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Abstract
In this paper, a double-type double-standard model (DtDsM) for maximal covering 
location problem is proposed which has several applications in determining the 
location of public emergency facilities. DtDsM includes two types of facilities: 
normal and backup facilities. Although backup facilities have a greater coverage 
distance, they offer not a full service but only a primary service. In DtDsM, each 
demand point must lie within the coverage distance of a backup facility if it does 
not lie in the coverage distance of a normal facility ensuring it to receive minimal 
primary services within a predetermined time. Furthermore, an accelerated Benders 
decomposition algorithm is proposed to solve the model. The speed and accuracy of 
the algorithm are compared with the commercial solver CPLEX.

Keyword Maximal covering · Public emergency services · Backup-facility location · 
Accelerated Benders decomposition

1 Introduction

The maximal covering location problem (MCLP) aims to locate a fixed number of 
facilities to cover, within a given coverage distance, as many demands as possible. 
MCLP is a very important model to provide social and economic services (such 
as the placement of health centers, fire stations, emergency warning sirens, chain 
stores, etc.) in order to maximize certain benefits (see, e.g., [1] and [2]).
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The classical MCLP, presented in [3], seeks to maximize the number of covered 
demands within some desirable maximum coverage distance S . However, public 
services such as emergency medical services (EMS) should be available to all 
citizens. In fact, even if a patient is in an area where no ambulances can reach 
there within a reasonable time, the patient must still be responded by an existing 
ambulance base. Hence, the “Maximal Covering with Mandatory Closeness 
Constraints (MCMCC)” was proposed in [3] to provide some form of fairness for 
the demands not served within the desirable coverage distance S . By this model, 
besides the objective of maximizing the amount of demands served within the 
distance S , it is ensured that each demand point will find a facility within a less 
desirable coverage distance T  ( T > S).

Although MCLP is widely studied in the literature, there are a few works on this 
problem with different coverage distances while the latter is very important and more 
applicable in many real situations. For example, in the real world, different emergency 
vehicles with different coverage distances can be applied in an emergency service 
system. More precisely, it is obvious that in heavily congested streets of a big city such as 
Tehran, a motorcycle is faster (as well as cheaper) than a van, and it can traverse a longer 
distance than a van within a standard response time (e.g., 8 min), and hence, the type of 
vehicles in an emergency base specifies its coverage distance. MCMCC can be referred 
to as the first MCLP with different coverage distances. As an extension of the MCMCC, 
Gendreau et al. [4] proposed a so-called double standard model (DSM) in which, similar 
to (MCMCC), two coverage distances S and T ( S < T ) are considered for a single type of 
facility and every demand point must be covered by a facility within T while its objective 
is to maximize the demands that are covered at least twice within S . A dynamic version 
of DSM was developed in [5]. Some other models, such as [6] and [7], incorporated 
the concept of backup coverage. These models try (usually as a second objective) to 
increment the number of (say backup) facilities that cover a demand point.

Another model which considers different coverage distances is presented in [8]. 
However, the mentioned model does not consider the concept of backup facilities and 
just presents a multi-level extension of MCLP which tries to cover each demand by 
an as close as possible facility. In addition to the above-mentioned articles, Jabalameli 
et  al. [9] supposed that the coverage distance of each facility can be controlled by 
decision-maker, and they considered the coverage distance as a function of the 
amount of money invested on the facility.

In the present work, we propose a variant of MCLP entitled double-type double-
standard model (DtDsM) to deal with the location-allocation problem of two types of 
facilities: normal and backup facilities. Similar to [9], the two types of facilities (can) have 
different costs and different coverage distances. However, in DtDsM, it is not necessary 
for a facility with longer coverage distance to be more expensive.

The concept of backup facility in DtDsM is different from before. Unlike the above-
mentioned models, here, we do not have only a single type of facility, and we do not aim 
to cover the demand points by as much as possible facilities. In fact, by backup, we do 
not mean multiple coverage, but the provision of primary services to the demand points 
within a standard time by a backup facility (if necessary).
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Similar to MCMCC and consequently DSM, the proposed model DtDsM 
ensures that a less quality service will be available at each demand point. 
However, the former models translate this as availability of a facility within a less 
desirable distance while the latter translates it as availability of (at least) a less-
quality facility (i.e., a type II or backup facility which offers only some primary 
services) within a standard time. In other words, each demand point must lie 
within the coverage distance of a backup facility if it does not lie in the coverage 
distance of a normal facility. This is another difference between DtDsM and the 
model of [9] which does not care about the too long distance between a demand 
point and the facility that serves it but only cares about the relation between the 
cost of a facility and its coverage distance.

The main objective of DtDsM is to maximize the amount of demands which 
can receive a full service (from a type 1 or normal facility) within the considered 
standard time (similar to the classical MCLP). However, as a second objective, it 
tries to minimize the total distance between the demand points that do not receive a 
full service on time and the normal facilities closest to them.

DtDsM can be useful in determining the location of facilities in public 
emergency services such as emergency medical services (EMSs), rescue and 
firefighting services (RFFSs), etc. Consider two important types of EMS vehicles: 
van-based ambulances as the normal facilities and motorcycle-based ambulances 
(motorlances) as the backup facilities. Then, if DtDsM is applied to locate EMS 
vehicles, it is ensured that each demand will receive at least the primary medical 
services by a motorlance (backup facility) within a standard waiting time (e.g., 
8  min, due to its smaller size, motion abilities, road infrastructures, etc.) before 
a van ambulance reaches the demand and serves it full emergency services (and 
takes the injured to a hospital). This fast service extremely reduces the number 
of casualties in severe accidents before reaching the van ambulances with more 
complete medical equipment. It is worth knowing, as an example, that in the last 
few years, 200 motorlances have been purchased and added to Tehran’s emergency 
fleet1, and DtDsM could be a good suggestion to be applied for determining their 
locations (See [10], for a survey on optimization models in emergency services).

We now consider the importance of application of an efficient solution algorithm 
for dealing with the model. Due to the fact that in real-life applications the number of 
demand points and the facilities could be very large, the solution procedure of an MCLP 
may be a time-consuming task. On the other hand, the demand for facilities may fluctuate 
throughout a planning horizon such as a day, depending on the time of day.

