
Banach J. Math. Anal.           (2024) 18:74 
https://doi.org/10.1007/s43037-024-00379-1

Tusi
Mathematical
Research
Group

ORIG INAL PAPER

2-Rotund norms for unconditional and symmetric sequence
spaces

Stephen Dilworth1 · Denka Kutzarova2,3 · Pavlos Motakis4

Received: 16 April 2024 / Accepted: 15 August 2024
© The Author(s) 2024

Abstract
A reflexive Banach space with an unconditional basis admits an equivalent 1-
unconditional 2R norm and embeds into a reflexive space with a 1-symmetric 2R
norm. Partial results on 1-symmetric 2R renormings of spaces with a symmetric basis
are obtained.
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1 Introduction

The notions of 2-rotund and weakly 2-rotund norms were introduced by Milman [22]
and are defined as follows.
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Definition 1.1 Let X be a Banach space.We say that a norm ‖·‖ on X is 2-rotund (2R)
(resp. weakly 2-rotund (W2R)) if for every (xn) ⊂ X such that ‖xn‖ ≤ 1 (n ≥ 1)
and

lim
m,n→∞ ‖xm + xn‖ = 2,

there exists x ∈ X such that x = limn→∞ xn strongly (resp. weakly).

Note that a W2R norm is strictly convex. It follows from a characterization of
reflexivity due to James [17] that if X admits an equivalent W2R norm then X is
reflexive. Hájek and Johanis [15] proved the converse: every reflexive Banach space
admits an equivalent W2R norm. Odell and Schlumprecht [23] proved that every
separable reflexive Banach space X admits an equivalent 2R norm (cf. [13]). However,
it is an open question whether every reflexive Banach space admits an equivalent 2R
norm (cf. [15, p. 72]).

One motivation for the present article is the following result of Figiel and Johnson
which combines Theorem 3.1 and Remark 3.2 of [12]. Only the unconditional case is
stated explicitly in [12], but the argument for the unconditional case also proves the
symmetric case.

Theorem A Let X be a superreflexive Banach space with an unconditional (respec-
tively, symmetric) basis (en)∞n=1. Then X admits an equivalent uniformly convex norm
for which (en)∞n=1 is 1-unconditional (respectively, 1-symmetric).

Enflo [11] showed that a space is superreflexive if and only if it admits an equivalent
uniformly convex norm. By the theorem of Odell and Schlumprecht above a separable
space is reflexive if and only if it admits an equivalent 2R norm. Therefore it is natural
to ask whether the analogue of Theorem A holds for 2R renormings of separable
reflexive spaces.

In Sect. 3 we prove the analogous result in the unconditional case: a reflexive space
with an unconditional basis admits a 1-unconditional 2R norm. For the symmetric
case, however, we have only partial results. In particular, the following question is
open.

Question 1.2 Let X be a reflexive Banach space with a symmetric basis (en)∞n=1. Does
X admit an equivalent 2R norm for which (en)∞n=1 is 1-symmetric?

We show that the answer is positive if the lower Boyd index pX of X satisfies
pX > 1. We also prove that if X is a reflexive space with an unconditional basis then
X is isomorphic to a 1-complemented subspace of a space with a 2R norm and a
1-symmetric basis. This is a refinement of a theorem of Szankowski [24]. A similar
argument proves that the non-superreflexive space with a symmetric basis which does
not contain c0 or �p constructed in [12] and the space with a unique symmetric basic
sequence (not equivalent to the unit vector basis of c0 or �p) constructed by Altshuler
[1] both admit an equivalent 2R norm for which the basis is 1-symmetric.

A second motivation is the open question whether nonseparable reflexive spaces
admit a 2R norm. To attack this problem it is natural to examine specific classes of
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nonseparable reflexive spaces for potential counterexamples or positive results. In [9]
partial positive results were obtained for nonseparable generalized Baernstein spaces.
Another natural class to examine is the class of spaces with an uncountable symmetric
basis.

Question 1.3 Suppose X is a reflexive space with an uncountable symmetric basis
(eγ )γ∈� . Does X admit an equivalent (not necessarily 1-symmetric) 2R norm?

A positive answer to Quesion 1.2 would imply a positive answer to Question 1.3.
In fact, it would imply that X admits a 1-symmetric 2R norm.

In the final section we show that L∞[0, 1] admits an equivalent rearrangement-
invariant norm which restricts to a W2R norm on every reflexive subspace.

Finally, let us mention that related results are proved in [14, 16]. In [14] it is
proved that a uniformly smooth (resp. uniformly convex) space with a Schauder basis
admits a uniformly smooth (resp. uniformly convex) renorming for which the basis
is monotone, while in [16] the spaces with a symmetric basis which admit equivalent
symmetric norms that areGâteaux differentiable or uniformly rotund in every direction
are characterized.

