahashi et  al. introduced a crossover operator 
that combines the BLX-� and the Independent Component Analysis (ICA). Mutation 
operator has been used to improve the performance of GAs for functions optimization.  
In  [59], Munteanu et  al. introduced a mutation operator for real-coded GA called 
principal component analysis mutation (PCA-mutation). In [60], Korejo et al. pro-
posed the Directed Mutation (DM) operator that allows a GA to explore promising 
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areas in the search space. In [61], the authors introduced a popular non-domination-
based genetic algorithm for multi-objective optimization.

4.1.2  Evolution Strategies

ESs are a class of EA introduced in 1964 by Rechenberg and Schewefel [62]. The 
first ES algorithm, (1+1)-ES (two membered ES), is a simple mutation-selection 
schema, and it has a population of two individuals. The two membered ES algo-
rithm produces a single offspring using normal, Gaussian, distribution mutation. 
For the next generation, the best individual is elected by a selection operator. 
Rechenberg developed later the concept of the multimembered ES, ( �+1)-ES, 
where � is denoted to the number of parents, and they collaborate to generate � 
offsprings. In the multimembered ES, the best individuals among offsprings will 
be the parents of the next generation, while the current parents will be removed. 
In [63], Schwefel introduced two further variants of multimembered ES: ( �+�)-ES 
and ( � , �)-ES. In the ( �+�)-ES, parents ( � ) generate offsprings ( � ) using recom-
bination and mutation operators. The selection operator then selects the best indi-
viduals, equal to the number of parents, among the parents and offsprings ( �+� ) 
and discards the rest. In ( � , �)-ES, the number of generated offsprings is greater 
than the number of parents. Then, the best individuals, equal to the number of 
parents, is selected from the offsprings ( � ), and the parents of the offsprings are 
discarded no matter how good or bad their fitness value. In most recent variants of 
ES, the population of size � is used, and an additional operator called recombina-
tion ( � ) is implemented. There are two other variants were built on the concept of 
that recombination operator: ( �/�+�)-ES and ( �/� , �)-ES

4.1.3  Evolutionary Programming (EP)

EP is a stochastic optimization search approach that belongs to the EAs family. 
In [3], in 1960s, L.J Fogel et al. introduced the basic idea of EP to artificial intel-
ligence. In [64], in 1990s, David B Fogel introduced again the EP concept to solve 
many problems, such as numerical and combinatorial optimization and machine 
learning  [65–67]. Mutation is the main operator in EP, while crossover operator 
is the main operator in GAs. The EP algorithm has two major operators: mutation 
and selection, but it does not have any kind of recombination operators. Mutation 
generates offsprings, while selection selects the best individuals among parents and 
offsprings for the next generation. In EP, the initial population is randomly gener-
ated based on a density function, and each individual is evaluated using an objective 
function. Then, mutation is implemented for generating new offsprings. The muta-
tion operator is implemented by perturbing each parent in the population . This is 
done by adding a random number of specific distribution, e.g., normal distribution. 
In [173], David B Fogel et al. introduced the meta-evolutionary programming (meta-
EP) idea. Meta-EP has the capability to discover the appropriate degree of pertur-
bation for a given problem that makes the meta-EP has a self-adaptation of vari-
ances for the mutation operator. The self-adaptive EP is widely used for continuous 
parameter optimization problems. The first non-Gaussian mutation was introduced 
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in the mid-1990s by Yao. In  [68], Yao et  al. introduced an EP variant called fast 
EP (FEP), which uses Cauchy instead of Gaussian mutation operator as the primary 
search operator. Cauchy probability distribution has a much longer tail; therefore, 
the offsprings could be totally different from their parents. In [69], Yao et al. later 
introduced an improved FEP (IFEP) variant. In [70], Lee et al. introduced a general-
ized version of FEP by using Lévy probability distribution, which is a general case 
of Cauchy probability distribution.

