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Abstract
In this note we give a combinatorial solution to the general case of the puzzle known
as “bridge and torch problem”. It is about finding the shortest time needed for n

people to cross a bridge knowing that at most two persons can walk together on the
bridge (at the speed of the slowest) and, because it is dark, a torch is needed for each
crossing (and they have only one torch). The puzzle can be seen (and solved) as a
discrete optimization problem.

Keywords Discrete optimization · Integer programming

1 Introduction

The bridge and torch problem is a well known puzzle. Four people have to cross a
narrow bridge at night. The bridge can be crossed by at most two people at the same
time. Because it is dark, a torch must be used at every crossing and they have only
one, which must be walked back and forth (it cannot be thrown). Each person walks
at a different speed, and, when two people cross the bridge together, they must walk
together at the rate of the slower person’s pace. We suppose that person i takes time
ti to cross the bridge alone. Given the times ti for each i = 1, . . . , 4 we have to find
the shortest time needed for getting all the people across the bridge. In this form,
with concrete values ti , the problem first appeared in 1981. An elementary approach
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in a combinatorial context is given in [5]. Erwig in [3] used the problem to illustrate
that a modern functional programming language like Haskell is at least as suitable as
Prolog for programming search problems. Rote [4] gives an extensive bibliography
and provides a method for solving the general case with n people by transforming
the problem into a special kind of weighted degree-constrained subgraph problem.

Backhouse [1] considered the most general case when not only the number of peo-
ple and the times ti are input parameters, but also the capacity C of the bridge (C
is the maximum number of people that are allowed to walk together on the bridge;
C = 2 in the classical problem). In [1] and [2] dynamic-programming and integer-
programming algorithms for solving the “capacity-C torch problem” are created.
It is also proved that the worst-case time complexity of the dynamic-programming
algorithm is proportional to the square of the number of people.

In the present paper we propose a combinatorial solution for the standard capacity
case C = 2 and arbitrary number of people, n ≥ 3. The main result of the paper is
Theorem 1 which states a closed formula for the minimum time needed for crossing.
In order to complete the proof, we define a preorder relation on the set of possible
solutions (represented as (0, 1) matrices) and find the general form of an optimal
solution. Then, the appropriate solution for each set of parameters ti , i = 1, . . . , n
is given.

2 The Optimization Problem

Our integer constrained optimization problem can be formulated as follows.
Given the parameters t1, t2, . . . , tn, find the minimum of the function

f (α1, α2, . . . , αn) =
n∑

k=1

αktk,

where α1, α2, . . . , αn are nonnegative integers which must verify some constraints.
For simplicity, we can assume that all the times ti are distinct, and

t1 < t2 < . . . < tn.

By continuity, the results are also true for non distinct values of times.
As Backhouse [1] noticed, the interesting part of the puzzle is that what seems to

be “obvious” may be wrong. For example, our intuition says that the optimal solu-
tion would be to let the fastest person accompany the others, one by one, and return
with the torch, but this is not always true (for any values of ti). For n = 4, this solu-
tion corresponds to the sequence (1, 2)(1)(1, 3)(1)(1, 4) which has a total time of
crossing

f (2, 1, 1, 1) = 2t1 + t2 + t3 + t4.

But, at a second sight, we may think of minimizing the total time of forward trips
instead of minimize the time lost with getting the torch back. So we may wander if
the sequence (1, 2)(1)(3, 4)(2)(1, 2), with the total time

f (1, 3, 0, 1) = t1 + 3t2 + t4,
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would be a better choice. The answer is that the first solution is optimal if t1+t3 < 2t2
and the second one is the best when t1+ t3 > 2t2. If t1+ t3 = 2t2, then both solutions
are optimal.