2 Preliminary results

We shall use the following characterization of 2-rotundity (see e.g., [8, II.6.4] or [15]):
‖ · ‖ is a 2R norm on X if for all (xn)∞n=1 ⊂ X such that

lim
m,n→∞[‖xm + xn‖2 − 2(‖xm‖2 + ‖xn‖2)] = 0, (2.1)

there exists x ∈ X such that x = limn→∞ xn strongly.
Day [7] introduced the norm ‖ · ‖Day on c0 defined by

‖(an)∞n=1‖Day =
( ∞∑
n=1

4−na∗2
n

)1/2

,

where (a∗
n)

∞
n=1 is the non-increasing rearrangement of (|an|)∞n=1. Let (Y , ‖ · ‖) be a

reflexive Banach space with normalized basis (en)∞n=1. We define an equivalent norm
on Y thus:

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

∞∑
n=1

anen

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ =

⎛
⎝

∥∥∥∥∥
∞∑
n=1

anen

∥∥∥∥∥
2

+ ‖(an)∞n=1‖2Day
⎞
⎠

1/2

. (2.2)

We will use the following result of Hájek and Johanis. It is a consequence of
Theorem 3 and Corollary 4 of [15] and the reflexivity of Y . (Here ‖∑∞

n=1 anen‖∞ =
supn≥1 |an| as usual.)



   74 Page 4 of 17 S. Dilworth et al.

Theorem B Suppose (yn)∞n=1 ⊂ Y satisfies

lim
m,n→∞[|||yn + ym |||2 − 2(|||yn|||2 + |||ym |||2)] = 0. (2.3)

Then there exists y ∈ Y such that

yn → y weakly as n → ∞

and

lim
n→∞ ‖yn − y‖∞ = 0.

For K ≥ 1, a basis (en)∞n=1 is K -unconditional if

∥∥∥∥∥
∞∑
n=1

±anen

∥∥∥∥∥ ≤ K

∥∥∥∥∥
∞∑
n=1

anen

∥∥∥∥∥
for all scalars (an)∞n=1 and all choices of signs. The basis is K -symmetric if

∥∥∥∥∥
∞∑
n=1

±aσ(n)en

∥∥∥∥∥ ≤ K

∥∥∥∥∥
∞∑
n=1

anen

∥∥∥∥∥
for all scalars (an)∞n=1, all choices of signs, and all permutations σ : N → N.

We refer the reader to [20] for other unexplained Banach space notation and
terminology.

3 1-Unconditional bases

Theorem 3.1 Suppose that X has an unconditional basis. Then X admits an equivalent
1-unconditional norm ||| · ||| such that if (xn)∞n=1 ⊂ X is relatively weakly compact and
satisifies (2.1), then (xn) converges strongly. In particular, if X is reflexive, then ||| · |||
is 2R and 1-unconditional.

Proof The proof closely follows [23, Main Theorem]. So it suffices to indicate how to
adapt [23, Main Theorem] to produce a 1-unconditional basis as well as a 2R norm.

Let (en)∞n=1 be a semi-normalized unconditional basis for X and let ‖ · ‖ denote
any equivalent norm on X which is strictly convex and for which (en)∞n=1 is 1-
unconditional. To see that such a norm exists, let | · | be any equivalent norm on
X . Let

∥∥∥∥∥
∞∑
n=1

anen

∥∥∥∥∥ := sup

∣∣∣∣∣
∞∑
n=1

±anen

∣∣∣∣∣ +
( ∞∑
n=1

2−4na2n

)1/2

,
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where the supremum is taken over all choices of signs. Then ‖ ·‖ is strictly convex and
(en)∞n=1 is a 1-unconditional basis for (X , ‖ · ‖). For x ∈ X , following [23, p. 148],
define an equivalent norm ‖ · ‖x thus:

‖y‖x := ‖‖y‖x + y‖ + ‖‖y‖x − y‖ (y ∈ X).

Then [23, Lemma 2.1]

2‖y‖ ≤ ‖y‖x ≤ (2 + 2‖x‖)‖y‖. (3.1)

Let C be the countable vector space over Q defined by

C :=
{∑

anen : (an) ∈ c00, an ∈ Q, n ≥ 1
}

.

Let us say that c = ∑
anen ∈ C and d = ∑

bnen ∈ C are absolutely equivalent if
|an| = |bn| for all n ≥ 1. Note that absolute equivalence is an equivalence relation on
C and that the equivalence classes are finite. Let A be the collection of equivalence
classes. For all A ∈ A and for all absolutely equivalent y, z ∈ C , by 1 unconditionality
of ‖ · ‖ and absolute equivalence of y and z, we have

∑
c∈A

‖y‖c =
∑
c∈A

(‖‖y‖c + y‖ + ‖‖y‖c − y‖)

=
∑
c∈A

(‖‖z‖c + z‖ + ‖‖z‖c − z‖)

=
∑
c∈A

‖z‖c.