4.1.4  Advantages, Limitations, and Applications of EC Algorithms

EC algorithms receive much attentions for their advantages and capability in solv-
ing hard real-world optimization problems in different fields of science. They 
have been applied to problems that could not be solved using heuristic algorithms. 
In  [71], David B Fogel summarized the main advantages of EC algorithms. The 
main advantage is that they are conceptually simple, and they can be applied to 
any optimization problem. EC algorithms can be applied using any representa-
tion; therefore, the same procedure can be used for discrete and continuous opti-
mization problems. In addition, EC algorithms outperform classical methods on 
real-world problems, and they have significant advantage over classical methods 
in solving mutlimodal functions. Furthermore, EC algorithms provide a methodo-
logical framework that is usable as it is or can be combined with other optimi-
zation method. They can be used as appropriate methods when problems have: 
dynamic situations, i.e., the goal or constraint changes over time  [72], parameter 
adjustments, rough or discontinuous landscape, and disturbed fitness measure-
ments  [73]. EC algorithms are a highly parallel process, and they have the capa-
bility to optimize their parameters as a part of the search for optimal solutions. 
Perhaps the greatest advantage is that EC algorithms have the ability to address 
problem where human experts do not exist. The EC community has been criticized 
for considering uniform standard instances, which are much easier than real-world 
applications. However, in [74], Dimopoulos et al. introduced a significant work to 
present the contribution of EC algorithms towards realistic problems taken from 
manufacturing plants. In theory, the effectiveness of an EC algorithm depends on 
the relationship between crossover and mutation as applied to a chosen representa-
tion [71]. They can be combined with other classical or heuristic algorithms [32]. 
The GA achieves much better solution than exact approaches in solving pipe opti-
mization problem in terms of speed and quality of solutions [75]. In [76], Chu et al. 
introduced a GA to solve the generalized assignment problem. In [77], Alba et al. 
introduced a good survey to prove that parallel GAs enhances the computation over 
regular GAs, and helps in producing better solution. In  [78], the authors imple-
mented adaptive genetic algorithm along with fuzzy logic to propose a classifier to 
diagnosing heart disease. In [79], the authors implemented the genetic algorithm to 
solve supercapacitor charging problem.

However, EC algorithms have some limitations as well. EC algorithms should not 
be used to solve a given problem where there is a traditional method that can solve it, 
because EC algorithms cannot be better with less computational effort [73]. In [80], 
Back concluded that EC algorithms are not appropriate methods to solve strongly 
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convex problems. In  [81], Moslemipour et  al. summarized some drawbacks about 
GAs. They may find a suboptimal solution, and they are not guaranteed to reach the 
global solutions. The mutation and crossover rates affect the stability of the algorithm, 
and they have difficult encoding schema. In  [82], Leung et  al. concluded that GAs 
suffer from premature convergence. The authors suggested that increasing the popula-
tion size plays an important role to help overcome this problem. The effectiveness of 
GAs depends on the population size and crossover and mutation rates; therefore, these 
parameters should be selected carefully [33]. For instance, increasing the population 
size or the number of generation will lead to an increase in search time. In addition, 
the formulation of the fitness function is not an easy process. In [83], a binary-coded 
GA presents unsatisfactory results in solving multimodal functions with respect to 
real-coded differential evolution (DE). DE may offer easier convergence by increasing 
the number of parents and reducing the scaling factor; however, DE, may then suffer 
from high computational time. The basic EP algorithm has a slow conversion in solv-
ing some multimodal optimization problems [69]. However, in [84], EP outperforms 
GAs in solving constraint optimization problems. ESs and EP share common features, 
but EP does not have a recombination operator. ES algorithms were developed to 
solve continuous optimization problems. They have the flexibility to develop a new 
robust method for a given problem [73]. In [85], Swayamsiddha et al. concluded that 
the differential evolution algorithm provided the best results for solving a nonlinear 
system identification compared to GA and PSO. The differential evolution algorithm 
outperforms GA in solving a suit of benchmarks in terms of number of function evalu-
ation [86]. In [87], the Bayesian optimization algorithm achieved better performance 
than a complex multi-population GA in tackling Nurse Scheduling Problem (NSP).

