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Abstract
The notion of p-summing Bloch mapping from the complex unit open disc D into
a complex Banach space X is introduced for any 1 ≤ p ≤ ∞. It is shown that the
linear space of such mappings, equipped with a natural seminorm πB

p , is Möbius-
invariant. Moreover, its subspace consisting of all those mappings which preserve the
zero is an injective Banach ideal of normalized Bloch mappings. Bloch versions of the
Pietsch’s domination/factorization Theorem and the Maurey’s extrapolation Theorem
are presented. We also introduce the spaces of X -valued Bloch molecules on D and
identify the spaces of normalized p-summing Bloch mappings from D into X∗ under
the norm πB

p with the duals of such spaces of molecules under the Bloch version of
the p∗-Chevet–Saphar tensor norms dp∗ .

Keywords Vector-valued Bloch mapping · Compact Bloch mapping · Banach-valued
Bloch molecule · Bloch-free Banach space

Mathematics Subject Classification 30H30 · 46E15 · 46E40 · 47B38

Introduction

The known concept of absolutely p-summing operator between Banach spaces, intro-
duced by Grothendieck [10] for p = 1 and by Pietsch [18] for any p > 0, can be
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adapted to address the property of summability in the setting of Bloch mappings from
the complex unit open disc D into a complex Banach space X as follows.

The study of summability has been addressed for different classes of mappings by
some authors. For example, for multilinear operators by Achour and Mezrag [1] and
Dimant [8], for Lipschitz mappings by Farmer and Johnson [9] and Saadi [20], and for
holomorphic mappings by Matos [12] and Pellegrino [15], among other settings. See
also the survey by Pellegrino et al. [16] for the summability on multilinear operators
and homogeneous polynomials.

If H(D, X) denotes the space of all holomorphic mappings from D into X , let us
recall that a mapping f ∈ H(D, X) is called Bloch if there exists a constant c ≥ 0
such that (1 − |z|2) ∥∥ f ′(z)

∥
∥ ≤ c for all z ∈ D.

The Bloch space B(D, X) is the linear space of all those mappings f ∈ H(D, X)

such that

pB( f ) := sup
{

(1 − |z|2) ∥∥ f ′(z)
∥
∥ : z ∈ D

}

< ∞,

equipped with the Bloch seminorm pB. The normalized Bloch space B̂(D, X) is the
Banach space of all Bloch mappings fromD into X such that f (0) = 0, equipped with
the Bloch norm pB. In particular, we will write B̂(D) instead of B̂(D,C). We refer
the reader to [2, 21] for the scalar-valued theory, and to [4, 5] for the vector-valued
theory on these spaces.

For any 1 ≤ p ≤ ∞, we say that a mapping f ∈ H(D, X) is p-summing Bloch if
there is a constant c ≥ 0 such that for any n ∈ N, λ1, . . . , λn ∈ C and z1, . . . , zn ∈ D,

we have

(
n
∑

i=1

|λi |p
∥
∥ f ′(zi )

∥
∥p

) 1
p

≤ c sup
g∈BB̂(D)

(
n
∑

i=1

|λi |p
∣
∣g′(zi )

∣
∣p

) 1
p

if 1 ≤ p < ∞,

max
1≤i≤n

|λi |
∥
∥ f ′(zi )

∥
∥ ≤ c sup

g∈BB̂(D)

(

max
1≤i≤n

|λi |
∣
∣g′(zi )

∣
∣

)

if p = ∞.

The infimum of all the constants c for which such an inequality holds, denoted πB
p ( f ),

defines a seminorm on the linear space, denoted �B
p (D, X), of all p-summing Bloch

mappings f : D → X . Furthermore, this seminorm becomes a norm on the subspace
�B̂

p (D, X) consisting of all those mappings f ∈ �B
p (D, X) so that f (0) = 0.

These spaces enjoy nice properties in both complex and functional analytical frame-
works. In the former setting, we show that the space (�B

p (D, X), πB
p ) is invariant by

Möbius transformations of D. In the latter context and in a clear parallelism with the
theory of absolutely p-summing linear operators (see [7, Chapter 2]), we prove that
[�B̂

p , πB
p ] is an injective Banach ideal of normalized Bloch mappings whose elements

can be characterized by means of Pietsch domination/factorization. Applying this
Pietsch domination, we present a Bloch version of Maurey’s extrapolation Theorem
[13].
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On the other hand, the known duality of the Bloch spaces (see [2, 4, 21]) is extended
to the spaces (�B̂

p (D, X∗), πB
p ) by identifying them with the duals of the spaces of

the so-called X -valued Bloch molecules on D, equipped with the Bloch versions of
the p∗-Chevet–Saphar tensor norms dp∗ . We conclude the paper with some open
problems.

The proofs of some of our results are similar to those of their corresponding linear
versions, but a detailed reading of them shows that the adaptation of the linear tech-
niques to the Bloch setting is far from being simple. Our approach depends mainly
on the application of some concepts and results concerning the theory on a strongly
unique predual of the space B̂(D), called Bloch-free Banach space over D that was
introduced in [11].

Notation. For two normed spaces X and Y , L(X , Y ) denotes the normed space of
all bounded linear operators from X to Y , equipped with the operator canonical norm.
In particular, the topological dual space L(X ,C) is denoted by X∗. For x ∈ X and
x∗ ∈ X∗, we will sometimes write 〈x∗, x〉 = x∗(x). As usual, BX and SX stand for
the closed unit ball of X and the unit sphere of X , respectively. Let T and D denote
the unit sphere and the unit open disc of C, respectively.

Given 1 ≤ p ≤ ∞, let p∗ denote the conjugate index of p defined by

p∗ =
⎧

⎨

⎩

∞ if p = 1,
p/(p − 1) if 1 < p < ∞,

1 if p = ∞.

1 p-Summing Blochmappings on the unit disc

This section gathers the most important properties of p-summing Bloch mappings on
D. From now on, unless otherwise stated, X will denote a complex Banach space.

1.1 Inclusions

We will first establish some useful inclusion relations. See first [18, Satz 5].
The following class of Bloch functions will be used throughout the paper. For each

z ∈ D, the function fz : D → C defined by

fz(w) = (1 − |z|2)w
1 − zw

(w ∈ D),

belongs to B̂(D) with pB( fz) = 1 = (1 − |z|2) f ′
z (z) (see [11, Proposition 2.2]).

Proposition 1.1 Let 1 ≤ p < q ≤ ∞. Then �B
p (D, X) ⊆ �B

q (D, X) with πB
q ( f ) ≤

πB
p ( f ) for all f ∈ �B

p (D, X). Moreover, �B∞(D, X) = B(D, X) with πB∞( f ) =
pB( f ) for all f ∈ �B∞(D, X).
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Proof Let n ∈ N, λ1, . . . , λn ∈ C and z1, . . . , zn ∈ D. We will first prove the second
assertion. Let f ∈ �B∞(D, X). For all z ∈ D, we have

(1 − |z|2) ∥∥ f ′(z)
∥
∥ ≤ πB∞( f ) sup

g∈BB̂(D)

(1 − |z|2) ∣∣g′(z)
∣
∣ = πB∞( f ),

hence f ∈ B(D, X) with pB( f ) ≤ πB∞( f ). Conversely, let f ∈ B(D, X). For i =
1, . . . , n, we have

|λi |
∥
∥ f ′(zi )

∥
∥ ≤ |λi |

1 − |zi |2 pB( f ) = |λi |
∣
∣ f ′

zi
(zi )
∣
∣ pB( f ) ≤ pB( f ) sup

g∈BB̂(D)

|λi |
∣
∣g′(zi )

∣
∣ ,

this implies that

max
1≤i≤n

|λi |
∥
∥ f ′(zi )

∥
∥ ≤ pB( f ) sup

g∈BB̂(D)

(

max
1≤i≤n

|λi |
∣
∣g′(zi )

∣
∣

)

,

and thus f ∈ �B∞(D, X) with πB∞( f ) ≤ pB( f ).