(3.2)

Choose pA > 0 (A ∈ A) such that
∑

A∈A pA(1 + ∑
c∈A ‖c‖) < ∞. Define a norm

||| · ||| on X as follows:

|||x ||| =
∑
A∈A

pA
∑
c∈A

‖x‖c.

It follows from (3.1) that ||| · ||| is an equivalent norm. Note that ||| · ||| is strictly convex
since ‖ · ‖0 = 2‖ · ‖ which is strictly convex. Suppose y, z ∈ C are absolutely
equivalent. Then (3.2) implies that

|||y||| =
∑
A∈A

pA
∑
c∈A

‖y‖c =
∑
A∈A

pA
∑
c∈A

‖z‖c = |||z|||.

Since C is dense in X , it follows that (en) is a 1-unconditional basis for (X , ||| · |||). The
proof of [23, Main Theorem], especially Lemmas 2.2(a), 2.3(a), and 2.4, now shows
that ‖ · ‖M is 2R. 
�
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Remark 3.2 Weare unable to adapt the proof of Theorem3.1 to the case of a symmetric
basis. The natural approach would be to say that vectors from C are equivalent if their
coefficient sequences are permuted. However, in this case the equivalence classes are
infinite, so the proof does not go through.

Lindenstrauss [19] proved that every space X with an unconditional basis is isomor-
phic to a complemented subspace of a space Y with a symmetric basis. Subsequently,
Szankowski [24] proved that if X is reflexive then Y can be chosen to be reflexive and
Davis [5] proved that if X is superreflexive then Y can be chosen to be superreflexive.
Davis’s method also proves the reflexive case. As an application of Theorem 3.1 we
use Davis’s method to prove the following refinement of Szankowski’s result.

Theorem 3.3 Suppose that X is reflexive and has an unconditional basis. Then X is
isomorphic to a 1-complemented subspace of a space with a 1-symmetric basis and a
2R norm. Moreover, that subspace has a 1-unconditional basis.

We recall the presentation of Davis’s approach in [20, p. 125]. Let (E, ‖ · ‖) and
(F, ‖ · ‖) be two Banach sequence spaces such that (en)∞n=1 is a 1-symmetric basis for
both E and F . We assume also that ‖x‖E ≤ ‖x‖F for all x ∈ F and that

lim
n→∞

‖∑n
i=1 ei‖E

‖∑n
i=1 ei‖F

= 0.

For each m ≥ 1, define a 1-symmetric norm ‖ · ‖m on E as follows:

‖x‖m = inf

{
(‖y‖2E + ‖z‖2F )1/2 : x = 1

m
y + mz, y ∈ E, z ∈ F

}
.

Then [20, p. 125]

1

m
‖x‖m ≤ ‖x‖E ≤ 2m‖x‖m (x ∈ E). (3.3)

Hence ‖ · ‖m is equivalent to ‖ · ‖E .
Now suppose that X is a Banach space with a normalized 1-unconditional basis

( fn)∞n=1. For every strictly increasing sequence (mn)
∞
n=1 such that

∑∞
n=1 1/mn < ∞,

we define the space Y := Y (E, F, X , (mn)
∞
n=1) to be the collection of all x ∈ E for

which

‖x‖Y :=
∥∥∥∥∥

∞∑
n=1

‖x‖mn fn

∥∥∥∥∥
X

< ∞. (3.4)

Then (en) is a 1-symmetric basis for Y . (The condition
∑∞

n=1 1/mn < ∞ guarantees
that F embeds continuously into Y and, in particular, that (en)∞n=1 ⊂ Y [20, p. 126].)

Theorem C [20, Prop. 3.b.4] For every E, F and X as above there exists an
increasing sequence of numbers (mn)

∞
n=1 with

∑∞
n=1 1/mn < ∞ such that Y =

Y (E, F, X , (mn)
∞
n=1) contains a complemented subspace isomorphic to X.
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The following lemma generalizes [20, Lemma 3.b.11].

Lemma 3.4 Suppose that E = c0 and
∑∞

n=1 1/mn < ∞. Let

un =
qn+1∑

i=qn+1

ci ei (m ≥ 1)

be a normalized block basis (with respect to (en)∞n=1) in Y (c0, F, X , (mn)
∞
n=1) such

that limi→∞ ci = 0. Then some subsequence of (un)∞n=1 is equivalent to a block basis
of ( fn)∞n=1 in X.