EC algorithms have been extensively used in many applications. In routing prob-
lems, the traveling salesman problem  [88] is one of the most well-known combi-
natorial optimization problems that has been solved using EC algorithms  [89]. In 
scheduling problems, the job shop scheduling problem is an NP-complete problem 
that has been solved using EC algorithms  [90]. In packing problems, a design of 
layout for integrated circuits is a well-known example  [91]. EC algorithms have 
been implemented in different design applications, such as finite impulse response 
(FIR) [92, 93], infinite impulse response (IIR) [94, 95], signal processing [96, 172], 
integrated circuit design [96, 176, 180], artificial neural networks [175, 178, 179], 
telecommunication [168, 171], and engineering applications [96, 97]. GAs have been  
implemented in different applications in mechanical engineering: material science 
and manufacturing  [98]. EC algorithms have been used in system identification  
and simulation applications [99]. System identification is used for model structure 
selection and parameter estimation, while system simulation process is to determine 
how the system will behave. In [100], Abd Samad introduced a good survey about 
the usage of EC algorithms in the field of system identification in the last 40 years. 
In addition, EC algorithms have been implemented for critical applications: on-line 
and off-line control system engineers  [101]. In  [102], Fleming et  al. introduced a 
survey of using EC algorithms in control system, and they concluded the impor-
tance of EC algorithms in control system applications. Furthermore, EC algorithms 
have been used extensively in data mining [103], image processing [104, 105], and 
classification [106].
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4.2  Swarm Intelligence Algorithms

SI algorithms are inspired by the collective behavior of species, such as fish, birds, 
ants, wasps, bees, termites, and bacteria [107]. The SI theory is built on the social 
behavior of those species that compete to obtain the best source of food. The SI 
Population consists of particles (agents) that cooperate by an indirect communica-
tion medium to improve their fitness in the search space. PSO is the most dominant 
SI algorithm, and there are thousands of papers about its variants and applications in 
different fields. We give few popular examples of SI algorithms: PSO, BF, and ICA.

4.2.1  The Particle Swarm Optimization Algorithm

In 1995, Eberhart and Kennedy introduced the first idea of particle swarm optimiza-
tion [6, 108, 109]. PSO mimics the movement of a flock of birds. Each bird in the 
flock is associated to a particle (candidate solution). The position of each particle in 
the search space is updated based on the previous best position of the particle itself 
(local position) and the best position of the entire flock (global position). The PSO 
algorithm updates the position of each particle using the following equation [108]:

where xid is the position of a particle i, the superscript k denotes the iteration rank, 
and vid is the velocity of the particle i. The velocity of the particle i is updated using 
the following equation:

where the vk
id

 is the previous velocity of the particle i that provides the necessary 
momentum for moving around the search space. The constants c1 and c2 are also 
known as the acceleration coefficients, and r1 and r2 are uniform distribution random 
numbers in range [0,1]. Pk

id
 is the local best position for the particle i at iteration k, 

and Pk
gd

 is the global best position at iteration k.
PSO has too many variants that have been introduced and marked the history of 

PSO over the last three decades. In  [109, 110], Shi and Eberhart proposed a vari-
ant of PSO called inertia weight PSO that has an extra parameter called inertia 
weight ( � ). In  [110], Shi and Eberhart proposed a variant called PSO time vary-
ing inertia weight (PSO-TVIW) in which the inertia weight decreases along with 
time. In [111], Zheng and Ma proposed another PSO variant that increases the iner-
tia weight value during the course of the run. In [109], Shi et al. reported that large 
inertia weight values enhance the global search, while small inertia weight values 
enhance the local search. In [112], Clerc and Kennedy introduced the canonical PSO 
variant, which has a constriction factor that helps in controlling the convergence 
properties of the particles. In  [113], Mendes and Kennedy proposed another vari-
ant of PSO called Fully Informed Particle Swarm (FIPS). In [114], Ratnaweera and 
Halgamuge proposed another variant of the PSO algorithm called PSO time varying 