A scenario-based model was presented in [11] to dynamically allocate the 
demands to the facilities in order to minimize the expected total costs under 
a finite set of scenarios. Also a multi-period model was proposed in [12] 
which considers some different time intervals (within a time horizon) in which 
significant changes in demand pattern occur. Their model aims to determine the 
minimum number of facilities and their locations for each time interval while 

1 http://dolat .ir/detai l/29661 4
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meeting the minimum expected coverage requirement at each time interval. 
Another multi-period location and relocation model was presented in [13].

However, apart from predictable changes in the parameters (e.g., the amount of 
demand at the points during different time intervals), there are some irregular events 
(such as exhibitions, tournaments, ceremonies, etc.) that may daily or even hourly 
affect the amount of demands and the distribution of traffic in the network and 
consequently change travel times and coverage regions of the facilities (i.e., Ii , cvij , 
and cm

ij
 in DtDsM are subject to temporary changes). Therefore, unpredictable need 

to relocation of facilities during a time horizon is inevitable.
Actually, the parameters of the facility location problems are very sensitive to 

the above-mentioned irregular events and can widely vary from one case to another. 
Hence, developing fast solution algorithms to reset and resolve large-scale facility 
location problems in the case of irregular changes is very important. As one can see 
in Sect.  4 (Numerical Results), the time required to directly solve such problems 
by commonly used solvers (e.g., CPLEX) seriously increases as the problem size 
increases. Therefore, application of more efficient algorithms such as decomposition 
techniques is inevitable.

Benders decomposition (BD) method is one of the efficient decomposition methods 
for solving some complicated mixed-integer problems with a row generation strategy 
and has been successfully applied for the location problem under certainty ([14–16]) 
and uncertainty conditions ([17, 18]). In this paper, we propose an accelerated BD 
algorithm to efficiently solve the DtDsM. For a thorough review of the method, the 
reader is referred to [19], while the most recent studies in the Benders algorithm are 
described in [20].

To summarize, the contribution of this paper is twofold: presenting an extension 
of the maximal covering location model which can handle some practical situations 
for which the previous models cannot be directly applied and an accelerated version 
of the well-known Benders decomposition algorithm for solving the proposed 
model.

The rest of the paper is organized as follows: mathematical formulation of DtDsM 
is presented in Sect. 2. In Sect. 3, an accelerated Benders decomposition algorithm 
is proposed to efficiently solve DtDsM. Numerical results are reported in Sect. 4 and 
finally, Sect. 5 briefly concludes the paper.

2  Mathematical Model

In this section, we propose a 0-1 integer linear programming problem to mathematically 
express DtDsM.

Parameters of the model:
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I ∶ is the set of demand points; dij ∶ is the travel distance from potential facility point 
j to demand point i ;

J ∶ is the set of potential facility points pv ∶ is the cost of locating a normal facility
Ii : is the importance level of demand point i pm ∶ is the cost of locating a backup facility
cv
ij
∶ equals 1 if the demand point i  is in the 

coverage distance of a normal facility located 
at point j

cm
ij
∶ equals 1 if the demand point i  is in the coverage 

distance of a backup facility located at point j

w : is an appropriate weight B ∶ is the total available budget

Variables of the model:

xv
j
∶ a binary variable which equals 1 iff2 a normal facility is located at potential point j

xm
j
∶ a binary variable which equals 1 iff a backup facility is located at potential point j

yv
ij
∶ a binary variable which equals 1 iff the demand point i  is allocated to a normal facility located at 

point j
ym
ij
∶ a binary variable which equals 1 iff the demand point i  is allocated to a backup facility located at 

point j

Now, using the above notation, the proposed model (DtDsM) can be presented as 
follows:

subject to

(1)(P) ∶ �������� Σi∈IΣj∈JIic
v
ij
yv
ij
− wΣi∈IΣj∈JIi

(
1 − cv

ij

)
dijy

v
ij

(2)Σj∈Jy
v
ij
= 1 i ∈ I

(3)yv
ij
− xv

j
≤ 0 i ∈ I, j ∈ J

(4)ym
ij
− xm

j
≤ 0 i ∈ I, j ∈ J

(5)Σj∈Jc
v
ij
yv
ij
+ Σj∈Jc

m
ij
ym
ij
= 1 i ∈ I

(6)Σj∈Jpvx
v
j
+ Σj∈Jpmx

m
j
≤ B

(7)yv
ij
, ym

ij
∈ {0, 1} i ∈ I, j ∈ J

(8)xv
j
, xm

j
∈ {0,1} j ∈ J

2 If and only if
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The above model is a multi-objective model which maximizes the amount of the 
responded demands, within a standard time, by normal facilities while simultaneously 
tries to minimize the total distance between the other demands and the normal facilities 
to which they are allocated. By appropriately choosing the weight w , the first part can 
be considered as the primary objective, and DtDsM becomes a preemptive priority 
bi-objective programming problem (a suitable value for w is proposed in the Sect. 4.1). 
Furthermore, the second part of (1) can be replaced by a latency cost function [21].

Constraints (2) ensure that each demand point should (anyway) be allocated to a 
normal facility. Constraints (3) and (4) ensure that if some demand points are allocated to 
a facility located at point j then the facility should be open (i.e. xv

j
= 1 or xm

j
= 1 ). 

Constraints (5) try to support, by a backup facility, the demand points which are not 
within the coverage distance of any of the normal facilities. Similar to [9], DtDsM 
considers no restriction on the total number of opened facilities. However, the available 
budget for opening the facilities is limited by a predefined value B and is presented by 
constraint (6). Finally, constraints (7) and (8) declare the type of the decision variables.