Proof Fix N ≥ 1 and n ≥ 1. It follows from (3.3) that

N∑
i=1

‖un‖mi ≤
(

N∑
i=1

mi

)
‖un‖E =

(
N∑
i=1

mi

)
max{|ci | : qn + 1 ≤ i ≤ qn+1}.

Since limi→∞ ci = 0, we can inductively define an increasing sequence of natural
numbers 1 = N1 < N2 < · · · and a subsequence (unk )

∞
k=1 such that for all k ≥ 1

∥∥∥∥∥∥
Nk∑
i=1

‖unk

∥∥∥∥∥∥
mi

fi‖X +
∥∥∥∥∥∥

∞∑
Nk+1+1

∥∥∥∥∥∥ unk‖mi fi‖X < 2−k−1.

It follows that the block basis (unk )
∞
k=1 ⊂ Y is equivalent to the block basis

⎛
⎝ Nk+1∑

i=Nk+1

‖unk

∥∥∥∥∥∥
mi

fi )
∞
k=1 ⊂ X .


�
The next lemma is more general than is needed for the proof of Theorem 3.3, but we
believe that the additional generality may be of independent interest.

Lemma 3.5 Suppose that E = c0 and X is reflexive. If
∑∞

n=1 1/mn < ∞ then
Y (c0, F, X , (mn)

∞
n=1) is reflexive.

Proof Since Y has a symmetric (hence unconditional) basis it follows from a result
of James [18] that Y is reflexive unless Y contains a subspace isomorphic to c0 or
�1. We use the fact that every (infinite-dimensional) subspace of Y contains a further
subspace isomorphic to a subspace of X or to a subspace of E (see [20, p. 127]). Since
every subspace of �1 contains a further subspace isomorphic to �1, and since neither
c0 nor X contain a subspace isomorphic to �1, it follows that Y does not contain
a subspace isomorphic to �1. Suppose, to obtain a contradiction, that Y contains a
sequence equivalent to the unit vector basis of c0. Since the unit vector basis of c0
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is weakly null, a standard gliding hump argument shows that (en)∞n=1 admits a block
basis

un =
qn+1∑

i=qn+1

ci ei

equivalent to the unit vector basis of c0. By the proof of [20, Lemma 3.b.3],

max
n≥1

∥∥∥∥∥
n∑

i=1

ei

∥∥∥∥∥
m

→ ∞ as m → ∞.

So, using (3.4), ‖∑n
i=1 ei‖Y → ∞ as n → ∞. It follows from the uncondition-

ality of (en)∞n=1 and the fact that supn≥1 ‖∑n
i=1 ui‖Y < ∞ that limi→∞ ci = 0.

By Lemma 3.4, some subsequence of (un)∞n=1 is equivalent to a block basis of
( fn)∞n=1 ⊂ X . Hence c0 is isomorphic to a subspace of X , which contradicts the
reflexivity of X . 
�
Remark 3.6 Reflexivity of Y (c0, �1, X , (2n)∞n=1)was proved in [12] using results from
[6].

Proof (Proof of Theorem 3.3) By Theorem 3.1, X has an equivalent 2R norm ‖ · ‖X
for which ( fn)∞n=1 is a 1-unconditional basis. Let Y := Y (c0, F, X , (mn)

∞
n=1) be as in

Theorem C. We equip Y with the equivalent norm defined by (2.2).
Suppose (yn)∞n=1 satisfies (2.3). Since Y is reflexive, by Theorem B there exists

y ∈ Y such that yn → y weakly and ‖yn − y‖∞ → 0 as n → ∞. Moreover, (2.3)
implies that

lim
m,n→∞[‖yn + ym‖2Y − 2(‖yn‖2Y + ‖ym‖2Y )] = 0. (3.5)

Let xn = ∑∞
i=1 ‖yn‖mi fi (n ≥ 1). By definition of ‖ ·‖Y , ‖xn‖X = ‖yn‖Y . Moreover,

by 1-unconditionality of the basis ( fn)∞n=1 of X ,

‖xn + xk‖X =
∥∥∥∥∥

∞∑
i=1

(‖yn‖mi + ‖yk‖mi ) fi

∥∥∥∥∥
X

≥
∥∥∥∥∥

∞∑
i=1

‖yn + yk‖mi fi

∥∥∥∥∥
X

= ‖yn + yk‖Y .

Hence (3.5) implies that

lim
m,n→∞[‖xn + xm‖2X − 2(‖xn‖2X + ‖xm‖2X )] = 0.
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Since ‖ · ‖X is 2R, it follows that (xn)∞n=1 is a Cauchy sequence in X . Hence, given
ε > 0, there exists N1 ≥ 1 such that

∥∥∥∥∥∥
∞∑

i=N1+1

‖yn‖mi fi

∥∥∥∥∥∥
X

<
ε

4
(n ≥ 1).