(3)xk+1
id

= xk
id
+ vk+1

id
,

(4)vk+1
id

= vk
id
+ c1 × r1[P

k
id
− xk

id
] + c2 × r2[P

k
gd
− xk

id
],
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acceleration coefficient (PSO-TVAC) based on the PSO-TVIW variant. In  [174], 
Higashi et al. introduced the “mutation” concept to the PSO algorithm and proposed 
a variant called mutation PSO (MPSO). In [114], the authors introduced a variant 
called mutation PSO with a time varying acceleration coefficient (MPSO-TVAC). 
In  [114], Ratnaweera and Halgamuge introduced self-organizing hierarchical PSO 
(HPSO). The CSO is proposed to tackle large-scale problems. In [9], although CSO 
is built on the PSO idea, the neither the local best position nor the global best posi-
tion is involved in updating the particles’ positions. In addition, CSO updates only 
half of the population in each iteration. The CSO is introduced to tackle large-scale 
optimization problems to solve problems of high dimension up to 5000. In [115], a 
modified CSO (MCSO) is proposed as a varaint of CSO where two-thirds of of the 
population are updated by a tri-competitive criterion. The results show the superior-
ity of MCSO over the basic CSO version. In [116], a variant of CSO is introduced 
called Inherited Competitive Swarm Optimizer (ICSO). The variant is built on both 
the human learning principles and the CSO, and the results show better performance 
than the basic CSO over CEC2008 benchmark problems.

4.2.2  Bacterial Foraging Algorithm

E. coli have a control system that gives them the ability to search for food and avoid  
noxious regions  [7]. In  [7], Passino introduced a SI algorithm called bacterial  
foraging. The algorithm is built on the foraging behavior of E.coli. The BF algorithm  
consists of four phases: swim or tumble, chemotactic, reproduction, and elimination 
and dispersal. The swimming phase is represented by one or more steps in the same 
direction as its previous step. The swimming decision is made when a bacterium 
achieves better fitness value, while the tumble (change direction) decision is made 
when the bacterium receives a worse fitness value. Thus, a bacterium keeps swim-
ming until it reaches the maximum number of swimming steps Ns or it reaches a 
anxious region, and it is called the chemotactic phase. After completing chemotac-
tic steps Nc steps, the fitness value of each bacterium during its lifetime is accumu-
lated. Then, the bacteria are sorted in an ascending order based on the accumulated 
fitness value. The new population is divided into two equal parts, least healthy bac-
teria and most healthy bacteria. The least healthy bacteria die, removed from the 
search space, and most healthy bacteria is split into two bacteria that are placed at 
the same location, which is called reproduction phase. Thus, the number of indi-
vidual in the population after each reproduction phase is constant. After completing 
all reproduction Nre steps, the elimination and dispersal event occurs. In the elimi-
nation and dispersal event, each bacterium in the new population is subjected to be 
eliminated and dispersed with probability Ped.

4.2.3  Imperialist Competitive Algorithm

The ICA is built on the socio-politically imperialism concept where an agent in the 
population is represented by a country. The agent in the population could be colonies 
or imperialists where the stronger empires try to colonize the weakest colonies from 
weaker empires and make them part of their colonies [8]. The ICA was introduced 
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and evaluated on different benchmark functions, and the results show its ability to 
tackle different optimization problems. The basic version of ICA was proposed to 
solve continuous optimization problems such as tuning neural network weights for 
UCAV global path planning [117]. Later version of ICA was implemented to tackle 
discrete optimization problem such as Traveling salesman problem (TSP), flowlines 
scheduling problems (FSP), facility line design problem FLP.