To prove the first assertion, let f ∈ �B
p (D, X). Assume q < ∞. Taking βi =

|λi |q/p
∥
∥ f ′(zi )

∥
∥(q/p)−1 for i = 1, . . . , n, we have

(
n
∑

i=1

|λi |q
∥
∥ f ′(zi )

∥
∥

q

) 1
p

=
(

n
∑

i=1

|βi |p
∥
∥ f ′(zi )

∥
∥

p

) 1
p

≤ πB
p ( f ) sup

g∈BB̂(D)

(
n
∑

i=1

|βi |p
∣
∣g′(zi )

∣
∣p

) 1
p

.

Since q/p > 1 and (q/p)∗ = q/(q − p), Hölder Inequality yields

sup
g∈BB̂(D)

(
n
∑

i=1

|βi |p
∣
∣g′(zi )

∣
∣p

) 1
p

= sup
g∈BB̂(D)

(
n
∑

i=1

(|λi |
∥
∥ f ′(zi )

∥
∥
)q−p (|λi |

∣
∣g′(zi )

∣
∣
)p

) 1
p

≤
(

n
∑

i=1

|λi |q
∥
∥ f ′(zi )

∥
∥q

) 1
p − 1

q

sup
g∈BB̂(D)

(
n
∑

i=1

|λi |q
∣
∣g′(zi )

∣
∣q

) 1
q

,

and thus we obtain

(
n
∑

i=1

|λi |q
∥
∥ f ′(zi )

∥
∥

q

) 1
q

≤ πB
p ( f ) sup

g∈BB̂(D)

(
n
∑

i=1

|λi |q
∣
∣g′(zi )

∣
∣
q

) 1
q

.
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This shows that f ∈ �B
q (D, X)with πB

q ( f ) ≤ πB
p ( f ) if q < ∞. For the case q = ∞,

note that

(1 − |z|2) ∥∥ f ′(z)
∥
∥ ≤ πB

p ( f ) sup
g∈BB̂(D)

(1 − |z|2) ∣∣g′(z)
∣
∣ = πB

p ( f )

for all z ∈ D, and thus f ∈ B(D, X) = �B∞(D, X) with πB∞( f ) = pB( f ) ≤ πB
p ( f ).

�

1.2 Injective Banach ideal property

Let us recall (see [11, Definition 5.11]) that a normalized Bloch ideal is a subclass IB̂
of the class of all normalized Bloch mappings B̂ such that for every complex Banach
space X , the components

IB̂(D, X) := IB̂ ∩ B̂(D, X),

satisfy the following properties:

(I1) IB̂(D, X) is a linear subspace of B̂(D, X),

(I2) For every g ∈ B̂(D) and x ∈ X , the mapping g · x : z �→ g(z)x from D to X is
in IB̂(D, X),

(I3) The ideal property: if f ∈ IB̂(D, X), h : D → D is a holomorphic function with
h(0) = 0 and T ∈ L(X , Y ) where Y is a complex Banach space, then T ◦ f ◦ h
belongs to IB̂(D, Y ).

A normalized Bloch ideal IB̂ is said to be normed (Banach) if there is a function
‖ · ‖IB̂ : IB̂ → R

+
0 such that for every complex Banach space X , the following three

conditions are satisfied:

(N1) (IB̂(D, X), ‖ · ‖IB̂) is a normed (Banach) space with pB( f ) ≤ ‖ f ‖IB̂ for all

f ∈ IB̂(D, X),

(N2) ‖g · x‖IB̂ = pB(g) ‖x‖ for all g ∈ B̂(D) and x ∈ X ,

(N3) If h : D → D is a holomorphic function with h(0) = 0, f ∈ IB̂(D, X) and T ∈
L(X , Y )where Y is a complex Banach space, then ‖T ◦ f ◦h‖IB̂ ≤ ‖T ‖ ‖ f ‖IB̂ .

A normed normalized Bloch ideal [IB̂, ‖ · ‖IB̂ ] is said to be:
(I) Injective if for any mapping f ∈ B̂(D, X), any complex Banach space Y and

any isometric linear embedding ι : X → Y , we have that f ∈ IB̂(D, X) with
‖ f ‖IB̂ = ‖ι ◦ f ‖IB̂ whenever ι ◦ f ∈ IB̂(D, Y ).

We are now ready to establish the following result which can be compared to [18,
Satzs 1–4].

Proposition 1.2 [�B̂
p , πB

p ] is an injective Banach normalized Bloch ideal for any 1 ≤
p ≤ ∞.
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Proof Note that �B̂
p (D, X) ⊆ B̂(D, X) with pB( f ) ≤ πB

p ( f ) for all f ∈ �B̂
p (D, X)

by Proposition 1.1.
We will only prove the case 1 < p < ∞. The cases p = 1 and p = ∞ follow

similarly. Let n ∈ N, λ1, . . . , λn ∈ C and z1, . . . , zn ∈ D.

(N1) If f ∈ �B̂
p (D, X) and πB

p ( f ) = 0, then pB( f ) = 0, and so f = 0. Given

f1, f2 ∈ �B̂
p (D, X), we have

(
n
∑

i=1

|λi |p
∥
∥( f1 + f2)

′(zi )
∥
∥p

) 1
p

≤
(

n
∑

i=1

|λi |p (
∥
∥ f ′

1(zi )
∥
∥p + ∥∥ f ′

2(zi )
∥
∥p)
) 1

p

≤
(

n
∑

i=1

|λi |p
∥
∥ f ′

1(zi )
∥
∥p

) 1
p

+
(

n
∑

i=1

|λi |p
∥
∥ f ′

2(zi )
∥
∥p

) 1
p

≤
(

πB
p ( f1) + πB

p ( f2)
)

sup
g∈BB̂(D)

(
n
∑

i=1

|λi |p
∣
∣g′(zi )

∣
∣p

) 1
p

,

and therefore f1 + f2 ∈ �B̂
p (D, X) with πB

p ( f1 + f2) ≤ πB
p ( f1) + πB

p ( f2).

Let λ ∈ C and f ∈ �B̂
p (D, X). We have

(
n
∑

i=1

|λi |p
∥
∥(λ f )′(zi )

∥
∥p

) 1
p

= |λ|
(

n
∑

i=1

|λi |p
∥
∥ f ′(zi )

∥
∥p

) 1
p

≤ |λ|πB
p ( f ) sup

g∈BB̂(D)

(
n
∑

i=1

|λi |p
∣
∣g′(zi )

∣
∣p

) 1
p

,

and thusλ f ∈ �B̂
p (D, X)withπB

p (λ f ) ≤ |λ|πB
p ( f ).This implies thatπB

p (λ f ) = 0 =
|λ| πB

p ( f ) if λ = 0. For λ �= 0, we have πB
p ( f ) = πB

p (λ−1(λ f )) ≤ |λ|−1 πB
p (λ f ),

hence |λ| πB
p ( f ) ≤ πB

p (λ f ), and so πB
p (λ f ) = |λ|πB

p ( f ). Thus we have proved that
(

�B̂
p (D, X), πB

p

)

is a normed space.