3  An Accelerated Benders Decomposition Algorithm

In the following, we adjust the problem ( P ) so that we can apply the Benders 
decomposition algorithm to solve the problem by iteratively solving finitely many 
easier subproblems. More precisely, considering xv

j
 and xm

j
 ( j ∈ J ) as the complicated 

variables, we temporarily fix them at some binary values 
−

x
v

j
 and 

−

x
m

j
 so that the 

following conditions are satisfied: and we solve the remaining subproblem. 
Constraint (10) is a valid inequality due to (2) and (3). Then, we check some certain 
termination criteria. If no criterion is satisfied, then some Benders cuts are generated 
to more restrict the set of feasible selections of  xv

j
 and xm

j
 , and new feasible values 

for these complicated variables are selected and this process is repeated’

3.1  Primal Subproblem

By temporarily fixing the complicated variables xv
j
 and xm

j
 at 

−

x
v

j
 and 

−

x
m

j
 , respectively, the 

relevant so-called primal subproblem is then

subject to

(9)Σj∈Jpvx
v
j
+ Σj∈Jpmx

m
j
≤ B

(10)Σj∈Jx
v
j
≥ 1

(11)(���) ∶ �������� Σi∈IΣj∈JIic
v
ij
yv
ij
− wΣi∈IΣj∈JIi

(
1 − cv

ij

)
dijy

v
ij

(12)Σj∈Jy
v
ij
= 1 i ∈ I
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To apply the classical Benders decomposition method, we need the dual of the 
subproblems (PSP) with no duality gap. However, PSP has binary variables, i.e., 
the standard duality theory of linear programming could not be directly applied (for 
previous works on Benders decomposition with integer subproblems, refer to [22] 
and the related works cited therein). Furthermore, the subproblem should be solved 
in each iteration of Benders decomposition algorithm, and hence, its solution time is 
critical in the solution process of the original problem ( P ). To tackle these difficulties, 
we first note that the subproblem ( PSP ) is separable on i , and we can solve it easier 
and faster by decomposing it into |I| independent subproblems which can be solved in 
parallel. Then, we consider the relevant subproblem to a demand point i ( i ∈ I):

subject to

Regarding (19) and (20) and since 
−

x
v

j
 and 

−

x
m

j
 are binary for all j ∈ J , we can 

replace constraints (22) by the following constraints:

(13)yv
ij
≤

−

x
v

j
i ∈ I, j ∈ J

(14)ym
ij
≤

−

x
m

j
i ∈ I, j ∈ J

(15)Σj∈Jc
v
ij
yv
ij
+ Σj∈Jc

m
ij
ym
ij
= 1 i ∈ I

(16)yv
ij
, ym

ij
∈ {0, 1} i ∈ I, j ∈ J

(17)
(
���

�

)
∶ �������� Σj∈JIic

v
ij
yv
ij
− wΣj∈JIi

(
1 − cv

ij

)
dijy

v
ij

(18)Σj∈Jy
v
ij
= 1

(19)yv
ij
≤

−

x
v

j
j ∈ J

(20)ym
ij
≤

−

x
m

j
j ∈ J

(21)Σj∈Jc
m
ij
ym
ij
+ Σj∈Jc

v
ij
yv
ij
= 1

(22)yv
ij
, ym

ij
∈ {0,1} j ∈ J

(23)yv
ij
, ym

ij
∈ {0,1} j ∈ J

SN Oper. Res. Forum            (2021) 2: 15 Page 7 of 24 15



 

Now, we note that the coefficient matrix of ( PSPi ) has the consecutive ones 
property3 for rows, and hence, it is a totally unimodular matrix (TUM4). Also, one 
can simply see that appending an additional unit vector ek to a TUM yields a TUM, 
and hence, the coefficient matrix of the standard form of ( PSPi ) is also a TUM. But a 
(standard) linear programming problem with a totally unimodular coefficient matrix 
yields at least one integer optimal solution for any objective vector and any integer 
vector on the right-hand side of the constraints (see [23] and [24] for more details).

Therefore, we can relax the integrality restrictions (23) to obtain the following 
equivalent relaxation of (PSPi) which is, in fact, a (continuous) linear programming 
problem:

subject to

According to the above discussion, we actually have shown that we can study the 
relaxed problem 

(
RPSPi

)
 instead of the 0-1 integer problem 

(
PSPi

)
 . In other words, 

we have shown that instead of the integer subproblem (PSP) , we can work with very 
smaller as well as easier (continuous) linear programming problems which have nice 
dual properties.

3.2  Dual Subproblem

We consider dual-variable �i1 for the constraint (18), �ij ( j ∈ J ) for the constraints 
(19), �ij ( j ∈ J ) for the constraints (20) and �i2 for the constraint (21), and obtain the 
dual of 

(
RPSPi

)
 corresponding to the demand site i:

Subject to

(24)
(
����

�

)
∶ �������� (17)

(25)(18) − (21)

(26)yv
ij
, ym

ij
≥ 0j ∈ J

(27)
(
���

�

)
∶ �������� �i1 + �i2 + Σj∈J

−

x
v

j
�ij + Σj∈J

−

x
m

j
�ij

(28)�i1 + cv
ij
�i2 + �ij ≥ Iic

v
ij
− wIi

(
1 − cv

ij

)
dij j ∈ J

(29)cm
ij
�i2 + �ij ≥ 0 j ∈ J

3 A binary matrix A has the consecutive ones property for rows if the columns of A can be permuted so 
that the 1s in each row appear consecutively.
4 A matrix A with elements in {0,±1} is TUM if determinant of every square nonsingular submatrix of 
A is ±1.

SN Oper. Res. Forum            (2021) 2: 15  Page 8 of 2415



Then, the following problem can be considered as the dual of (PSP) when xv
j
 and xm

j
 

are fixed at 
−

x
v

j
 and 

−

x
m

j
 , respectively:

Subject to

3.3  Master Problem and the Benders Iterations

Let SP
i
 and SD

i
 be the set of all extreme points and the set of all extreme directions of the 

feasible region of 
(
DSPi

)
 , respectively, while SP and SD are the set of all extreme points 

and the set of all extreme directions of the feasible region of (DSP) , respectively. Then, 
the original problem (P) introduced by (1)–(8), can be represented as the following 
so-called Master Problem:

Subject to

where

(30)�ij, �ij ≥ 0 j ∈ J

(31)(���) ∶ �������� Σi∈I�i1 + Σi∈I�i2 + Σi∈IΣj∈J

−

x
v

j
�ij + Σi∈IΣj∈J

−

x
m

j
�ij

(32)�i1 + cv
ij
�i2 + �ij ≥ Iic

v
ij
− wIi

(
1 − cv

ij

)
diji ∈ I, j ∈ J

(33)cm
ij
�i2 + �ij ≥ 0i ∈ I, j ∈ J

(34)�ij, �ij ≥ 0i ∈ I, j ∈ J

(35)(��)�������� �

(36)Σj∈Jpvx
v
j
+ Σj∈Jpmx

m
j
≤ B

(37)Σj∈Jx
v
j
≥ 1

(38)Σi∈IΣj∈J

−

� ijx
v
j
+ Σi∈IΣj∈J

−

�
ijx

m
j
≥ −Σi∈I

(
−

�i1 +
−

�i2

)
,

(
−

�1,
−

�2,
−

�,
−

�

)T

∈ SD

(39)