4.2.4  Advantages, Limitations, and Applications of SI Algorithms

SI have many advantages over traditional optimization techniques and the main ones 
are: scalability, adaptability, collective robustness, and individual simplicity  [118, 
119]. SI algorithms are highly scalable, and their control mechanism does not 
depend on the population size. They are self organized techniques whose individuals 
interact in direct or indirect ways through the search space. Thus, they have the abil-
ity to adapt the behavior of individuals in the population to any dynamic changes 
on the run time. The performance of SI algorithms in tackling different optimiza-
tion problems proves their robustness where there is no single point of failure, but 
their individuals cooperate and repeat the same behavior. In [120], Elbeltagi et al. 
compared five algorithms: genetic algorithms, memetic algorithms, particle swarm, 
ant colony systems, and shuffled frog leaping. The results showed that PSO is the 
best among all algorithms in terms of computational efficiency. The main advan-
tage of PSO over GA is that it is more simpler, robust, and faster in convergence. 
In [121], Hassan et al. conducted a number of experiments and concluded that PSO 
is more computationally efficient than GA. PSO has the ability to control its conver-
gence using its inertia weight better than GA using the rates of crossover and muta-
tion  [122]. PSO using small population size performs better than GA using large 
population size. In [169], Veeramachaneni et al. concluded that PSO is better than 
GA in solving continuous optimization problem. In  [123], the results showed that 
PSO is better than GA in solving profiled corrugated horn antenna design. In [124], 
Afandie et  al. conducted an experiment to compare between BF and EP in solv-
ing optimal load shedding. The results showed that BF outperforms EP in terms of 
quality of solutions and speed. In  [125], Alsariera et  al. implemented BF and the 
bat algorithm on several continuous benchmark functions. The results showed that 
BF provides more accurate solutions compared to the bat algorithm (BA), but BA 
exhibits faster convergence rate. In  [126], Kamalanand et  al. summarized that BF 
achieved higher efficiency than PSO in computing the optimal dosage of antiretro-
viral drugs for therapy planning in HIV/AIDS patients. The ICA has a key feature, 
which is its fast convergence. It has been implemented to tackle different optimiza-
tion problems [127].

SI algorithms are growing fast, and they offer an alternative way for tackling com-
plex problems, but they have some limitations and challenges: parameter tuning, 
stagnation, and time critical applications. Unlike deterministic methods, stochastic 
algorithms, including nature-inspired techniques, embed inherent randomness that 
makes them sensitive to parameters tuning. Parameter tuning for SI and other rand-
omized algorithms is one of the most important but difficult tasks. Regardless of how 
sensitive a given randomized algorithm is to its random parameters, tuning should 
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be conducted following an appropriate methodology in order to have a fair compara-
tive assessment of performance. Actually, parameter tuning can be seen as an opti-
mization problem requiring an adequate solving method. There are two main cate-
gories of parameters’ tuning: off-line and online. Off-line parameter tuning can be 
done manually following a trial-and-error manner, or automatically [128]. A group of 
researchers suggested that SI algorithm parameters are predefined in a trial and error 
manner based on the problem characteristics, which is considered as an old fashion. 
Automatic parameter tuning can be used to enhance the performance of an algorithm 
without requiring a prior knowledge. In addition, it prevents us from missing relevant 
parameters values, which can be the case if we follow a trial-and-error manner. In 
this regard, in [129, 130], racing techniques use statistical test to exclude parameters’ 
values that achieve lower performance.

Online tuning takes place during the run time period, and can be adaptive/self-
adaptive or deterministic  [131–134]. This means that a trial start of parameters’  
values is initiated, and these latter are improved during the run-time of the algorithm. 
In the online-deterministic technique, the parameters’ values are updated based on 
deterministic rules (such as increasing or decreasing weights in a PSO technique) 
that are updated every set of iterations. The online-deterministic method is diffi-
cult as determining the number of iterations at which the parameters will update is  
not clear. The self-adaptive method is a process where the parameters’ values are 
updated based on the fitness of solution. A good survey paper on self-adaptive meth-
ods can be found in [135].