Hence

∥∥∥∥∥∥
∞∑

i=N1+1

‖yn − yk‖mi fi

∥∥∥∥∥∥
X

<
ε

2
(n, k ≥ 1). (3.6)

Recall that, by (3.3), ‖ · ‖m is equivalent to ‖ · ‖∞ for all m ≥ 1. Since limn→∞ ‖yn −
y‖∞ = 0, it follows that (yn)∞n=1 is a Cauchy sequence in ‖ · ‖m for all m ≥ 1. Hence
there exists N2 ≥ 1 such that

∥∥∥∥∥
N1∑
i=1

‖yn − yk‖mi fi

∥∥∥∥∥
X

<
ε

2
(n, k ≥ N2). (3.7)

Combining (3.6) and (3.7), we have ‖yn − yk‖Y < ε for all n, k ≥ N2. So (yn)∞n=1 is
a Cauchy sequence in Y and hence limn→∞ ‖yn − y‖Y = 0.

The proof of Theorem C shows that X is isomorphic to the closed linear span Z of
disjointly supported constant coefficient vectors in Y . Hence Z has a 1-unconditional
basis and is the range of an averaging projection on Y . So Z is 1-complemented in Y .


�

Let T be the space introduced in [12] (the dual of the space that does not contain c0
or �p constructed by Tsirelson [4]). It was proved in [12] that Y (c0, �1, T , (2n)∞n=1)

does not contain a subspace isomorphic to c0 or �p.
Let dw,1 be the Lorentz sequence space corresponding to the weight sequence

w = (1/n). The norm in dw,1 is given by

∥∥∥∥∥
∞∑
n=1

anen

∥∥∥∥∥ =
∞∑
n=1

a∗
n

n
.

It was proved by Altshuler [1] that Y (c0, dw,1, T , (2n)∞n=1) has a unique symmetric
basic sequence which, moreover, is not equivalent to the unit vector basis of c0 or �p.

The proof of Theorem 3.3 also establishes the following result.

Theorem 3.7 The spaces Y (c0, �1, T , (2n)∞n=1) of [12] and Y (c0, dw,1, T , (2n)∞n=1) of
[1] both have equivalent 2R norms with a 1-symmetric basis.
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4 1-Symmetric bases

In this section (X , ‖ · ‖) denotes a reflexive Banach space with a symmetric basis
(en)∞n=1.

Let us recall the definition of the lower Boyd index [3] pX of X (cf. [21, p. 130]).
For m ∈ N, the linear operator Dm : X → X is defined by

Dm

( ∞∑
n=1

anen

)
=

∞∑
n=1

an

⎛
⎝ nm∑

j=(n−1)m+1

e j

⎞
⎠ .

The lower Boyd index pX is defined by

pX = sup
m≥2

logm

log ‖Dm‖ = lim
m→∞

logm

log ‖Dm‖ . (4.1)

The following main result of this section is an immediate consequence of
Theorem 4.7 proved below.

Theorem 4.1 Suppose that X is a reflexive Banach space with a symmetric basis such
that pX > 1. Then X admits a 1-symmetric 2R norm.

[21, Prop. 2.b.7], which characterizes when pX > 1, yields a geometrical formulation
of Theorem 4.1.

Corollary 4.2 Suppose that X is a reflexive Banach space with a symmetric basis which
does not admit uniformly isomorphic copies of �n1 spanned by disjointly supported
vectors with the same distribution. Then X admits a 1-symmetric 2R norm.

For x = ∑∞
i=1 x(i)ei ∈ X , define the formal series

x̂ :=
∞∑
n=1

(
1

n

n∑
i=1

x∗(i)
)
en .

Weprove the following lemma for the sake of completeness.More general results in
the setting of rearrangement-invariant function spaces rather than symmetric sequence
spaces are proved in [2, Theorem 5.15].

Lemma 4.3 Suppose that pX > 1. Then there exists a constant c > 0 such that

‖x̂‖ ≤ c‖x‖ (x ∈ X).