To show that it is a Banach space, it is enough to see that every absolutely convergent
series is convergent. So let ( fn)n≥1 be a sequence in �B̂

p (D, X) such that
∑

πB
p ( fn)

converges. Since pB( fn) ≤ πB
p ( fn) for all n ∈ N and

(B̂(D, X), pB
)

is a Banach

space, then
∑

fn converges in
(B̂(D, X), pB

)

to a function f ∈ B̂(D, X). Given
m ∈ N, z1, . . . , zm ∈ D and λ1, . . . , λm ∈ C, we have

(
m
∑

k=1

|λk |p

∥
∥
∥
∥
∥

n
∑

i=1

f ′
i (zk)

∥
∥
∥
∥
∥

p) 1
p

≤ πB
p

(
n
∑

i=1

fi

)

sup
g∈BB̂(D)

(
m
∑

k=1

|λk |p
∣
∣g′(zk)

∣
∣p

) 1
p

≤
n
∑

i=1

πB
p ( fi ) sup

g∈BB̂(D)

(
m
∑

k=1

|λk |p
∣
∣g′(zk)

∣
∣p

) 1
p
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for all n ∈ N, and by taking limits with n → ∞ yields

(
m
∑

k=1

|λk |p

∥
∥
∥
∥
∥

∞
∑

i=1

f ′
i (zk)

∥
∥
∥
∥
∥

p) 1
p

≤
∞
∑

i=1

πB
p ( fi ) sup

g∈BB̂(D)

(
m
∑

k=1

|λk |p
∣
∣g′(zk)

∣
∣p

) 1
p

.

Hence f ∈ �B̂
p (D, X) with πB

p ( f ) ≤∑∞
n=1 πB

p ( fn). Moreover, we have

πB
p

(

f −
n
∑

i=1

fi

)

= πB
p

( ∞
∑

i=n+1

fi

)

≤
∞
∑

i=n+1

πB
p ( fi )

for all n ∈ N, and thus f is the πB
p -limit of the series

∑
fn .

(N2) Let g ∈ B̂(D) and x ∈ X . Note that g · x ∈ B̂(D, X) with pB(g · x) =
pB(g) ‖x‖ by [11, Proposition 5.13]. If g = 0, there is nothing to prove. Assume
g �= 0. We have

(
n
∑

i=1

|λi |p
∥
∥(g · x)′(zi )

∥
∥p

) 1
p

= ‖x‖ pB(g)

(
n
∑

i=1

|λi |p
∣
∣
∣
∣

(
g

pB(g)

)′
(zi )

∣
∣
∣
∣

p
) 1

p

≤ ‖x‖ pB(g) sup
h∈BB̂(D)

(
n
∑

i=1

|λi |p
∣
∣h′(zi )

∣
∣p

) 1
p

,

and thus g · x ∈ �B̂
p (D, X) with πB

p (g · x) ≤ pB(g) ‖x‖ . Conversely, we have

pB(g) ‖x‖ = pB(g · x) ≤ πB
p (g · x).

(N3) Let h : D → D be a holomorphic function with h(0) = 0, f ∈ �B̂
p (D, X) and

T ∈ L(X , Y ) where Y is a complex Banach space. Note that T ◦ f ◦ h ∈ B̂(D, Y ) by
[11, Proposition 5.13]. We have

(
n
∑

i=1

|λi |p
∥
∥(T ◦ f ◦ h)′(zi )

∥
∥

p

) 1
p

=
(

n
∑

i=1

|λi |p
∥
∥T ( f ′(h(zi ))h

′(zi ))
∥
∥p

) 1
p

≤ ‖T ‖
(

n
∑

i=1

|λi |p
∣
∣h′(zi )

∣
∣p
∥
∥ f ′(h(zi ))

∥
∥p

) 1
p

≤ ‖T ‖ πB
p ( f ) sup

g∈BB̂(D)

(
n
∑

i=1

|λi |p
∣
∣h′(zi )

∣
∣

p ∣
∣g′(h(zi ))

∣
∣

p

) 1
p
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= ‖T ‖ πB
p ( f ) sup

g∈BB̂(D)

(
n
∑

i=1

|λi |p
∣
∣(g ◦ h)′(zi )

∣
∣p

) 1
p

≤ ‖T ‖ πB
p ( f ) sup

k∈BB̂(D)

(
n
∑

i=1

|λi |p
∣
∣k′(zi )

∣
∣p

) 1
p

,

where we have used that pB(g ◦ h) ≤ pB(g) by [11, Proposition 3.6]. Therefore
T ◦ f ◦ h ∈ �B̂

p (D, Y ) with πB
p (T ◦ f ◦ h) ≤ ‖T ‖ πB

p ( f ).

(I) Let f ∈ B̂(D, X) and let ι : X → Y be a linear (not necessarily surjective)
isometry. Assume that ι ◦ f ∈ �B̂

p (D, Y ). We have

(
n
∑

i=1

|λi |p
∥
∥ f ′(zi )

∥
∥

p

) 1
p

=
(

n
∑

i=1

|λi |p
∥
∥ι( f ′(zi ))

∥
∥

p

) 1
p

=
(

n
∑

i=1

|λi |p
∥
∥(ι ◦ f )′(zi ))

∥
∥

p

) 1
p

≤ πB
p (ι ◦ f ) sup

g∈BB̂(D)

(
n
∑

i=1

|λi |p
∣
∣g′(zi )

∣
∣p

) 1
p

and thus f ∈ �B̂
p (D, X) with πB

p ( f ) ≤ πB
p (ι ◦ f ). The reverse inequality follows

from (N3). �

1.3 Möbius invariance

The Möbius group of D, denoted Aut(D), is formed by all biholomorphic bijections
φ : D → D. Each φ ∈ Aut(D) has the form φ = λφa with λ ∈ T and a ∈ D, where

φa(z) = a − z

1 − az
(z ∈ D).

Given a complex Banach space X , let us recall (see [3]) that a linear spaceA(D, X)

of holomorphic mappings from D into X , endowed with a seminorm pA, is Möbius-
invariant if it holds:

(i) A(D, X) ⊆ B(D, X) and there exists c > 0 such that pB( f ) ≤ cpA( f ) for all
f ∈ A(D, X),

(ii) f ◦φ ∈ A(D, X)with pA( f ◦φ) = pA( f ) for allφ ∈ Aut(D) and f ∈ A(D, X).

By Proposition 1.1, each p-summing Bloch mapping f : D → X is Bloch with
pB( f ) ≤ πB

p ( f ). Moreover, following the argument of the proof of (N3) in Proposi-
tion 1.2, it is easy to prove that if f : D → X is p-summing Bloch and φ ∈ Aut(D),

then f ◦ φ is p-summing with πB
p ( f ◦ φ) ≤ πB

p ( f ), and using this fact we also
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deduce that πB
p ( f ) = πB

p (( f ◦ φ) ◦ φ−1) ≤ πB
p ( f ◦ φ). In this way we have proved

the following.

Proposition 1.3 (�B
p (D, X), πB

p ) is a Möbius-invariant space for 1 ≤ p ≤ ∞. �

1.4 Pietsch domination

We establish a version for p-summing Bloch mappings on D of the known Pietsch
domination Theorem for p-summing linear operators between Banach spaces [18,
Theorem 2].

Let us recall that B̂(D) is a dual Banach space (see [2]) and therefore we can
consider this space equipped with its weak* topology. Let P(BB̂(D)) denote the set of
all Borel regular probability measures μ on (BB̂(D), w

∗).

Theorem 1.4 Let 1 ≤ p < ∞ and f ∈ B̂(D, X). The following statements are
equivalent:
(i) f is p-summing Bloch.
(ii) (Pietsch domination). There is a constant c ≥ 0 and a Borel regular probability

measure μ on (BB̂(D), w
∗) such that

∥
∥ f ′(z)

∥
∥ ≤ c

(
∫

BB̂(D)

∣
∣g′(z)

∣
∣p dμ(g)

) 1
p

for all z ∈ D.

In this case, πB
p ( f ) is the infimum of all constants c ≥ 0 satisfying the preceding

inequality, and this infimum is attained.

Proof (i) ⇒ (ii): We will apply an unified abstract version of Piestch domination
Theorem (see [6, 17]). For it, consider the functions

S : B̂(D, X) × D × C → [0,∞[, S( f , z, λ) = |λ| ∥∥ f ′(z)
∥
∥

and

R : BB̂(D) × D × C → [0,∞[, R(g, z, λ) = |λ| ∣∣g′(z)
∣
∣ .