SI algorithms may suffer from stagnation and convergence to local minima, 
because they do not have central coordination. In [136], Clerc introduced stagnation 
analysis for different PSO variants. For instances, in [137], the author concluded that 
a hybrid algorithm that combined Hopfield neural network and MNC local search 
outperforms PSO in tackling CSP problem. The ICA also suffers from stagnation 
problem when it is implemented for high dimension and complex multimodal func-
tions. In  [138], Abdi et  al. introduced a variant of ICA called GICA to overcome 
the stagnation problem and the results show a a significant improvement over the 
basic ICA. In addition, the ICA effectiveness, limitations, and applicability in many 
domains are investigated [139].

In BF, elimination and dispersal helps in reducing the stagnation behavior [140]. 
In [141], stagnation occurs in ACO when all ants to follow the same path to reach 
destination. Sharvani discussed a few way to alleviate stagnation in ACO. In [142], 
Soundappan introduced a way to avoid stagnation in ABC. In addition, time critical 
applications require critical decision, control of the system, and acceptable solutions 
within restricted time frames; such as in underwater sensor networks [143]. SI algo-
rithms are not applicable for time-critical applications, because the solutions of SI 
algorithms are not predefined. However, they are suitable for non-time critical appli-
cations. In [144], Pal et al. compared four different SI algorithms: PSO, ACO, ABC, 
and FA. The author summarized the advantages and disadvantages of each SI algo-
rithm, and summarized in general the advantages and limitations of SI algorithms.

SI algorithms have been successfully implemented in many applications. In [145], 
Fornarelli et al. introduced a comprehensive reference of using SI algorithms in the 
field of electrical and electronic engineering. In addition, Bai et al. introduced a survey 
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of implementing the SI algorithms in the electric power system. In  [18], Karaboga 
et al. introduced a comprehensive survey about ABC and its applications in electrical, 
electronic, and control engineering. SI algorithms have been implemented in differ-
ent applications in mechanical engineering, such as modeling of mechanical proper-
ties of as-cast Mg-Li-Al alloys [146], structural damage assessment using FRF [147]. 
In [18, 19], the reader can find more applications in mechanical engineering. In addi-
tion, SI algorithms have been widely used to solve different optimization problems in 
the civil engineering  [19, 148]. Furthermore, they have been used in medical engi-
neering, such as diagnosing the medical diseases, classification of magnetic resonance, 
parameters adjustment of medical microdevices [19]. In [149], Omran completed his 
PhD in image processing using PSO. Furthermore, they have been used extensively 
in biomedical research. The key challenge in biomedical problems is located in the 
huge amount of their data; therefore, problems require approximate algorithms rather 
than exact algorithms. In [150], Poli et al surveyed more than 25 different biomedical 
problems that have been solved using PSO, such as gene selection and cancer classi-
fication [151], cancer survival prediction [152], protein structure prediction in the 3D 
HP model [153], identify transcription factor binding sites [154], drug design [155]. 
In addition, they have been implemented in communication theory, such as antenna 
selection in multiple-input-multiple-output (MIMO) system [156], optimizing cover-
age in indoor Ultra-wideband (UWB) communication system [157], scheduling multi-
channel and multi-timeslot in time constrained wireless sensor networks  [158], and 
non-linear channel equalization [159]. In [160], a hybrid ICA and GA is implemented 
to the multi-processor open shop scheduling problem. In [161], the CIA was imple-
mented to design a linear induction motor. In [162], ICA was utilized to optimize the 
skeletal structures. In [163], the authors proposed a variant of ICA called chaotic ICA, 
and it was used as image matching approach. In [164], ICA is implemented in solving 
integrated product mix-outsourcing optimization problem. In [165], the authors imple-
mented ICA for materials property evaluation from indentation test curve. In  [166], 
ICA was implemnted to tune the IPD controller. In  [167], ICA was implemented 
to tackle the scheduling of receiving and shipping trucks in cross-docking systems. 
In [139], ICA is implemented to tackle the assembly sequence planning problem.