3 Optimal Matrices

A very intuitive result which is true, as Rote proved ([4], Lemma 1), is that an optimal
solution consists of n − 1 forward moves (made by two persons) and n − 2 back-
ward moves (a single person returns with the torch). In what follows, we will write a
solution as a (0, 1) matrix A of dimensions n × (2n − 3), with all the odd columns
of the form A(2k−1) = ei + ej with i < j and all the even columns of the form
A(2k) = eh (e1, e2, . . . , en denote the columns of the unity matrix In). For instance,
in the case n = 4, the solutions (1, 2)(1)(1, 3)(1)(1, 4) and (1, 2)(1)(3, 4)(2)(1, 2)
are represented by the matrices

⎡

⎢⎢⎣

1 1 1 1 1
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

⎤

⎥⎥⎦ and

⎡

⎢⎢⎣

1 1 0 0 1
1 0 0 1 1
0 0 1 0 0
0 0 1 0 0

⎤

⎥⎥⎦ .

Of course, not any (0, 1) matrix of the above form can be a solution. In order to
characterize the set of possible solutions we define the column vectors

�A(k) =
k∑

i=1

(−1)i−1A(i), k = 1, 2, . . . , 2n − 3.

A possible solution must verify the condition

�A(k) ∈ {0, 1}n, ∀k = 1, 2, . . . , 2n − 3. (1)

We denote by A the set of all the matrices as above that verify the condition (1).
For k = 1, 2, . . . , 2n − 3, if �A(k) = (s1, s2, . . . , sn)

T , we denote by SA(k) the
set of all i ∈ {1, . . . , n} such that si = 1 and by S̄A(k) the complementary set. By
mathematical induction,

|SA(k)| =
⎧
⎨

⎩

k+3
2 if k is odd

k
2 if k is even

, (2)

hence �A(2n − 3) = (1, 1, . . . , 1)T .
For any matrix A = (ai,j ) ∈ A, we denote by μA(k) = max{i : ai,k = 1},

k = 1, 2, . . . , 2n−3. Given a vector T = (t1, t2, . . . , tn) such that t1 < t2 < . . . < tn,
we define

ϕT (A) =
2n−3∑

k=1

tμ(k). (3)

Our optimization problem is to minimize the sum ϕT (A) for A ∈ A. Let T be the set
of all the vectors (t1, t2, . . . , tn) ∈ R

n with t1 < . . . < tn.
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Definition 1 A matrix A ∈ A is said to be optimal if there exists T ∈ T such that
ϕT (A) ≤ ϕT (B) for all B ∈ A.

For A ∈ A and a permutation σ ∈ S2n−3, we denote by Aσ the matrix obtained
by permuting the columns of A: A(k)

σ = A(σ(k)) for k = 1, 2, . . . , 2n − 3. We define
the following binary relations on the set A:

1. We say that A is better than B, A ≺ B, if there exists a permutation σ ∈ S2n−3
such that Aσ ∈ A,

μA(σ(k)) ≤ μB(k), k = 1, 2, . . . , 2n − 3

and there exists p ∈ {1, . . . , 2n − 3} such that μA(σ(p)) < μB(p).

2. We say that A is similar to B, A ∼ B, if there exists a permutation σ ∈ S2n−3
such that Aσ ∈ A and

μA(σ(k)) = μB(k), for k = 1, 2, . . . , 2n − 3.

3. If μA(k) ≤ μB(k), for all k = 1, 2, . . . , 2n − 3, we say that A is better than or
similar to B, A � B.

As one can easily notice, “�” is a preorder relation (reflexive and transitive) and
“∼” is an equivalence relation (reflexive, symmetric and transitive).

Remark 1 If A ∼ B then ϕT (A) = ϕT (B) for all T ∈ T . If A ≺ B then ϕT (A) <

ϕT (B) for all T ∈ T .
As a consequence, if there exists B ∈ A such that B ≺ A, then A is not an optimal

matrix.

Remark 2 If A ∈ A is an optimal matrix such that A2k ∈ {e1, e2} for every k =
1, 2, . . . , n−2, then all the columns ofA (except the last one) are either in pairs of the
form A(2k−1) = ej + e1 and A(2k) = e1, or in quartets of the form A(2k−1) = e1 + e2,
A(2k) = e1, A(2k+1) = ei + ej (i > j > 2), A(2k+2) = e2 (here e1 and e2 may be
swapped). The last column has the form A(2n−3) = e1 + ej with j ≥ 2.