Note first that for any z ∈ D and λ ∈ C, the function Rz,λ : BB̂(D) → [0,∞[, given
by

Rz,λ(g) = R(g, z, λ),

is continuous. For every n ∈ N, λ1, . . . , λn ∈ C and z1, . . . , zn ∈ D, we have

(
n
∑

i=1

S( f , zi , λi )
p

) 1
p

=
(

n
∑

i=1

|λi |p
∥
∥ f ′(zi )

∥
∥

p

) 1
p
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≤ πB
p ( f ) sup

g∈BB̂(D)

(
n
∑

i=1

|λi |p
∣
∣g′(zi )

∣
∣p

) 1
p

= πB
p ( f ) sup

g∈BB̂(D)

(
n
∑

i=1

R(g, zi , λi )
p

) 1
p

,

and therefore f is R − S-abstract p-summing. Hence, by applying [17, Theorem 3.1],
there is a constant c ≥ 0 and a measure μ ∈ P(BB̂(D)) such that

S( f , z, λ) ≤ c

(
∫

BB̂(D)

R(g, z, λ)p dμ(g)

) 1
p

for all z ∈ D and λ ∈ C, and therefore

∥
∥ f ′(z)

∥
∥ ≤ c

(
∫

BB̂(D)

∣
∣g′(z)

∣
∣

p
dμ(g)

) 1
p

for all z ∈ D. Furthermore, we have

∥
∥ f ′(z)

∥
∥ =

(
n
∑

i=1

|λi |p
∥
∥ f ′(zi )

∥
∥

p

) 1
p

≤ πB
p ( f )

(
∫

BB̂(D)

∣
∣g′(z)

∣
∣

p
dμ(g)

) 1
p

for every z ∈ D by taking, for example, n ∈ N, λ1 = 1, λ2 = · · · = λn = 0 and
z1 = · · · = zn = z.

(ii) ⇒ (i): Given n ∈ N, λ1, . . . , λn ∈ C and z1, . . . , zn ∈ D, we have

(
n
∑

i=1

|λi |p
∥
∥ f ′(zi )

∥
∥

p

) 1
p

≤ c
n
∑

i=1

(
∫

BB̂(D)

|λi |p
∣
∣g′(zi )

∣
∣

p
dμ(g)

) 1
p

≤ c sup
g∈BB̂(D)

(
n
∑

i=1

|λi |p
∣
∣g′(zi )

∣
∣p

) 1
p

.

Hence f ∈ �B̂
p (D, X) with πB

p ( f ) ≤ c. �

1.5 Pietsch factorization

We now present the analogue for p-summing Bloch mappings of Pietsch factorization
theorem for p-summing operators (see [18, Theorem 3], also [7, Theorem 2.13]).

Given μ ∈ P(BB̂(D)) and 1 ≤ p < ∞, I∞,p : L∞(μ) → L p(μ) and
j∞ : C(BB̂(D)) → L∞(μ) denote the formal inclusion operators. We will also use
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the mapping ιD : D → C(BB̂(D)) defined by

ιD(z)(g) = g′(z)
(

z ∈ D, g ∈ BB̂(D)

)

,

and for a complex Banach space X , the isometric linear embedding ιX : X →
�∞(BX∗) given by

〈

ιX (x), x∗〉 = x∗(x) (x∗ ∈ BX∗ , x ∈ X).

The following easy fact will be applied below.

Lemma 1.5 Let μ ∈ P(BB̂(D)). Then there exists a mapping h ∈ B̂(D, L∞(μ)) with

pB(h) = 1 such that h′ = j∞ ◦ ιD. In fact, h ∈ �B̂
p (D, L∞(μ)) with πB

p (h) = 1 for
any 1 ≤ p < ∞.

Proof Note that j∞ ◦ ιD ∈ H(D, L∞(μ)) with ( j∞ ◦ ιD)′ = j∞ ◦ (ιD)′, where
(ιD)′(z)(g) = g′′(z) for all z ∈ D and g ∈ BB̂(D). By [11, Lemma 2.9], there exists
a mapping h ∈ H(D, L∞(μ)) with h(0) = 0 such that h′ = j∞ ◦ ιD. In fact,
h ∈ B̂(D, L∞(μ)) with pB(h) = 1 since

(1 − |z|2) ∥∥h′(z)
∥
∥

L∞(μ)
= (1 − |z|2) ‖ j∞(ιD(z))‖L∞(μ) = (1 − |z|2) ‖ιD(z)‖∞ = 1

for all z ∈ D. For the second assertion, given 1 ≤ p < ∞, it suffices to note that

(
n
∑

i=1

|λi |p
∥
∥h′(zi )

∥
∥p

L∞(μ)

) 1
p

=
(

n
∑

i=1

|λi |p ‖ j∞(ιD(zi ))‖p
L∞(μ)

) 1
p

=
(

n
∑

i=1

|λi |p ‖ιD(zi )‖p∞

) 1
p

=
(

n
∑

i=1

|λi |p

(1 − |zi |2)p

) 1
p

=
(

n
∑

i=1

|λi |p
∣
∣ f ′

zi
(zi )
∣
∣

p

) 1
p

≤ sup
g∈BB̂(D)

(
n
∑

i=1

|λi |p
∣
∣g′(zi )

∣
∣p

) 1
p

for any n ∈ N, λ1, . . . , λn ∈ C and z1, . . . , zn ∈ D. �

Theorem 1.6 Let 1 ≤ p < ∞ and f ∈ B̂(D, X). The following assertions are
equivalent:
(i) f is p-summing Bloch.



9 Page 12 of 31 M. G. Cabrera-Padilla et al.

(ii) (Pietsch factorization). There exist a regular Borel probability measure μ on
(BB̂(D), w

∗), an operator T ∈ L(L p(μ), �∞(BX∗)) and a mapping h ∈
B̂(D, L∞(μ)) such that the following diagram commutes:

L∞(μ)
I∞,p

L p(μ)

T

D

h′

f ′
X

ιX
�∞(BX∗)

In this case, πB
p ( f ) = inf {‖T ‖ pB(h)} , where the infimum is taken over all such

factorizations of ιX ◦ f ′ as above, and this infimum is attained.

Proof (i) ⇒ (ii): If f ∈ �B̂
p (D, X), then Theorem 1.4 gives a measureμ ∈ P(BB̂(D))

such that

∥
∥ f ′(z)

∥
∥ ≤ πB

p ( f )

(
∫

BB̂(D)

∣
∣g′(z)

∣
∣

p
dμ(g)

) 1
p

for all z ∈ D. By Lemma 1.5, there is a mapping h ∈ B̂(D, L∞(μ)) with pB(h) = 1
such that h′ = j∞◦ιD.Consider the linear subspace Sp := lin(I∞,p(h′(D))) ⊆ L p(μ)

and the operator T0 ∈ L(Sp, �∞(BX∗)) defined by T0(I∞,p(h′(z))) = ιX ( f ′(z)) for
all z ∈ D. Note that ‖T0‖ ≤ πB

p ( f ) since

∥
∥
∥
∥
∥

T0

(
n
∑

i=1

αi I∞,p(h
′(zi ))

)∥
∥
∥
∥
∥

∞
=
∥
∥
∥
∥
∥

n
∑

i=1

αi T0(I∞,p(h
′(zi )))

∥
∥
∥
∥
∥

∞
=
∥
∥
∥
∥
∥

n
∑

i=1

αi ιX ( f ′(zi ))

∥
∥
∥
∥
∥

∞

≤
n
∑

i=1

|αi |
∥
∥ιX ( f ′(zi ))

∥
∥∞ =

n
∑

i=1

|αi |
∥
∥ f ′(zi )

∥
∥

≤ πB
p ( f )

n
∑

i=1

|αi |
(
∫

BB̂(D)

∣
∣g′(zi )

∣
∣p dμ(g)

) 1
p

≤ πB
p ( f )

n
∑

i=1

|αi |
1 − |zi |2

and

n
∑

i=1

|αi |
1 − |zi |2 =

∣
∣
∣
∣
∣

n
∑

i=1

αi
αi

|αi | f ′
zi
(zi )