Proof We may assume that (en)∞n=1 is a 1-symmetric basis of X . Let 1 < p < pX .
It follows from (4.1) that there exists A > 0 such that ‖Dm‖ ≤ Am1/p for all m ≥
1. Consider x = ∑∞

n=1 x(n)en ∈ X , where (x(n))∞n=1 is a nonnegative decreasing
sequence. Define f : (0,∞) → (0,∞) by f (t) = x(n) for n ≥ 1 and n− 1 < t ≤ n.
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Then

x̂ =
∞∑
n=1

(∫ 1

0
f (tn) dt

)
en =

∫ 1

0

( ∞∑
n=1

f (tn)en

)
dt

Hence

‖x̂‖ ≤
∫ 1

0

∥∥∥∥∥
∞∑
n=1

f (tn)en

∥∥∥∥∥ dt

≤
∞∑

m=1

2−m

∥∥∥∥∥
∞∑
n=1

f (2−mn)en

∥∥∥∥∥
(by 1-unconditionality)

=
∞∑

m=1

2−m‖D2m (x)‖

≤
∞∑

m=1

2−m(A2m/p)‖x‖

= A

21−1/p − 1
‖x‖.


�
Henceforth, we suppose that pX > 1, and, using Theorem 3.1, that ‖ · ‖ is 2R, and
that (en)∞n=1 is a symmetric 1-unconditional basis for ‖ · ‖. Suppose that (en)∞n=1 is
K -symmetric for ‖ · ‖. Define a quasi-norm ||| · ||| as follows:

|||x ||| = (‖x̂‖2 + ‖(x(n))∞n=1‖2Day)1/2
(
x =

∞∑
n=1

x(n)en ∈ X

)
. (4.2)

Lemma 4.4 ||| · ||| is a 1-symmetric equivalent norm on X.

Proof Clearly, ||| · ||| is a 1-symmetric quasi-norm since x̂ depends only on (x∗(n))∞n=1
and ‖ · ‖Day is 1-symmetric. For x ∈ X ,

1

K
‖x‖ = 1

K

∥∥∥∥∥
∞∑
n=1

x(n)en

∥∥∥∥∥
≤

∥∥∥∥∥
∞∑
n=1

x∗(n)en

∥∥∥∥∥



   74 Page 12 of 17 S. Dilworth et al.

(since (en)∞n=1 is a K -symmetric basis)

≤ ‖x̂‖

(since x∗(n) ≤ 1
n

∑n
i=1 x

∗(i) and (en)∞n=1 is a 1-unconditional basis)

≤ c‖x‖.

Since ‖ · ‖Day is equivalent to ‖ · ‖∞, it follows that ‖ · ‖ and ||| · ||| are equivalent
quasi-norms. It remains to prove that ||| · ||| is in fact a norm, i.e., that ||| · ||| satisfies the
triangle inequality. It suffices to show that x �→ ‖x̂‖ satisfies the triangle inequality.
Let x, y ∈ X . Note that

̂(x + y)(n) ≤ x̂(n) + ŷ(n) (n ∈ N). (4.3)

Since (en)∞n=1 is a 1-unconditional basis, it follows that

‖x̂ + y‖ ≤ ‖x̂ + ŷ‖ ≤ ‖x̂‖ + ‖ŷ‖. (4.4)

Hence x �→ ‖x̂‖ and ‖ · ‖ are equivalent norms on X .

�

For x ∈ X and N , M ∈ N, define

x · 1[N ,M] :=
M∑

n=N

x(n)en .

Lemma 4.5 For x, y ∈ X and N ∈ N,

|‖x̂ · 1[N ,∞)‖ − ‖ŷ · 1[N ,∞)‖| ≤ c‖x − y‖.

Proof (4.3) yields

‖x̂ · 1[N ,∞)‖ ≤ ‖ŷ · 1[N ,∞)‖ + ‖(x̂ − y) · 1[N ,∞)‖.

Hence

‖x̂ · 1[N ,∞)‖ − ‖ŷ · 1[N ,∞)‖ ≤ ‖(x̂ − y) · 1[N ,∞)‖ ≤ ‖(x̂ − y)‖ ≤ c‖x − y‖.

Interchanging x and y gives the result. 
�
Lemma 4.6 Suppose that x ∈ X, yn ∈ X (n ≥ 1), ‖yn‖ ≥ δ > 0, limn→∞ ‖yn‖∞ = 0
and min(supp(yn)) → ∞. Then, for all N ≥ 1,

lim inf
n→∞ ‖(x̂ + yn) · 1[N ,∞)‖ ≥ δ

K
.
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Proof Let α > 0. Choose N1 ∈ N so that x ′ := x1[1,N1] satisfies ‖x − x ′‖ < α. Then,
for all sufficiently large n, we have

min(supp(yn)) > N1 ≥ max(supp(x ′).

Hence, for all sufficiently large n and for all i ≥ 1,

(x̂ ′ + yn)(i) ≥ y∗
n (i).

So for all N ≥ 1 and for all sufficiently large n,

‖( ̂x ′ + yn)1[N ,∞)‖ ≥
∥∥∥∥∥

∞∑
i=N+1

y∗
n (i)ei

∥∥∥∥∥
≥

∥∥∥∥∥
∞∑
i=1

y∗
n (i)ei

∥∥∥∥∥ − N‖yn‖∞

≥ 1

K
‖yn‖ − N‖yn‖∞

≥ δ

K
− N‖yn‖∞.