Σi∈IΣj∈J

−

� ijx
v
j
+ Σi∈IΣj∈J

−

�
ijx

m
j
− � ≥ −Σi∈I

(
−

�i1 +
−

�i2

)
,

(
−

�1,
−

�2,
−

�,
−

�

)T

∈ SP

(40)xv
j
, xm

j
∈ {0,1}j ∈ J

� i =

(
�i1,… , �i|J|

)
, � =

(
�1,… , � |I|

)
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The master problem involves only the complicated variables xv
j
 and xm

j
 and an extra 

auxiliary variable � . Constraints (38) and (39) are referred to as Benders feasibility cuts 
and optimality cuts, respectively. Feasibility cuts ensure that the selected values for xv

j
 and 

xm
j
 do not result in an unbounded dual subproblem (DSP) and consequently an infeasible 

primal subproblem (PSP) . On the other hand, optimality cuts ensure that � takes the 
minimum value of (DSP) or equivalently the maximum value of (PSP) for each feasible 
choice of xv

j
 and xm

j
.

However, all of the feasibility cuts and optimality cuts are not known beforehand, and 
they are iteratively generated and appended to the relaxed master problem (RMP) when 
necessary. (RMP) is supposed to be a relaxed version of the master problem which is 
defined by (35)–(37), (40) and some (but not all) of the feasibility cuts (38) and the 
optimality cuts (39). Hence, (RMP) provides an upper bound for the optimal value of the 
original problem. On the other hand, the optimal value of the primal subproblem (PSP) or 
equivalently the optimal value of the dual subproblem (DSP) for each feasible values of xv

j
 

and xm
j
 provides a lower bound for the optimal value of the original problem. The Benders 

iterations are continued until the difference between the best upper bound and the best 
lower bound is less than a predefined tolerance �.

Note that a vector 
(
�1,�2, �, �

)T is an extreme feasible point of (DSP) if and only 
if 
(
�i1, �i2, � i, �i

)T is an extreme feasible point of 
(
DSPi

)
 for all i ∈ I . Furthermore, a 

nonzero vector 
(
�1,�2, �, �

)T is an extreme recession direction of (DSP) if and only if 
(�i�1, �i�2, � i

� , �i� )
T is an extreme recession direction of 

(
DSPi

)
 for some i� ∈ I and

Therefore, if for some fixed values 
−

x
v

j
 and 

−

x
m

j
 there exists some I ′ ⊆ I so that 

subproblems 
(
PSPi

)
 are infeasible (and consequently, 

(
DSPi

)
 are unbounded) for each 

i ∈ I
� , then we can append to the master problem any arbitrary number of the following 

feasibility cuts:

where 
(

−

�i1,
−

�i2,
−

� i,
−

�i

)T

 is an extreme recession direction of 
(
DSPi

)
 for each 

i ∈ I
� . The set of directions of 

(
DSPi

)
 can be precisely characterized by the set of all 

nonzero vectors 
(
�i1, �i2, � i, �i

)T satisfying the following constraints (see Sect. 2.4 
of [25]):

�i =
(
�i1,… , �i|J|

)
, � =

(
�1,… , �|I|

)

�1 =

(
�11,… , �|I|1

)
, �2 =

(
�12,… , �|I|2

)

(
�i1, �i2, � i, �i

)T
= 0,∀i ≠ i

�

.

(41)
−

�i1 +
−

�i2 + Σj∈J

−

� ijx
v
j
+ Σj∈J

−

�
ijx

m
j
≥ 0i ∈ I

�

(42)�i1 + cv
ij
�i2 + �ij ≥ 0 j ∈ J
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3.4  Solution of 
(
PSP

i

)
 and 

(
DSP

i

)

In this subsection, we show that the primal subproblems ( RPSPi ) and dual subproblems (
DSPi

)
 are quite easy to handle for each i ∈ I . In fact, one of the following cases may 

occur for this problem:
Case 1 There exists some 

−

j∈ J such that xv−
j

= cv

i
−

j

= 1.

In this case, the demand point i can be optimally allocated to the normal facility 
located at 

−

j since i is within its coverage distance. The optimal value is Ii and

presents an optimal solution of the dual subproblem 
(
DSPi

)
 in this case. But, if 

−

j 
is the unique index with the property that xv

ij
= cv

ij
= 1 , then another (alternative) 

optimal solution of the dual subproblem 
(
DSPi

)
 can be obtained as follows:

where,Jv
i
∶=

{
j ∈ J ∶ cv

ij
= 1

}
.

Proposition 1 If 
−

j is the unique index with the property that xv
ij
= cv

ij
= 1 , then the 

optimal solutions defined by (46) is an extreme optimal solution of 
(
DSPi

)
.

Proof  By the well-known Shapiro’s variable transformation, the unrestricted 
(free) variables �i1 and �i2 can be replaced by �+

i1
− �−

i1
 and �+

i2
− �−

i2
 , respectively, 

where �+
i1
 , �−

i1
 , �+

i2
 , and �−

i2
 are non-negative variables. Then, 

(
DSPi

)
 is a linear 

programming (LP) problem with 2|J| + 4 non-negative variables. In fact, �i1 = 0 is 
equivalent to �+

i1
= �−

i1
= 0 , and �i2 = 0 is equivalent to �+

i2
= �−

i2
= 0 . Now, we see 

that the following constraints provide 2|J| + 4 linearly independent constraints of (
DSPi

)
 binding at (46):

(43)cm
ij
�i2 + �ij ≥ 0 j ∈ J

(44)�ij, �ij ≥ 0 j ∈ J.

(45)

{
�i1 = 0, �i2 = Ii,

�ij = 0 and �ij = 0 ∀j ∈ J

(46)

⎧⎪⎨⎪⎩

�i1 = 0, �i2 = 0,

�ij = 0 ∀j ∈ J,

�ij = Ii ∀j ∈ Jv
i
and �ij = 0 ∀j ∈ J ⧵ Jv

i

�+
i1
, �−

i1
, �+

i2
, �−

i2
≥ 0,

�ij ≥ 0j ∈ J,

�ij ≥ 0j ∈ J ⧵ Jv
i
,
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This completes the proof according to the simple characterization theorem for 
extreme points of polyhedral sets.