∣
∣
∣
∣
∣

= sup
g∈BB̂(D)

∣
∣
∣
∣
∣

n
∑

i=1

αi g′(zi )

∣
∣
∣
∣
∣
= sup

g∈BB̂(D)

∣
∣
∣
∣
∣

n
∑

i=1

αi ιD(zi )(g)

∣
∣
∣
∣
∣
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=
∥
∥
∥
∥
∥

n
∑

i=1

αi ιD(zi )

∥
∥
∥
∥
∥

∞
=
∥
∥
∥
∥
∥

n
∑

i=1

αi j∞(ιD(zi ))

∥
∥
∥
∥
∥

L∞(μ)

=
∥
∥
∥
∥
∥

n
∑

i=1

αi h
′(zi )

∥
∥
∥
∥
∥

L∞(μ)

=
∥
∥
∥
∥
∥

I∞,p

(
n
∑

i=1

αi h
′(zi )

)∥
∥
∥
∥
∥

L p(μ)

=
∥
∥
∥
∥
∥

n
∑

i=1

αi I∞,p(h
′(zi ))

∥
∥
∥
∥
∥

L p(μ)

for any n ∈ N, α1, . . . , αn ∈ C
∗ and z1, . . . , zn ∈ D. By the injectivity of the

Banach space �∞(BX∗) (see [7, p. 45]), there exists T ∈ L(L p(μ), �∞(BX∗)) such
that T |Sp

= T0 with ‖T ‖ = ‖T0‖ . This tells us that ιX ◦ f ′ = T ◦ I∞,p ◦ h′ with
‖T ‖ pB(h) ≤ πB

p ( f ).

(ii) ⇒ (i): By (ii), we have ιX ◦ f ′ = T ◦ I∞,p ◦ h′. Given n ∈ N, λ1, . . . , λn ∈ C

and z1, . . . , zn ∈ D, it holds

(
n
∑

i=1

|λi |p
∥
∥ f ′(zi )

∥
∥

p

) 1
p

=
(

n
∑

i=1

|λi |p
∥
∥ιX ( f ′(zi ))

∥
∥

p
∞

) 1
p

=
(

n
∑

i=1

|λi |p
∥
∥T (I∞,p(h

′(zi )))
∥
∥p

∞

) 1
p

≤ ‖T ‖
(

n
∑

i=1

|λi |p
∥
∥I∞,p(h

′(zi ))
∥
∥p

L p(μ)

) 1
p

= ‖T ‖
(

n
∑

i=1

|λi |p
∥
∥h′(zi )

∥
∥

p
L∞(μ)

) 1
p

≤ ‖T ‖ pB(h)

(
n
∑

i=1

|λi |p

(1 − |zi |2)p

) 1
p

= ‖T ‖ pB(h)

(
n
∑

i=1

|λi |p
∣
∣ f ′

zi
(zi )
∣
∣p

) 1
p

≤ ‖T ‖ pB(h) sup
g∈BB̂(D)

(
n
∑

i=1

|λi |p
∣
∣g′(zi )

∣
∣

p

) 1
p

.

Hence f ∈ �B̂
p (D, X) with πB

p ( f ) ≤ ‖T ‖ pB(h). �
The concept of holomorphic mapping with a relatively (weakly) compact Bloch

range was introduced in [11]. The Bloch range of a function f ∈ H(D, X) is the set

rangB( f ) :=
{

(1 − |z|2) f ′(z) : z ∈ D

}

⊆ X .

A mapping f ∈ H(D, X) is said to be (weakly) compact Bloch if rangB( f ) is a
relatively (weakly) compact subset of X .
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Corollary 1.7 Let 1 ≤ p < ∞.

(i) Every p-summing Bloch mapping from D to X is weakly compact Bloch.
(ii) If X is reflexive, then every p-summing Bloch mapping from D to X is compact

Bloch.

Proof (i) Assume first p > 1. If f ∈ �B̂
p (D, X), then Theorem 1.6 gives

a regular Borel probability measure μ on (BB̂(D), w
∗), an operator T ∈

L(L p(μ), �∞(BX∗)) and amaph ∈ B̂(D, L∞(μ)) such that ιX ◦ f ′ = T ◦I∞,p◦h′,
that is, (ιX ◦ f )′ = T ◦ (I∞,p ◦ h)′. Since L p(μ) is reflexive, it follows that
ιX ◦ f ∈ B̂(D, �∞(BX∗)) is weakly compact Bloch by [11, Theorem 5.6]. Since
rangB(ιX ◦ f ) = ιX (rangB( f )),we conclude that f is weakly compact Bloch. For
p = 1, the result follows from Proposition 1.1 and from what was proved above.

(ii) It follows from (i) that if f ∈ �B̂
p (D, X) and X is reflexive, then rangB( f ) is

relatively compact in X , hence f is compact Bloch. �

1.6 Maurey extrapolation

Wenowuse Pietsch domination of p-summingBlochmappings to give aBloch version
of Maurey’s extrapolation Theorem [13].

Theorem 1.8 Let 1 < p < q < ∞ and assume that �B̂
q (D, �q) = �B̂

p (D, �q). Then

�B̂
q (D, X) = �B̂

1 (D, X) for every complex Banach space X .

Proof Lemma 1.5 and Proposition 1.2 assures that for each μ ∈ P(BB̂(D)), there is a

mapping hμ ∈ B̂(D, L∞(μ)) such that h′
μ = j∞ ◦ ιD and I∞,q ◦hμ ∈ �B̂

q (D, Lq(μ))

with πB
q (I∞,q ◦ hμ) ≤ 1.

We now follow the proof of [7, Theorem 3.17]. Since �B̂
q (D, �q) = �B̂

p (D, �q)

and πB
q ≤ πB

p on �B̂
p (D, �q) by Proposition 1.1, the Closed Graph Theorem yields a

constant c > 0 such that πB
p ( f ) ≤ cπB

q ( f ) for all f ∈ �B̂
q (D, �q). Since Lq(μ) is an

Lq,λ-space for each λ > 1, we can assure that given n ∈ N and z1, . . . , zn ∈ D, the
subspace

E = lin
({

I∞,q(hμ(z1)), . . . , I∞,q(hμ(zn))
}) ⊆ Lq(μ)

embeds λ-isomorphically into �q , that is, E is contained in a subspace F ⊆ Lq(μ)

for which there exists an isomorphism T : F → �q with ‖T ‖ ‖T −1‖ < λ.

Since T ◦ I∞,q ◦hμ ∈ �B̂
q (D, �q) = �B̂

p (D, �q) and (T ◦ I∞,q ◦hμ)′ = T ◦ I∞,q ◦h′
μ,

we have

(
n
∑

i=1

|λi |p
∥
∥(I∞,q ◦ hμ)′(zi )

∥
∥p

Lq (μ)

) 1
p

≤
∥
∥
∥T −1

∥
∥
∥

(
n
∑

i=1

|λi |p
∥
∥T (I∞,q(h′

μ(zi )))
∥
∥p

�q

) 1
p

≤
∥
∥
∥T −1

∥
∥
∥ cπB

q (T ◦ I∞,q ◦ hμ) sup
g∈BB̂(D)

(
n
∑

i=1

|λi |p
∣
∣g′(zi )

∣
∣

p

) 1
p
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≤ c
∥
∥
∥T −1

∥
∥
∥ ‖T ‖ πB

q (I∞,q ◦ hμ) sup
g∈BB̂(D)

(
n
∑

i=1

|λi |p
∣
∣g′(zi )

∣
∣p

) 1
p

,

therefore πB
p (I∞,q ◦ hμ) ≤ cλ for all λ > 1, and thus πB

p (I∞,q ◦ hμ) ≤ c. Now, by
Theorem 1.4, there exists a measure μ̂ ∈ P(BB̂(D)) such that

∥
∥(I∞,q ◦ hμ)′(z)

∥
∥

Lq (μ)
≤ c

(
∫

BB̂(D)

∣
∣g′(z)

∣
∣p dμ̂(g)

) 1
p

= c
∥
∥(I∞,q ◦ hμ̂)′(z)

∥
∥

L p(μ̂)

for all z ∈ D. In the last equality, we have used that

(I∞,q ◦ hμ̂)′(z)(g) = I∞,q(h ′̂
μ(z))(g) = h ′̂

μ(z)(g) = j∞(ιD(z))(g) = ιD(z)(g) = g′(z)

for all z ∈ D and g ∈ BB̂(D).