Hence, by Lemma 4.5, for all N ≥ 1 and for all sufficiently large n,

‖(x̂ + yn) · 1[N ,∞)‖ ≥ ‖(x̂ ′ + yn) · 1[N ,∞)‖ − c‖x − x ′‖
≥ δ

K
− N‖yn‖∞ − cα.

Since limn→∞ ‖yn‖∞ = 0 and α > 0 is arbitrary the result follows. 
�
Theorem 4.7 ||| · ||| is a 1-symmetric 2R equivalent norm on X.

Proof Let us summarize the relevant progress we have made so far in this section. We
usedTheorem3.1 to equip X with an equivalent 2Rnorm‖·‖ that is 1-unconditional but
not necessarily 1-symmetric (see the paragraph before Lemma 4.4). We then defined
the equivalent norm ||| · |||, which we have shown in Lemma 4.4 to be 1-symmetric. It
remains to prove that it is 2R. Suppose (xn)∞n=1 ⊂ X satisfies

lim
m,n→∞[|||xn + xm |||2 − 2(|||xn|||2 + |||xm |||2)] = 0. (4.5)

ByTheoremB, (xn)∞n=1 convergesweakly to some x ∈ X and limn→∞ ‖xn−x‖∞ = 0.
Let xn = x + yn and suppose that (yn)∞n=1 does not converge to zero in norm. Since
limn→∞ ‖yn‖∞ = 0, a gliding hump and an approximation argument show, after
passing to a subsequence and relabelling, that without loss of generality each yn
has finite support, that (yn)∞n=1 is a block basis with respect to (en)∞n=1, and hence
min(supp(yn)) → ∞ as n → ∞, and that ‖yn‖ > δ > 0 (n ≥ 1).
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It follows from (4.5) and the definition of ||| · ||| in (4.2) that

lim
m,n→∞ ‖ ̂xn + xm‖2 − 2(‖x̂n‖2 + ‖x̂m‖2) = 0.

Note that ‖( ̂xn + xm)‖ ≤ ‖x̂n + x̂m‖ by (4.4). Hence

lim
m,n→∞ ‖x̂n + x̂m‖2 − 2(‖x̂n‖2 + ‖x̂m‖2) = 0.

Since ‖ · ‖ is a 2R equivalent norm on X , it follows that (x̂n)∞n=1 converges strongly
in X . By Lemma 4.6, for all N ≥ 1,

lim inf
m→∞ ‖x̂m · 1[N ,∞)‖ = lim inf

m→∞ ‖(x̂ + ym) · 1[N ,∞)‖ ≥ δ

K
,

which contradicts the fact that (x̂n)∞n=1 is a Cauchy sequence in X . 
�

5 Symmetric renormings of �∞ and L∞

A symmetric renorming of �∞ [16] is an equivalent norm ‖ · ‖ on �∞ such that

‖(an)∞n=1‖ = ‖(aσ(n))
∞
n=1‖ ((an)

∞
n=1 ∈ �∞)

for all permutations σ of N. It was proved in [16, Proposition 5] that for every sym-
metric renorming ‖ · ‖, (�∞, ‖ · ‖) contains a subspace isometric to (�∞, ‖ · ‖∞).
For the sake of completeness we include an elementary proof that avoids uncountable
cardinals.

Theorem 5.1 Let ‖ · ‖ be a 1-symmetric norm on �∞. Then there exists a subspace
Y of (�∞, ‖ · ‖) that is isometrically isomorphic to (�∞, ‖ · ‖∞). In fact, there exists
α > 0 such that, for all y ∈ Y , ‖y‖ = α‖y‖∞.

Proof Let ‖·‖ be a 1-symmetric norm on �∞. We let 2N denote the set of even positive
integers and �∞(2N) the subspace of �∞ comprising all x with supp(x) = {i ∈ N :
x(i) �= 0} ⊂ 2N. We will first show that ‖ · ‖ restricted on �∞(2N) is 1-suppression
unconditional, i.e., for every x, y ∈ �∞(2N) such that, for all i ∈ N, x(i) = y(i) or
y(i) = 0, we have ‖x‖ ≥ ‖y‖. We verify this on the dense linear subspace of �∞(2N)

consisting of all x that have the form

x =
n∑

i=1

aiχAi ,
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where n ∈ N, a1, . . . , an are (not necessarily different) scalars, and A1, . . . , An are
disjoint (finite or infinite) subsets of 2N. By symmetry, it suffices to show that, letting

y =
n−1∑
i=1

aiχAi ,

‖x‖ ≥ ‖y‖. Fix an infinite S ⊂ N \ 2N. For each N ∈ N, choose disjoint subsets
A1
n, . . . , A

N
n of S that are equinumerous to An , and, for 1 ≤ j ≤ N , let x j

N =
y + anχA j

n
. By symmetry, ‖x j

N‖ = ‖x‖, and thus letting

yN = 1

N

N∑
j=1

x j
N

we have ‖x‖ ≥ ‖yN‖. At the same time, ‖yN − y‖∞ → 0, and thus by equivalence
‖yN − y‖ → 0, which yields ‖x‖ ≥ ‖y‖.