5  Performance Analysis of NI Algorithms

The performance analysis of NI algorithms is a significant task that should be done 
fairly. In this section, we discuss several guidelines that should be taken into consid-
eration when evaluating a NI algorithm and/or comparing NI algorithms rigorously. 
Three phases should be implemented when conducting a performance analysis of a 
NI algorithm rigorously: experimental design, measurement, and reporting [181, 182]. 
During the experimental design phase, the goals of the experiments are set up, and the 
input instances are defined. During the measurement phase, all measures to be com-
puted are selected. The results that are obtained by applying different statistical analy-
ses should be reproducible. The reporting phase is the final stage in which the results 
are presented in a comprehensive way.
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5.1  Experimental Design

In the experimental design phase, all goals should be clearly defined as a first step, 
such as search time quality of solution. The second step is the appropriate selection 
of the input instances. There are two main types of input instances: real-life instances 
and constructed instances. Real-life instances are considered the most appropriate 
benchmarks for a performance evaluation of NI algorithms; however, it is not easy to 
obtain. On the other hand, constructed instances, also known as standard instances, are 
available to the public on the internet, and they include well-known instances for con-
tinuous optimization or discrete optimization. The main disadvantage of the standard 
instances is that they do not reflect the level of difficulty of the real-world problems. In 
continuous optimization, there are several well-known benchmarks, such as Schaffer, 
Ackley, Griewank, Rastrigin, Rosenbrock,...etc. This group of standard instances has 
different properties, such as uncorrelated, nonseparable, nonlinear, and nonsymmetric. 
These properties help to mimic the real-world problems. In addition, NI algorithms 
have parameters that should be tuned, because those parameters’ values have signifi-
cant influence on the robustness of the algorithms and the obtained quality of solu-
tions. In the performance evaluation process, input instances should be divided into 
two parts: parameters calibration and performance evaluation. The obtained values of 
those parameters should be the same for all instances during the experiment.

5.2  Measurements

In the measurement phase, the performance indicators are selected for evaluation, 
and statistical analysis is applied to obtain the desired results. Exact algorithms 
guarantee the global optimal solution. Search time is considered the main indicator 
to evaluate the efficiency of an exact algorithm; however, other indicators beside 
the search time should be taken into consideration when evaluating NI algorithms, 
such as quality of solutions, computational effort, and robustness [181]. The qual-
ity of solutions is evaluated in terms of precision. Computational effort represents 
the computation time; it is defined as CPU time including preprocessing and post-
processing time [182]. The number of function evaluations is used often as an indi-
cator for computational effort. Robustness is the insensitivity against small changes 
in the input instances or NI parameters. It is one of the indicators to measure the 
performance according to input instances that have different properties.

Given the randomness of the NI techniques and also the problem instances (when 
randomly generated instances are used). Statistical analysis methods are applied 
after the results are obtained for different measures. Those methods are used to con-
duct an assessment of the evaluated NI algorithm. Average and standard deviations 
are aggregate numbers that should be taken into consideration when using any per-
formance indicator, such as quality of solutions and its associated computational 
effort. Then, statistical tests are applied to analyze and compare NI algorithms. Sta-
tistical tests are used to estimate the confidence of results being scientifically valid, 
such as t-tests and ANOVA tests. The t-test is applied under normal conditions, and 
ANOVA test is used to compare more than two algorithms.
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5.3  Reporting Experimental Evaluation Results

Presenting the results is an important factor that helps researchers gain insight of the 
experiments. Using tables to present large amounts of data is not sufficient; there-
fore, visualizing the results (through charts) is considered as a complementary step 
in understanding the results [183]. The relationship between performance indicators, 
such as quality of solutions, search time, robustness, and size of instances can be 
represented graphically. Graphical representation has different forms, such as devia-
tion bars, scatter plots, and interaction plots. The compromise between different per-
formance measures can also be represented using scatter plots, such as the relation-
ship between quality of solutions versus time, or robustness versus time or quality.