Take a complex Banach space X and let f ∈ �B̂
q (D, X). In view of Proposition 1.1,

we only must show that f ∈ �B̂
1 (D, X). Theorem 1.4 provides again a measure

μ0 ∈ P(BB̂(D)) such that

∥
∥ f ′(z)

∥
∥ ≤ πB

q ( f )
∥
∥(I∞,q ◦ hμ0)

′(z)
∥
∥

Lq (μ0)

for all z ∈ D. We claim that there is a constant C > 0 and a measure λ ∈ P(BB̂(D))

such that

∥
∥(I∞,q ◦ hμ0)

′(z)
∥
∥

Lq (μ0)
≤ C

∥
∥(I∞,q ◦ hλ)

′(z)
∥
∥

L1(λ)

for all z ∈ D. Indeed, define λ = ∑∞
n=0(1/2

n+1)μn ∈ P(BB̂(D)), where (μn)n≥1 is
the sequence in P(BB̂(D)) given by μn+1 = μ̂n for all n ∈ N0, where the measure
μ̂n is defined using Theorem 1.4. Since 1 < p < q, there exists θ ∈ (0, 1) such
that p = θ · 1 + (1 − θ)q, and applying Hölder’s Inequality with 1/θ (note that
(1/θ)∗ = 1/(1 − θ)), we have

∥
∥(I∞,q ◦ hμn )

′(z)
∥
∥

L p(μn)
=
(
∫

BB̂(D)

∣
∣(I∞,q ◦ hμn )

′(z)(g)
∣
∣
θ ·1+(1−θ)q

dμn(g)

) 1
p

≤
(
∫

BB̂(D)

∣
∣(I∞,q ◦ hμn )

′(z)(g)
∣
∣ dμn(g)

)θ (∫

BB̂(D)

∣
∣(I∞,q ◦ hμn )

′(z)(g)
∣
∣q dμn(g)

) 1−θ
q

= ∥∥(I∞,q ◦ hμn )
′(z)
∥
∥θ

L1(μn)

∥
∥(I∞,q ◦ hμn )

′(z)
∥
∥1−θ

Lq (μn)

for each n ∈ N0 and all z ∈ D. Using Hölder’s Inequality and the inequality

∞
∑

n=0

1

2n+1

∥
∥(I∞,q ◦ hμn+1)

′(z)
∥
∥

Lq (μn+1)
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≤
∞
∑

n=0

1

2n+1

∥
∥(I∞,q ◦ hμn+1)

′(z)
∥
∥

Lq (μn+1)
+ ∥∥(I∞,q ◦ hμ0)

′(z)
∥
∥

Lq (μ0)

=
∞
∑

n=−1

1

2n+1

∥
∥(I∞,q ◦ hμn+1)

′(z)
∥
∥

Lq (μn+1)

=
∞
∑

n=0

1

2n

∥
∥(I∞,q ◦ hμn )

′(z)
∥
∥

Lq (μn)

= 2
∞
∑

n=0

1

2n+1

∥
∥(I∞,q ◦ hμn )

′(z)
∥
∥

Lq (μn)
,

we now obtain

∞
∑

n=0

1

2n+1

∥
∥(I∞,q ◦ hμn )

′(z)
∥
∥

Lq (μn )

≤ c
∞
∑

n=0

1

2n+1

∥
∥(I∞,q ◦ hμn+1 )

′(z)
∥
∥

L p(μn+1)

≤ c
∞
∑

n=0

1

2n+1

∥
∥(I∞,q ◦ hμn+1 )

′(z)
∥
∥θ

L1(μn+1)

∥
∥(I∞,q ◦ hμn+1 )

′(z)
∥
∥1−θ

Lq (μn+1)

≤ c

( ∞
∑

n=0

1

2n+1

∥
∥(I∞,q ◦ hμn+1 )

′(z)
∥
∥

L1(μn+1)

)θ ( ∞
∑

n=0

1

2n+1

∥
∥(I∞,q ◦ hμn+1 )

′(z)
∥
∥

Lq (μn+1)

)1−θ

≤ c

( ∞
∑

n=0

1

2n+1

∥
∥(I∞,q ◦ hμn+1 )

′(z)
∥
∥

L1(μn+1)

)θ (

2
∞
∑

n=0

1

2n+1

∥
∥(I∞,q ◦ hμn )

′(z)
∥
∥

Lq (μn )

)1−θ

for all z ∈ D, and thus

∞
∑

n=0

1

2n+1

∥
∥(I∞,q ◦ hμn )

′(z)
∥
∥

Lq (μn)

≤ c
1
θ 2

1−θ
θ

( ∞
∑

n=0

1

2n+1

∥
∥(I∞,q ◦ hμn+1)

′(z)
∥
∥

L1(μn+1)

)

≤ c
1
θ 2

1−θ
θ 2

( ∞
∑

n=0

1

2n+1

∥
∥(I∞,q ◦ hμn )

′(z)
∥
∥

L1(μn)

)

= (2c)
1
θ

∥
∥(I∞,q ◦ hλ)

′(z)
∥
∥

L1(λ)

for all z ∈ D. From above, we deduce that

1

2

∥
∥(I∞,q ◦ hμ0)

′(z)
∥
∥

Lq (μ0)
≤ (2c)

1
θ

∥
∥(I∞,q ◦ hλ)

′(z)
∥
∥

L1(λ)
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for all z ∈ D, and this proves our claim taking C = 2(2c)
1
θ . Therefore we can write

∥
∥ f ′(z)

∥
∥ ≤ CπB

q ( f )
∥
∥(I∞,q ◦ hλ)

′(z)
∥
∥

L1(λ)
= CπB

q ( f )

∫

BB̂(D)

∣
∣g′(z)

∣
∣ dλ(g)

for all z ∈ D. Hence f ∈ �B̂
1 (D, X) with πB

1 ( f ) ≤ CπB
q ( f ) by Theorem 1.4. �

2 Banach-valued Blochmolecules on the unit disc

Our aim in this section is to study the duality of the spaces of p-summing Bloch
mappings from D into X∗. We begin by recalling some concepts and results stated in
[11] on the Bloch-free Banach space over D.

For each z ∈ D, a Bloch atom of D is the bounded linear functional γz : B̂(D) → C

given by

γz( f ) = f ′(z) ( f ∈ B̂(D)).

The elements of lin({γz : z ∈ D}) in B̂(D)∗ are called Bloch molecules of D. The
Bloch-free Banach space over D, denoted G(D), is the norm-closed linear hull of
{γz : z ∈ D} in B̂(D)∗. The mapping � : D → G(D), defined by �(z) = γz for all
z ∈ D, is holomorphic with ‖γz‖ = 1/(1 − |z|2) for all z ∈ D (see [11, Proposition
2.7]).