Remark In our solution algorithm, we prefer (due to preliminary numerical results) to 
use (46) as an optimal solution of 

(
DSPi

)
 if possible. However, we use (45) in the case 

that (46) cannot be used (i.e. whenever 
−

j is not the unique index with the property that 
xv
ij
= cv

ij
= 1). By the following proposition, we show that (45) is also an extreme point.

Proposition 2 The optimal solutions defined by (45) is an extreme optimal solution 
of 
(
DSPi

)
.

Proof  Considering the same notation of the proof of Proposition 1, �i1 = 0 is 
equivalent to �+

i1
= �−

i1
= 0 and �i2 = Ii is equivalent to �+

i2
= Ii and �−

i2
= 0 . Now, we see 

that the following constraints provide 2|J| + 4 linearly independent constraints of 
(
DSPi

)
 

binding at (45):

This completes the proof according to the simple characterization theorem for 
extreme points of polyhedral sets.

Case 2 For each j ∈ J , cv
ij
= 1 implies xv

j
= 0.

In this case, the demand point i is not within the coverage distance of any of normal 
facilities. This case can itself be divided into the following two subcases:

Subcase 2.1 For each j ∈ J , cv
ij
= 1 implies xv

j
= 0 and cm

ij
= 1 implies xm

j
= 0.

This case occurs when not only the demand point i is not within the coverage 
distance of any of normal facilities, but also, it is not within the coverage distance of 
any of backup facilities. Hence, in this case, 

(
RPSPi

)
 is infeasible. The infeasibility of (

RPSPi
)
 is obvious due to (19)–(21). On the other hand, the dual subproblem 

(
DSPi

)
 is 

unbounded in this case and clearly

is a recession direction for 
(
DSPi

)
 , where:

(
�i1 + cv

ij
�i2 + �ij ≥ Iic

v
ij
− wIi

(
1 − cv

ij

)
dijj ∈ J,

)
forj ∈ Jv

i

�+
i1
, �−

i1
, �−

i2
≥ 0,

�ij ≥ 0j ∈ J,

�ij ≥ 0j ∈ J,

(
�i1 + cv

ij
�i2 + �ij ≥ Iic

v
ij
− wIi

(
1 − cv

ij

)
dijj ∈ J,

)
forj =

−

j .

(47)

⎧
⎪⎨⎪⎩

�i1 = 0, �i2 = −1,

�ij = 1 ∀j ∈ Jv
i
, �ij = 0 ∀j ∈ J�Jv

i
,

�ij = 1 ∀j ∈ Jm
i
, �ij = 0 ∀j ∈ J�Jm

i

(48)Jv
i
=

{
j ∈ J ∶ cv

ij
= 1

}
and Jm

i
= {j ∈ J ∶ cm

ij
= 1}
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Proposition 3 The direction defined by (47) is an extreme recession direction for (
DSPi

)
.

Proof   It is sufficient to show that if there exist two directions 
(
�′i1, �

′

i2, �
′

i
, �

′

i

)T

 

and 
(
�

′′

i1, �
′′

i2, �
′′

i
, �

′′

i

)T

 of the feasible set of 
(
DSPi

)
 such that

then these two directions are both positive multiples of 
(
�i1, �i2, � i, �i

)T . First, note 
that for each j ∈ J , if cm

ij
= 0 , then �ij = 0 and since � ′

ij
, �

′′

ij
≥ 0 , we have � �

ij
= �

��

ij
= 0 . 

Also, if cm
ij
= 1 then �ij = 1 and according to (43), we have:

On the other hand, we know that Jv
1
≠ J because otherwise, according to the 

assumptions of Subcase 2.1, we have xv
j
= 0 for all j ∈ J which contradicts the valid 

inequality (37). Therefore, there exists some 
−

j∈ J ⧵ Jv
1
 where �

i
−

j
= 0 . Hence, we have:

 Now, for each j ∈ J , there exist two cases: cv
ij
= 0 or cv

ij
= 1 . If cv

ij
= 0 , then �ij = 0 

and since �ij = �
�

ij
+ �

��

ij
 and � ′

ij
, �

′′

ij
≥ 0 , we have � �

ij
= �

��

ij
= 0 . Furthermore, if cv

ij
= 1 

then:

.
To summarize, we have shown that 

(
�′i1, �

′

i2, �
′

i
, �

′

i

)T

 and 
(
�

′′

i1
, �

′′

i2
, �

′′

i
, �

′′

i

)T

 are 
positive multiples of 

(
�i1, �i2, � i, �i

)T and actually, they are not distinct from (
�i1, �i2, � i, �i

)T , and this completes the proof.
Subcase 2.2 For each j ∈ J , cv

ij
= 1 implies xv

j
= 0 but there exists some j ∈ J such 

that xm
j
= cm

ij
= 1

(
�i1, �i2, � i, �i

)T
=

(
�

�

i1
, �

�

i2
, �

′

i
, �

′

i

)T

+

(
�

��

i1
, �

��

i2
, �

��

i
, �

��

i

)T

,

{
�

�

i2
+ �

�

ij
≥ 0 ⇒ �

�

i2
≥ −�

�

ij

�
��

i2
+ �

��

ij
≥ 0 ⇒ �

��

i2
≥ −�

��

ij

−1=�i2=�
�

i2
+�

��

i2
≥−

(
�
�

ij
+�

��

ij

)
=−�ij=−1

⇒

{
�

�

i2
= −�

�

ij

�
��

i2
= −�

��

ij

(49)
�i2=−1&�ij=1

⇒

�
�

i2

�i2
=

�
�

ij

�ij
,
�

��

i2

�i2
=

�
��

ij

�ij
.

(50)
�
i
−

j
= 0

�
i
−

j
=�

�

i
−

j

+�
��

i
−

j

&�
�

i
−

j

,�
��

i
−

j

≥0

⇒ �
�

i
−

j
= �

��

i
−

j
= 0

cv

i
−

j

=0&
(
�i1+c

v
ij
�i2+�ij≥0j∈J

)

⇒ �
�

i1
, �

��

i1
≥ 0

0=�i1=�
�

i1
+�

��

i1

⇒ �
�

i1
= �

��

i1
= 0.