The next Lemma proves that in an optimal matrix only e1 or e2 can play the role
of even columns.

Lemma 1 In an optimal matrix, A ∈ A, the even columns are of the form A(2k) = e1
or A(2k) = e2, for every k = 1, 2, . . . , n − 2.

Proof We prove that in an optimal matrix, A(2n−2k) ∈ {e1, e2} by mathematical
induction on k = 2, 3, . . . , n − 1.

For k = 2, A(2n−4) represents the last backward trip. By Eq. (2), |S2n−5| = n − 1,
so S2n−5 contains at least one i ∈ {1, 2}. If A(2n−4) = ej with j > 2, we consider
the matrix B obtained by replacing ej by ei in the last two columns of A. Obviously,
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B ∈ A and B ≺ A, so, by Remark 1, A would not be an optimal matrix. Hence,
A(2n−4) ∈ {e1, e2}.

Now, we suppose that any optimal matrix has A(2n−2h) ∈ {e1, e2} for h =
2, . . . , k − 1 and prove that this is true for A(2n−2k) as well. Suppose that A(2n−2k) =
ej with j > 2. If S2n−2k−1 contains at least one i ∈ {1, 2}, we look at the columns
A(p), p = 2n − 2k + 1, . . . , 2n − 3 to find out which one of ei and ej comes first. If
ej is the first one (of course, it appears in an odd column A(2p+1)), we consider the
matrix B obtained by replacing ej with ei in the columns (2n − 2k) and (2p + 1) of
A. Then B ∈ A and B ≺ A, which is impossible since A is an optimal matrix. If ei

is the first one (A2p = ei), we consider the matrix B obtained by changing ej and ei

in the columns (2n − 2k) and (2p) of A. Then B ∈ A and B ∼ A, so B is an opti-
mal matrix whose column B(2p) /∈ {e1, e2}, which is not possible, by the induction
hypothesis.

In the other case, when {e1, e2} ∈ S̄2n−2k−1, A(2n−2k−1) = er + es with r, s > 2.
Since A is optimal, it follows that the columns A(2n−2k+1), . . . , A(2n−3) form an
optimal matrix for the set S̄2n−2k . By the induction hypothesis and Remark 2, since
j ∈ S̄2n−2k , we obtain that we have either A(2m−1) = ej + e1, A(2m) = e1, or
A(2m−1) = e1 + e2, A(2m) = e1 (e2), A(2m+1) = ej + el , A(2m+2) = e2 (e1) for
some m > n − k. In the first situation we consider the matrix B with the columns
B(p) = A(p) for all p ≤ 2n − 2k − 2 or p > 2m, B(2n−2k−1) = e1 + e2, B(2n−2k) =
e1, B(2n−2k+1) = A(2n−2k−1), B(2n−2k+2) = e2 and B(p) = A(p−2) for all p =
2n − 2k + 3, . . . , 2m. Since B ∈ A and B ≺ A, it follows that A is not optimal. In
the second situation we can also construct a matrix B ∈ A such that B ≺ A, so the
conclusion is that A(2n−2k) ∈ {e1, e2} and the Lemma is proved.

Lemma 1 proves that any optimal matrix has the structure from Remark 2. There-
fore, in order to give a complete description of optimal matrices, it is sufficient to
specify the form of the odd columns. Obviously, at least one odd column is of the
form e1 + e2. All the other elements e3, e4, . . . , en have a unique occurrence in A, in
an odd column which may be either of the form ei + ej with 3 ≤ i < j ≤ n, or of
the form e1 + ej with 3 ≤ j ≤ n.

Lemma 2 If A ∈ A is an optimal matrix that contains an odd column of the form
A(2k+1) = e1 + ej with j ≥ 3, then it contains all the columns e1 + ei with i =
3, 4, . . . , j .