Let X be a complex Banach space. Given z ∈ D and x ∈ X , it is immediate that
the functional γz ⊗ x : B̂(D, X∗) → C defined by

(γz ⊗ x) ( f ) = 〈 f ′(z), x
〉 (

f ∈ B̂(D, X∗)
)

,

is linear and continuous with ‖γz ⊗ x‖ ≤ ‖x‖ /(1− |z|2). In fact, it is immediate that
‖γz ⊗ x‖ = ‖x‖ /(1 − |z|2). Indeed, take any x∗ ∈ SX∗ such that x∗(x) = ‖x‖ and
consider fz · x∗ ∈ B̂(D, X∗). Since pB( fz · x∗) = 1, it follows that

‖γz ⊗ x‖ ≥ ∣∣(γz ⊗ x)( fz · x∗)
∣
∣ = ∣∣〈( fz · x∗)′(z), x

〉∣
∣

= ∣∣〈 f ′
z (z)x∗, x

〉∣
∣ = ∣∣ f ′

z (z)
∣
∣
∣
∣x∗(x)

∣
∣ = ‖x‖

1 − |z|2 .

Wenowpresent a tensor product spacewhose elements, according to [11,Definition
2.6], could be referred to as X -valued Bloch molecules on D.

Definition 2.1 Let X be a complex Banach space. Define the linear space

lin(�(D)) ⊗ X := lin {γz ⊗ x : z ∈ D, x ∈ X} ⊆ B̂(D, X∗)∗.
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Note that each element γ ∈ lin(�(D)) ⊗ X is of the form

γ =
n
∑

i=1

λi (γzi ⊗ xi ) =
n
∑

i=1

λiγzi ⊗ xi =
n
∑

i=1

γzi ⊗ λi xi

where n ∈ N, λi ∈ C, zi ∈ D and xi ∈ X for i = 1, . . . , n, but such a representation
of γ is not unique.

The action of the functional γ =∑n
i=1 λiγzi ⊗ xi ∈ lin(�(D)) ⊗ X on a mapping

f ∈ B̂(D, X∗) can be described as

γ ( f ) =
n
∑

i=1

λi
〈

f ′(zi ), xi
〉

.

2.1 Pairing

The space lin(�(D)) ⊗ X is a linear subspace of B̂(D, X∗)∗ and, in fact, we have:

Proposition 2.2
〈

lin(�(D)) ⊗ X , B̂(D, X∗)
〉

is a dual pair, via the bilinear form given
by

〈γ, f 〉 =
n
∑

i=1

λi
〈

f ′(zi ), xi
〉

for γ =∑n
i=1 λiγzi ⊗ xi ∈ lin(�(D)) ⊗ X and f ∈ B̂(D, X∗).

Proof Note that 〈·, ·〉 is a well-defined bilinear map on (lin(�(D)) ⊗ X) × B̂(D, X∗)
since 〈γ, f 〉 = γ ( f ). On one hand, if γ ∈ lin(�(D)) ⊗ X and 〈γ, f 〉 = 0 for all
f ∈ B̂(D, X∗), then γ = 0, and thus B̂(D, X∗) separates points of lin(�(D)) ⊗ X .

On the other hand, if f ∈ B̂(D, X∗) and 〈γ, f 〉 = 0 for all γ ∈ lin(�(D)) ⊗ X ,

then
〈

f ′(z), x
〉 = 〈γz ⊗ x, f 〉 = 0 for all z ∈ D and x ∈ X , hence f ′(z) = 0 for all

z ∈ D, therefore f is a constant function on D, then f = 0 since f (0) = 0 and thus
lin(�(D)) ⊗ X separates points of B̂(D, X∗). �

Since
〈

lin(�(D)) ⊗ X , B̂(D, X∗)
〉

is a dual pair, we can identify B̂(D, X∗) with a
linear subspace of (lin(�(D)) ⊗ X)′ (the algebraic dual of lin(�(D)) ⊗ X ) by means
of the following easy result.

Corollary 2.3 For each f ∈ B̂(D, X∗), the functional 0( f ) : lin(�(D)) ⊗ X → C,

given by

0( f )(γ ) =
n
∑

i=1

λi
〈

f ′(zi ), xi
〉

for γ =∑n
i=1 λiγzi ⊗xi ∈ lin(�(D))⊗X , is linear. We will say that 0( f ) is the linear

functional on lin(�(D)) ⊗ X associated to f . Furthermore, the map f �→ 0( f ) is
a linear monomorphism from B̂(D, X∗) into (lin(�(D)) ⊗ X)′. �
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2.2 Projective norm

As usual (see [19]), given two linear spaces E and F, the tensor product space E ⊗ F
equipped with a norm α will be denoted by E ⊗α F, and the completion of E ⊗α F by
E⊗̂α F . An important example of tensor norm is the projective norm π on u ∈ E ⊗ F
defined by

π(u) = inf

{
n
∑

i=1

‖xi‖ ‖yi‖ : n ∈ N, x1, . . . , xn ∈ E, y1, . . . , yn ∈ F, u =
n
∑

i=1

xi ⊗ yi

}

,

where the infimum is taken over all the representations of u as above.
It is useful to know that the projective norm and the operator canonical norm

coincide on the space lin(�(D)) ⊗ X .

Proposition 2.4 Given γ ∈ lin(�(D)) ⊗ X , we have ‖γ ‖ = π(γ ), where

‖γ ‖ = sup
{|γ ( f )| : f ∈ B̂(D, X∗), pB( f ) ≤ 1

}

and

π(γ ) = inf

{
n
∑

i=1

|λi |
1 − |zi |2

‖xi‖ : γ =
n
∑

i=1

λiγzi ⊗ xi

}

.

Proof Let γ ∈ lin(�(D)) ⊗ X and let
∑n

i=1 λiγzi ⊗ xi be a representation of γ. Since
γ is linear and

|γ ( f )| =
∣
∣
∣
∣
∣

n
∑

i=1

λi
〈

f ′(zi ), xi
〉

∣
∣
∣
∣
∣
≤

n
∑

i=1

|λi |
∥
∥ f ′(zi )

∥
∥ ‖xi‖ ≤ pB( f )

n
∑

i=1

|λi | ‖xi‖
1 − |zi |2

for all f ∈ B̂(D, X∗), we deduce that ‖γ ‖ ≤ ∑n
i=1 |λi‖|xi‖/(1 − |zi |2). Since this

holds for each representation of γ, it follows that ‖γ ‖ ≤ π(γ ) and thus ‖·‖ ≤ π on
lin(�(D)) ⊗ X .

To prove the reverse inequality, suppose by contradiction that ‖μ‖ < 1 < π(μ) for
some μ ∈ lin(�(D)) ⊗ X . Denote B = {γ ∈ lin(�(D)) ⊗ X : π(γ ) ≤ 1}. Clearly, B
is a closed convex subset of lin(�(D)) ⊗π X . Applying the Hahn–Banach Separation
Theorem to B and {μ}, we obtain a functional η ∈ (lin(�(D)) ⊗π X)∗ such that

1 = ‖η‖ = sup{Re(η(γ )) : γ ∈ B} < Re(η(μ)).

Define Fη : D → X∗ by

〈Fη(z), x〉 = η (γz ⊗ x) (x ∈ X , z ∈ D).
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We now show that Fη is holomorphic. By [14, Exercise 8.D], it suffices to prove that
for each x ∈ X , the function Fη,x : D → C defined by

Fη,x (z) = η(γz ⊗ x) (z ∈ D)

is holomorphic. Let a ∈ D. Since � : D → lin(�(D)) is holomorphic, there exists
D�(a) ∈ L(C, lin(�(D))) such that

lim
z→a

γz − γa − D�(a)(z − a)

|z − a| = 0.

Consider the function T (a) : C → C given by

T (a)(z) = η(D�(a)(z) ⊗ x) (z ∈ C) .

Clearly, T (a) ∈ L(C,C) and since

Fη,x (z) − Fη,x (a) − T (a)(z − a) = η(γz ⊗ x) − η(γa ⊗ x) − η(D�(a)(z − a) ⊗ x)

= η ((γz − γa − D�(a)(z − a)) ⊗ x) ,

it follows that

lim
z→a

Fη,x (z) − Fη,x (a) − T (a)(z − a)

|z − a| = lim
z→a

η

(
γz − γa − D�(a)(z − a)

|z − a| ⊗ x

)

= 0.