By scaling and symmetry, we may assume that, for all n ∈ N, ‖en‖ = 1 and thus,
by 1-suppression unconditionality, for all x ∈ �∞(2N), ‖x‖ ≥ ‖x‖∞. Put

α = sup{‖x‖: x ∈ �∞(2N), ‖x‖∞ = 1}.

Then there exists x0 ∈ �∞(2N) such that ‖x0‖∞ = 1 and ‖x0‖ = α. Indeed, by
symmetry we can pick disjointly supported vectors (xn)∞n=1 in �∞(2N) such that, for
all n ∈ N, ‖xn‖∞ = 1 and ‖xn‖ ≥ α − 1/n. This follows from the symmetry of ‖ · ‖
and the fact that any bijection between infinite subsets of 2N extends to a permutation
of N. Define x0 = ∑∞

n=1 xn pointwise. Then, ‖x0‖∞ = 1 and thus ‖x0‖ ≤ α. By
1-suppression unconditionality, for all n ∈ N, ‖x0‖ ≥ ‖xn‖ ≥ α − 1/n. So ‖x0‖ = α.
Pick a disjointly supported sequence (yn)∞n=1 in �∞(2N) so that each yn has the same
distribution as x0. Then, for all (an) ∈ �∞,

∑∞
n=1 an yn (defined pointwise) satisfies

‖∑∞
n=1 an yn‖ = α‖(an)‖∞. Hence Y = {∑∞

n=1 an yn : (an) ∈ �∞} has the required
property. 
�

On the other hand, by [15, Corollary 4] �∞ admits an equivalent norm which
restricts to a W2R norm on reflexive subspaces. Clearly, every such norm is strictly
convex and hence cannot be symmetric by Theorem 5.1.

Next we consider rearrangement-invariant renormings of L∞[0, 1]. Curiously, we
reach a rather different conclusion from the case of �∞.

We will apply the following result from [10].

Theorem D [10] There is an equivalent rearrangement-invariant (Orlicz) norm ||| · |||
on L1[0, 1] satisfying the following restricted uniform convexity condition. Let K ⊂
{x ∈ L1[0, 1] : |||x ||| ≤ 1} be weakly compact. Then, given ε > 0, there exists δ > 0
such that for all x, y ∈ K,

|||x + y||| > 2 − δ ⇒ |||x − y||| < ε.
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Corollary 5.2 Suppose (yn)∞n=1 is relatively weakly compact in L1[0, 1] and satisfies

lim
m,n→∞[|||yn + ym |||2 − 2(|||yn|||2 + |||ym |||2)] = 0. (5.1)

Then (yn)∞n=1 converges in L1[0, 1].

Proof The proof is omitted as it is essentially the same as the proof that a uniformly
convex norm is 2R. 
�

Theorem 5.3 Let (Y , |·|) be a rearrangement-invariant space on [0, 1]. Then Y admits
an equivalent rearrangement-invariant norm ‖ · ‖ such that if (yn)∞n=1 is relatively
weakly compact in Y and satisfies

lim
m,n→∞[‖ym + yn‖2 − 2(‖ym‖2 + ‖yn‖2)] = 0, (5.2)

then (yn)∞n−1 converges weakly in Y . In particular, ‖ · ‖ restricts to a W2R norm on
every reflexive subspace of Y .

Proof Note that Y embeds continuously into L1[0, 1]. Define ‖ · ‖ as follows:

‖y‖ = (|y|2 + |||y|||2)1/2 (y ∈ Y ).

Suppose that (yn)∞n=1 satisfies (5.2). Then (yn)∞n=1 also satisfies (5.1) and (yn)∞n=1
is relatively weakly compact in L1[0, 1]. It follows from Theorem D that (yn)∞n=1
converges in L1[0, 1], which implies that (yn)∞n=1 has a unique weak cluster point in
Y , i.e. that (yn)∞n=1 converges weakly in Y . 
�

Corollary 5.4 L∞[0, 1] admits an equivalent rearrangement-invariant norm which
restricts to a W2R norm on every reflexive subspace.
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