Proof We suppose that there exists an odd column of the form A(2p+1) = ei + eh

with i ∈ {3, . . . , j − 1} and h ≥ 3. If h > j , we consider the matrix B ∈ A such that
B(2k+1) = e1 + ei , B(2p+1) = ej + eh and B(r) = A(r) for any r 	= 2k + 1, 2p + 1.
Since μB(2k + 1) = i < j = μA(2k + 1) and μB(r) = μA(r) for any r 	= 2k + 1,
it follows that B ≺ A. If i < h < j , we take the same matrix B as above, but in this
case we have: μB(2k + 1) = i < h = μA(2p + 1), μB(2p + 1) = j = μA(2k + 1)
and μB(r) = μA(r) for any r 	= 2k + 1, so B ≺ A, which contradicts the optimality
of A.
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Remark 3 By Lemma 2 it follows that if A ∈ A is an optimal matrix containing an
odd column of the form e1 + en, then all the odd columns of A are of the form e1 + ei

with i = 2, 3, . . . , n.

Lemma 3 If A ∈ A is an optimal matrix that contains an odd column of the form
A(2k+1) = en + ej with j ≥ 3, then j = n − 1.

Proof We suppose that j < n−1. Let A(2p+1) = en−1+ei be the column containing
en−1. Consider the matrix B ∈ A such that B(2k+1) = en + en−1, B(2p+1) = ej + ei

and B(r) = A(r) for any r 	= 2k+1, 2p+1. Since μB(2p+1) < n−1 = μA(2p+1)
and μB(r) = μA(r) for any r 	= 2p + 1, it follows that B ≺ A, which contradicts
the optimality of A. Hence the lemma is proved.

4 TheMain Result

Suppose that A ∈ A is an optimal matrix that contains the odd columns e3 + e1,
e4 + e1, . . ., ep + e1 and has all the other odd columns either of the form e1 + e2, or
ei + ej with i > j > p. It follows that n − p is even and, by applying repeatedly
Lemma 3, the columns containing ep+1, . . . , en are en + en−1, en−2 + en−3, . . . ,
ep+2 + ep+1.

Now, given T = (t1, t2, . . . , tn) such that t1 < t2 < . . . < tn the question is what
is the value of p such that the optimal matrix A constructed as above minimizes (3).
Or, more precisely, what is the condition that makes the time corresponding to the
set of columns e1 + e2, e1, ei + ei+1, e2 to be shorter then the time needed for the
columns e1 + ei , e1, e1 + ei+1, e1 ? Since the time in the first case is t1 + 2t2 + ti+1
and, in the second case, 2t1 + ti + ti+1, the condition is:

ti > 2t2 − t1. (4)

Let m ∈ {1, 2, . . . , n} be the greatest value such that tm ≤ 2t2−t1 (obviously, m ≥ 2)

and let k =
⌊

n − m

2

⌋
, where 
x� denotes the greatest integer smaller than or equal

to x. Since the condition (4) is verified for every i = n − 1, n − 3, . . . , n − 2k + 1,
any optimal matrix corresponding to T is formed by:

– k quartets of columns e1 + e2, e1, en−2i + en−2i−1, e2, i = 0, 1, . . . , k − 1,
corresponding to the time

kt1 + 2kt2 +
k−1∑

i=0

tn−2i (5)

(note that this contribution is 0 if k = 0).
– n − 2k − 2 pairs of columns e1 + ej , e1, j = 3, 4, . . . , n − 2k and one last

column which may be e1 + e2, corresponding to the time

(n − 2k − 2)t1 + t2 +
n−2k∑

j=3

tj . (6)

Hence, by adding (5) and (6), the following theorem is proved:
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Theorem 1 Given T = (t1, t2, . . . , tn) such that t1 < t2 < . . . < tn, the minimum of
the function (3) is

ϕT min = (n − k − 2)t1 + (2k + 1)t2 +
n−2k∑

j=3

tj +
k−1∑

i=0

tn−2i , (7)

where k =
⌊

n − m

2

⌋
and m ∈ {1, 2, . . . , n} is the greatest integer such that tm ≤

2t2 − t1.
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