(51)

�ij =1
(42)&(50)

⇒

{
�

�

i2
≥ −�

�

ij

�
��

i2
≥ −�

��

ij

−1=�i2=�
�

i2
+�

��

i2
≥−

(
�
�

ij
+�

��

ij

)
=−�ij=−1

⇒

{
�

�

i2
= −�

�

ij

�
��

i2
= −�

��

ij

�i2=−1 & �ij=1

⇒

�
�

i2

�i2
=

�
�

ij

�ij
,
�

��

i2

�i2
=

�
��

ij

�ij
.
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In this case, the demand point i is optimally allocated to a normal facility located at 
point 

−

j∈ arg min
{j∈J∶xv

j
=1}

dij and also to an arbitrary backup facility located at an arbitrary point j 

with cm
ij
= 1 . The optimal value of 

(
PSPi

)
 in this case will be −wIidi

−

j
 . On the other hand,

is an optimal solution of the dual subproblem 
(
DSPi

)
.

Proposition 4 The optimal solution defined by (52) is an extreme optimal solution 
of 
(
DSPi

)
.

Proof Consider the constraints of the problem 
(
DSPi

)
 . By the same notation of the 

proof of Proposition 1, �i1 = −wIidi
−

j
 is equivalent to �+

i1
= 0 and �−

i1
= wIidi

−

j
 , and 

�i2 = 0 is equivalent to �+
i2
= �−

i2
= 0 . Hence, �+

i1
, �+

i2
, �−

i2
≥ 0 are three constraints 

binding at (52). These binding constraints and the constraints �ij ≥ 0 for all j ∈ J provide 
|J| + 3 constraints binding at (52). On the other hand, for each j ∈ J , either we have a 
constraint �ij ≥ 0 or a constraint in the bundle (28) which together give |J| more 
constraints binding at (52). Furthermore, the constraint �ij ≥ 0 and the constraint (28) are 
both binding at (52) for j =

−

j (where 
−

j∈ arg min
{j∈J∶xv

j
=1}

dij ), giving one more binding constraint. 

All the above-mentioned constraints together provide 2|J| + 4 linearly independent 
constraints of 

(
DSPi

)
 which are binding at (52). This completes the proof according to the 

simple characterization theorem for extreme points of polyhedral sets.

3.5  Valid Inequalities for the Master Problem

According to the constraints (5), the following inequalities are valid for the original 
problem (P), and we can add them to the master problem:

where Jv
i
 and Jm

i
 are defined by (48). These inequalities prevent infeasibility in 

the Benders’ primal subproblems and equivalently prevent unboundedness in the 
Benders’ dual subproblems. Thus, feasibility cuts are no longer generated.

3.6  Steps of the Algorithm and its Finite Convergence

After the analysis of the different cases of the subproblems (PSPi) and (DSPi) , the 
authors propose the algorithm Alg.1 for solving the original problem ( P).

Finite convergence of the proposed algorithm (Alg. 1) can be deduced in a couple of 
ways. First, as one can easily see, at each iteration of Alg. 1, an optimality Benders cut of 
type (39) is generated and appended to the relaxed master problem (RMP). Since SP has a 
finite number of elements, Alg. 1 terminates in a finite number of iterations for any given 
� . Furthermore, at each iteration of Alg. 1, at least one master choice is excluded from the 

(52)

{
�i1 = −wIidi

−

j
, �i2 = 0, �ij = 0 ∀j ∈ J,

�ij = Ii + wIidi
−

j
∀j ∈ Jv

i
, �ij = max (0,wIidi

−

j
− wIidij) ∀j ∈ J ⧵ Jv

i

(53)Σj∈Jv
i
xv
j
+ Σj∈Jm

i
xm
j
≥ 1i ∈ I
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set of feasible master choices which has only a finite number of elements. Hence, finite 
convergence of Alg. 1 can alternatively be concluded.

Alg. 1. The Proposed Benders Decomposition Algorithm (PBDA) for solving 
Problem (P)

4  Numerical Results

In order to test the efficiency of the proposed Benders decomposition algorithm 
(PBDA), the authors compared it with both the classical Benders decomposition 
algorithm (CBDA) and with the state-of-the-art commercial solver CPLEX on a 
dataset for the model ( P ) presented in Sect. 3.
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4.1  Dataset

In order to better evaluate their whole approach, the authors generated a suitable 
dataset for the comparison of the three algorithms. This dataset consists of 5 
major groups of nodes, each one including different number of nodes (100, 
225, 400, 625, and 900 nodes) to simulate the morphology of imaginary cities. 
For each group, the morphology is similar to the one depicted in Fig. 1. Each 
square corresponds to a potential point for locating the ambulances (vans and 
motorlances), and the distance dij between 2 squares is given by the following 
Eq. (54), also known as “Manhattan distance” [26]:

In every group of nodes, 10 different examples are created, each one with 
different values for parameters Ii and w . For each of the 10 examples, the 
parameter Ii is randomly generated and takes integer values in the interval 
[1,

√
NoOfNodes] , and the weight is considered as:

By using Eq. (55), which contains the maximum values of the distance dij in 
the denominator, the weight w takes very small values so that the first term of 
the objective function (1) is considered of the first priority and the second term 
(multiplied by w ) is considered of the second priority, as stated in Sect. 2

Furthermore, in all groups of examples, the available budget ( B ), the cost of 
locating a backup facility ( pm ), and the motorcycle coverage distance (MCD) are 
shown in Table 1.

The authors created the dataset in order to aim at two goals. First, it offers the 
opportunity to estimate the efficiency of the proposed algorithm in a wide range 

(54)dij =
|||xi − xj

||| +
|||yi − yj

|||

(55)
w =

1
∑

i∈I[Ii ∗ max
j∈J

��
1 − cv

ij

�
dij

�
]

.

Fig. 1  Example city of 100 
nodes

 SN Oper. Res. Forum            (2021) 2: 15   Page 16 of 2415



of the problem sizes. This is the reason why the authors have chosen to solve 
from a small problem of 100 nodes to a relative large problem of 900 nodes.

The second is to consider some sensitivity analysis on certain parameters to 
see how these would change the solution. This sensitivity analysis would vali-
date the described model. For this reason, the authors decided to differentiate 
the ratio between the cost of locating a backup facility (motorlance) and the 
cost of locating a normal facility (van). Thus, having the backup facility cost 
fixed for all examples, they considered three cases where the normal facility 
cost takes different values. Moreover, having a fixed available budget for all 
examples, the different normal facility costs led to the need to consider propor-
tionally different van coverage distance (VCD) in order to avoid infeasibility of 
the problem. It makes sense that a more expensive normal facility could cover 
a larger region. Table 2 depicts the values for these parameters in each of the 
three cases.