6  Conclusion and Future Directions

This work reports on a survey on nature-inspired methods. These techniques are 
good alternatives, when exact methods fail to solve a given combinatorial problem 
in a reasonable amount of time. The survey includes some of the most popular NI 
methods and their significant variants as described in the literature. The advantages 
and limitations of NI algorithms have been discussed for each category. We sup-
port this work with additional valuable references that help the reader to get a better 
understanding of NI algorithms for real-world applications. The significant num-
ber and variety of the applications that have been successfully solved using NI tech 
demonstrate their efficiency. A well-designed experiment to evaluate a NI algorithm 
is explained at the end of the survey [184].

Each NI algorithm depends on tunable parameters, and the tuning process is an 
open area of research. Those parameters influence the complexity of the algorithm 
and make the analysis process more complex. There are several studies that have 
been conducted to help resolve this issue [131, 134, 185]. For instance, the param-
eters may be adaptively tuned during run time. Recent research has concluded that 
the tuning problem of NI algorithms is somewhat similar to the tuning problem 
faced in machine learning [186].

One of the main challenges is that the performance of most NI algorithms 
deteriorates when the dimension and size of the problem increases. Recent 
research trends involve the development of powerful new NI algorithms to tackle 
large-scale optimization problem. Thus, scalability for high-dimensional problem 
becomes a significant factor when proposing new NI algorithms. For instance, 
cooperative coevolving PSO (CCPSO) is a variant of PSO that was proposed to 
address the issue of scaling up when solving large-scale optimization problems 
(up to 2000 real-valued variables). In addition, there is another research trend 
to enhance the performance of NI algorithms by developing hybrid optimization 
methods. Many research works have been conducted in the last decade regarding 
the hybridization of NI algorithms with other algorithms: exact or approximate. 
In [187], Christian introduced a survey about hybridization of NI algorithms with 
other algorithms.
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In addition, we listed guidelines to be followed by anyone planning to pro-
pose a new nature-inspired technique (in addition to sharing the related code, as 
stated earlier). These guidelines are meant to address the address the “metaphor-
based nethodologies” that some researchers are proposing and claiming to be 
new techniques, while they are actually embedding old ideas taken for known 
metaheuristics.

In recent years, we are experiencing more and more proposed nature-inspired 
methods. Unfortunately, some of these new techniques are more of “metaphor-
based nethodologies” disguising and embedding old ideas taken for known 
metaheuristics [188]. In order to address this issue, several guidelines have been 
discussed in order to refrain from proposing similar methods [182, 188, 189]. We 
can summarize these guidelines as follows. Any new proposed nature-inspired 
method should have innovative basic ideas [188]. The components of a proposed 
algorithm should be well described and evaluated. The relations between these 
components and those in existing techniques such as GAs and PSOs should be 
well defined. The proposed method should demonstrate an actual contribution 
to the field. A rigorous methodology, including experiments demonstrating the 
merits of the new method, through fair comparative performance, should be con-
ducted. The results, validated through statistical models, should clearly show the 
superiority of the new technique for some relevant instances.

Scientists concluded that we are in need of a unique publicly available software 
framework for NI algorithms to reduce the development effort and help compare 
NI methods  [10]. In  [189], Burke et  al proposed an object oriented framework 
that is used in evaluating approximate search algorithms. We suggest a frame-
work/platform that includes the code and problem instances for all published 
algorithms. This platform can be overseen by a dedicated NI committee who will 
be responsible for collecting and reviewing code and problem instances. We also 
encourage any researcher who plans to publish a new algorithm or a variant, to 
submit the related code and instances to the NI committee.

Finally, proposing efficient topologies is an open area of research. Topolo-
gies describe how agents in the same population communicate with one another. 
Many theoretical studies on such topologies have been conducted to improve 
the performance of different algorithms. Understanding topologies is an impor-
tant step toward understanding the behavior of different search components in NI 
algorithms.
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