Obviously, the coverage distance of a motorlance is generally larger than that of the 
van due to the former’s faster arrival to the site of emergency. In the notation of the model, 
the parameter VCD is translated to cv

ij
 , by cv

ij
= 1 if dij ≤ VCD and cv

ij
= 0 otherwise. 

Parameter MCD is translated to cm
ij
 , by cm

ij
= 1 if dij ≤ MCD and cm

ij
= 0 otherwise. 

Finally, the cost of a motorlance is lower than a van in all cases.
The above leads to a total number of 150 examples solved (5 groups of nodes 

× 3 cases × 10 examples). The algorithms were implemented using C++ and 
solved using CPLEX 12.10 in Visual Studio 2019 on a desktop computer with 
Intel (R) Core(TM) i7-4790 CPU 3.6 GHz, 16 GB RAM, 64-bit.

4.2  Results

The study of the computational results could be divided into two subsections. The first 
one is the comparison of the three algorithms considering the different problem sizes. 
The second one would be to evaluate the previously mentioned sensitivity analysis on the 
three cases of examples.

Table 1:  Data in all examples and cases

Value 1 5√

Table 2  Applied parameters for the different cases

Case 1 Case 2 Case 3

2 3 4

2 3 4
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4.2.1  Comparison of the Algorithms

In Table 3, the comparative results for the examples in the groups of 100, 225, 400, 625, 
and 900 nodes are shown respectively for CPLEX, classical Benders decomposition 
algorithm (CBDA), and the proposed Benders decomposition algorithm (PBDA). It has 
to be mentioned that the maximum CPU time for all instances was set at 2 h (7200 s).

Apart from the first two columns, the first three columns show the number of examples 
solved to optimality in each case by the algorithms. The next three columns show the 
average CPU time spent to solve these examples to optimality. Following are the average 
optimality gaps of all examples (either optimal or feasible or infeasible ones) for each 
case. Note that if an algorithm was unable to find any feasible solution within 2 h, then a 
gap of 100% was considered for it. Hence, the average gap of 100% for 900 nodes means 
that CPLEX failed in finding even one feasible solution in all of 10 examples. Finally, the 
last three columns show the percentage of reduction of the CPU time that an algorithm 
achieves over the other. For example, in the final column “PBDA vs CBDA”, the negative 
percentages show how much faster the proposed algorithm is than the classical algorithm. 
In order to compare the CPU times of two algorithms such as CBDA and CPLEX, the 
following formula was used:

where
(56)

⎛⎜⎜⎜⎝

�
10

n(CBDA)

�
× average cpu time of CBDA for examples solved to optimality

�
10

n(CPLEX)

�
× average cpu time of CPLEX for examples solved to optimality

− 1

⎞⎟⎟⎟⎠
× 100%

n(CBDA) = number of examples solved to optimality by CBDA

Table 3  Comparative results for the dataset (average for 10 examples in each case)

Number of examples 
solved op�mally

Average total CPU �me 
(sec) for examples solved 

op�mally

Average % GAP for all 
examples Comparison of Average 

total CPU �me

Nodes Case CPLEX CBDA PBDA CPLEX CBDA PBDA CPLEX CBDA PBDA

CB
DA

 v
s 

CP
LE

X

PB
DA

 v
s 

CP
LE

X

PB
DA

 v
s 

CB
DA

100 1 10 10 10 71.0 3.9 2.7 0.0% 0.0% 0.0% -94% -96% -32%
100 2 10 10 10 79.7 5.4 4.4 0.0% 0.0% 0.0% -93% -94% -18%
100 3 10 10 10 4.2 1.7 1.2 0.0% 0.0% 0.0% -60% -72% -30%
225 1 10 10 10 60.4 8.4 2.7 0.0% 0.0% 0.0% -86% -96% -68%
225 2 10 10 10 1614.3 16.5 11.3 0.0% 0.0% 0.0% -99% -99% -31%
225 3 4 10 10 4633.3 29.3 27.7 24.7% 0.0% 0.0% -100% -100% -5%
400 1 0 10 10 - 333.4 261.8 5.9% 0.0% 0.0% - - -21%
400 2 5 10 10 2273.6 60.5 36.4 10.3% 0.0% 0.0% -99% -99% -40%
400 3 10 10 10 1914.7 23.3 6.8 0.0% 0.0% 0.0% -99% -100% -71%
625 1 0 10 10 - 2056.5 1812.9 15.5% 0.0% 0.0% - - -12%
625 2 0 10 10 - 476.1 410.8 19.1% 0.0% 0.0% - - -14%
625 3 0 10 10 - 186.7 112.8 6.8% 0.0% 0.0% - - -40%
900 1 0 4 6 - 5416.1 4659.8 100.0% 12.7% 6.8% - - -43%
900 2 0 10 10 - 3123.3 2692.7 100.0% 0.0% 0.0% - - -14%
900 3 0 10 10 - 443.1 327.8 100.0% 0.0% 0.0% - - -26%

*CPLEX, classical Benders decomposition algorithm (CBDA), proposed Benders decomposition algo-
rithm (PBDA)
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Similar formulas were used for comparing PBDA vs CPLEX and PBDA vs 
CBDA.

When comparing both CBDA and PBDA with CPLEX, one can notice 
that the Benders-based algorithms are much more efficient in all examples. 
Especially, for small to medium instances (100 to 625 nodes), they can solve 
them all to optimality, while being on average 94% faster than CPLEX. Note 
that CPLEX results in suboptimal solutions for 225 to 625 nodes in the 
maximum time of 2  h. As can be seen, in the cases with 900 nodes, CPLEX 
could not find even one feasible solution in all of 10 examples. This is the 
reason that its average gap could not be compared with the Benders-based ones.

Moreover, the comparison between the proposed algorithm and the classical 
one is quite interesting, as it is obvious that PBDA outperforms CBDA. 
Concerning the average optimality gap, the two algorithms manage to find 
optimal solutions for almost all instances, while the number of their iterations 
is exactly the same. The latter fact confirms that the proposed solution method 
of Sect. 3.4 leads to exactly the same optimality cuts as the classical Benders 
decomposition algorithm. Focusing on the CPU time, the proposed algorithm is 
on average 30% faster than the classical one. The good performance of PBDA 
lies on the fact that there is no need to model and solve the dual subproblem, 
which is quite computationally expensive. Instead, its solution can be easily 
computed as presented in Sect.  3.4, which is computationally very fast, as it 
can be easily coded using “for” and “if” loops. The computational benefit of 
PBDA seems to be reduced for larger instances such as 900 nodes. However, 
this happens due to the 2-h maximum limit, to which both algorithms reach for 
some examples, while PBDA still finds better solutions with lower optimality 
gaps than CBDA.

4.2.2  Sensitivity Analysis

As previously stated, the authors examined three cases where the cost of locating 
a normal facility and its coverage distance take different values. For every case, 
10 examples were solved, and in Table  4, the average computational times for 

n(CPLEX) = number of examples solved to optimality by CPLEX

Table 4  Average comparative results (for each case in all node groups)

Average % GAP
Average total CPU �me 

(sec) for examples solved 
op�mally

Comparison of Average total 
CPU �me

Case

Average 
Op�mal 

Objec�ve 
Func�on

CPLEX CBDA PBDA CPLEX CBDA PBDA

CB
DA

 v
s 

CP
LE

X

PB
DA

 v
s 

CP
LE

X

PB
DA

 v
s 

CB
DA

1 857.1 24.3% 2.6% 1.4% - 1563.7 1348.0 - - -35%
2 1077.4 25.9% 0.0% 0.0% - 736.3 631.1 - - -23%
3 1303.0 26.3% 0.0% 0.0% - 136.8 95.2 - - -34%
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these examples in all node groups are depicted. As it is shown, case 1 needs more 
time to be solved, which can be explained by the fact that the coverage distance 
of the normal facilities is very small, and thus, it is harder to find a solution that 
satisfies the master’s constraints. To the same direction, case 3 is the easiest one 
due to the large coverage distance of the normal facility.

Table  5 indicates the average number of vans and motorcycles deployed. 
As one can see, within the same group of nodes (e.g., 225 nodes), the average 
number of vans decreases as its cost increases. The coverage gap created due to 
the use of a small number of expensive vans is covered by increasing the number 
of motorlances. This outcome was expected, and its confirmation proves the 
validity of the model and the proposed solution approach.

However, in the larger examples (e.g., 625 and 900 nodes), one can notice 
a slight difference in the above conclusion. While the average number of vans 
decreases as its cost is getting higher, the average number of motorlances 
remains the same (large enough) for all three cases. This happens because we 
have considered a conservative policy for the available budget (Table  1). The 
relatively small budget for large instances leads to shortage of vans even for 

Table 5  Average number of vans and motorcycles used in model’s solution (average for 10 examples in 
each case)

Nodes Case
Total 
Vans 
Used

Total 
Motrocycles 

Used
100 1 4.0 2.0
100 2 2.0 3.2
100 3 2.0 2.0
225 1 5.0 5.0
225 2 3.0 6.0
225 3 2.0 6.4
400 1 5.3 9.4
400 2 4.0 8.0
400 3 3.0 8.0
625 1 6.0 13.0
625 2 4.0 13.0
625 3 3.0 13.0
900 1 5.3 19.4
900 2 4.0 18.0
900 3 3.0 18.0
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case 1 (where they are cheaper), thus making it necessary to deploy a large 
number of motorlances even in this case.

Moreover, it would be interesting to better illustrate the different solutions gained in 
every case and the coverage of the normal facilities. In the following figures Figs. 2, 3 and 
4, the solutions of example 1 of 225 nodes are depicted for all three cases. Each square 

Fig. 2  Solution (225 nodes, case 1, example 1). 5 vans and 5 motorcycles

Fig. 3  Solution (225 nodes, case 2, example 1). 3 vans and 6 motorcycles
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corresponds to a node of the network. Table 6 offers an explanation of the different shades 
used in the figures. It should be noted that the number inside every square corresponds to 
the facility (either normal or back-up) that is the first service provider to that square.

As the cost and the coverage distance of the normal facilities (vans) increases 
(from case 1 to case 3), their number decreases, while their distribution tends 
to quite resemble with each other, since the most important nodes (which the 
normal facilities are motivated to cover) are the same in all cases.

5  Conclusion

A double-type double-standard model (DtDsM) was proposed for maximal covering 
location problem (MCLP) which is very useful in a wide range of applications like public 
emergency services in which it is important for each demand point to receive at least a 
primary service (from a backup facility) within a predefined time before receiving a full 
service (from a normal facility which cannot serve the demand within the predefined time).

Since the parameters of the problem can widely vary from one case to another, 
relocation of facilities during a time horizon is inevitable, and developing fast solution 

Fig. 4  Solution (225 nodes, case 3, example 1). 2 vans and 7 motorcycles

Table 6  Memo for following figures
55 At this loca�on a van is deployed 

55 This node is within the coverage distance of a van 
(denoted by the number) 

27 At this loca�on a motorcycle is deployed 

27 This node is within the coverage distance of a 
motorcycle  (denoted by the number) 
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algorithms to reset and resolve real facility location problems is very important. An 
efficient Benders-based decomposition algorithm was proposed to solve the model 
which is much faster than the commercial solver CPLEX for solving DtDsM.

It is worth noting that if we assume a standard response time of 5 min and an average 
motorlance speed of 60 km/h, then the coverage distance of a motorlance is approximately 
5 km, and the assumption MCD = 5 can be interpreted so that the distance between two 
adjacent points is 1 km. Therefore, a 10 × 10 network (with 100 nodes) can be considered 
for the location problem in a region with an area of 9 × 9 = 81 square kilometers. 
Similarly, one can see that a 30 × 30 network (with 900 nodes) can be considered for the 
location problem in a region with an area of 29 × 29 = 841 square kilometers. This means 
that our largest test problem can be considered as a simulation of the problem of locating 
the emergency vehicles in a large city like Tehran (with an area of approximately 730 km2).

Finally, it is worth noting that although the proposed DtDsM is in fact an incapacitated 
maximal covering location problem (i.e., no limit is considered on the amount of 
demands allocated to a single facility), it is still useful and applicable in real emergency 
service planning if the probability of two demand points (allocated to an identical 
facility) to be the scene of accidents at the same time is assumed to be very low.

Developing an efficient solution algorithm for a capacitated version of DtDsM 
can be considered in future studies.
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