Hence Fη,x is holomorphic at a with DFη,x (a) = T (a), as desired.
By [11, Lemma 2.9], there exists a mapping fη ∈ H(D, X∗) with fη(0) = 0 such

that f ′
η = Fη. Given z ∈ D, we have

(1 − |z|2)
∣
∣
∣

〈

f ′
η(z), x

〉∣
∣
∣ = (1 − |z|2) |η (γz ⊗ x)| ≤ (1 − |z|2) ‖η‖π(γz ⊗ x) = ‖x‖

for all x ∈ X , and thus (1− |z|2)
∥
∥
∥ f ′

η(z)
∥
∥
∥ ≤ 1. Hence fη ∈ B̂(D, X∗) with pB( fη) ≤

1. Moreover, γ ( fη) = η(γ ) for all γ ∈ lin(�(D)) ⊗ X . Therefore ‖μ‖ ≥ |μ( fη)| ≥
Re(μ( fη)) = Re(η(μ)), so ‖μ‖ > 1, and this is a contradiction. �

2.3 p-Chevet–Saphar Bloch norms

The p-Chevet–Saphar norms dp on the tensor product of two Banach spaces E ⊗ F
are well known (see, for example, [19, Section 6.2]).

Our study of the duality of the spaces �B̂
p (D, X∗) requires the introduction of the

following Bloch versions of such norms defined now on lin(�(D)) ⊗ X .
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The p-Chevet–Saphar Bloch norms dB̂
p for 1 ≤ p ≤ ∞ are defined on a X -valued

Bloch molecule γ ∈ lin(�(D)) ⊗ X as

dB̂
1 (γ ) = inf

{(

sup
g∈BB̂(D)

(

max
1≤i≤n

|λi |
∣
∣g′(zi )

∣
∣

))( n
∑

i=1

‖xi‖
)}

,

dB̂
p (γ ) = inf

⎧

⎨

⎩

⎛

⎝ sup
g∈BB̂(D)

(
n
∑

i=1

|λi |p∗ ∣
∣g′(zi )

∣
∣

p∗
) 1

p∗
⎞

⎠

(
n
∑

i=1

‖xi‖p

) 1
p

⎫

⎬

⎭
(1 < p < ∞),

dB̂∞(γ ) = inf

{(

sup
g∈BB̂(D)

(
n
∑

i=1

|λi |
∣
∣g′(zi )

∣
∣

))(

max
1≤i≤n

‖xi‖
)}

,

where the infimum is taken over all such representations of γ as
∑n

i=1 λiγzi ⊗ xi .

Motivated by the analogue concept on the tensor product space (see [19, p. 127]),
we introduce the following.

Definition 2.5 Let X be a complex Banach space. A norm α on lin(�(D)) ⊗ X is said
to be a Bloch reasonable crossnorm if it has the following properties:

(i) α(γz ⊗ x) ≤ ‖γz‖ ‖x‖ for all z ∈ D and x ∈ X ,

(ii) For every g ∈ B̂(D) and x∗ ∈ X∗, the linear functional g ⊗ x∗ : lin(�(D))⊗ X →
C defined by (g ⊗ x∗)(γz ⊗ x) = g′(z)x∗(x) is bounded on lin(�(D)) ⊗α X with
‖g ⊗ x∗‖ ≤ pB(g) ‖x∗‖ .

Theorem 2.6 dB̂
p is a Bloch reasonable crossnorm on lin(�(D))⊗ X for any 1 ≤ p ≤

∞.

Proof We will only prove it for 1 < p < ∞. The other cases follow similarly.
Let γ ∈ lin(�(D)) ⊗ X and let

∑n
i=1 λiγzi ⊗ xi be a representation of γ. Clearly,

dB̂
p (γ ) ≥ 0.Given λ ∈ C, since

∑n
i=1(λλi )γzi ⊗ xi is a representation of λγ,we have

dB̂
p (λγ ) ≤

⎛

⎝ sup
g∈BB̂(D)

(
n
∑

i=1

|λλi |p∗ ∣
∣g′(zi )

∣
∣

p∗
) 1

p∗
⎞

⎠

(
n
∑

i=1

‖xi‖p

) 1
p

= |λ|
⎛

⎝ sup
g∈BB̂(D)

(
n
∑

i=1

|λi |p∗ ∣
∣g′(zi )

∣
∣p

∗
) 1

p∗
⎞

⎠

(
n
∑

i=1

‖xi‖p

) 1
p

.

If λ = 0, we obtain dB̂
p (λγ ) = 0 = |λ| dB̂

p (γ ). For λ �= 0, since the preceding

inequality holds for every representation of γ, we deduce that dB̂
p (λγ ) ≤ |λ| dB̂

p (γ ).

For the converse inequality, note that dB̂
p (γ ) = dB̂

p (λ−1(λγ )) ≤ |λ−1|dB̂
p (λγ ) by using

the proved inequality, thus |λ| dB̂
p (γ ) ≤ dB̂

p (λγ ) and hence dB̂
p (λγ ) = |λ| dB̂

p (γ ).

We now prove the triangular inequality of dB̂
p . Let γ1, γ2 ∈ lin(�(D)) ⊗ X and let

ε > 0. If γ1 = 0 or γ2 = 0, there is nothing to prove. Assume γ1 �= 0 �= γ2. We can
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choose representations

γ1 =
n
∑

i=1

λ1,iγz1,i ⊗ x1,i , γ2 =
m
∑

i=1

λ2,iγz2,i ⊗ x2,i ,

so that

⎛

⎝ sup
g∈BB̂(D)

(
n
∑

i=1

∣
∣λ1,i

∣
∣p

∗ ∣
∣g′(z1,i )

∣
∣p

∗
) 1

p∗
⎞

⎠

(
n
∑

i=1

∥
∥x1,i

∥
∥p

) 1
p

≤ dB̂
p (γ1) + ε

and

⎛

⎝ sup
g∈BB̂(D)

(
m
∑

i=1

∣
∣λ2,i

∣
∣

p∗ ∣
∣g′(z2,i )

∣
∣

p∗
) 1

p∗
⎞

⎠

(
m
∑

i=1

∥
∥x2,i

∥
∥

p

) 1
p

≤ dB̂
p (γ2) + ε.

Fix arbitrary r , s ∈ R
+ and define

λ3,iγz3,i =
{

r−1λ1,iγz1,i if i = 1, . . . , n,

s−1λ2,i−nγz2,i−n if i = n + 1, . . . , n + m,

x3,i =
{

r x1,i if i = 1, . . . , n,

sx2,i−n if i = n + 1, . . . , n + m.

It is clear that γ1 + γ2 =∑n+m
i=1 λ3,iγz3,i ⊗ x3,i and thus we have

dB̂
p (γ1 + γ2) ≤

⎛

⎝ sup
g∈BB̂(D)

(
n+m
∑

i=1

∣
∣λ3,i

∣
∣p

∗ ∣
∣g′(z3,i )

∣
∣p

∗
) 1

p∗
⎞

⎠

(
n+m
∑

i=1

∥
∥x3,i

∥
∥p

) 1
p

.

An easy verification gives

⎛

⎝ sup
g∈BB̂(D)

(
n+m
∑

i=1

∣
∣λ3,i

∣
∣p

∗ ∣
∣g′(z3,i )

∣
∣p

∗
) 1

p∗
⎞

⎠

p∗

≤
⎛

⎝r−1 sup
g∈BB̂(D)

(
n
∑

i=1

∣
∣λ1,i

∣
∣

p∗ ∣
∣g′(z1,i )

∣
∣

p∗
) 1

p∗
⎞

⎠

p∗

+
⎛

⎝s−1 sup
g∈BB̂(D)

(
m
∑

i=1

∣
∣λ2,i

∣
∣p

∗ ∣
∣g′(z2,i )

∣
∣p

∗
) 1

p∗
⎞

⎠

p∗
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and

n+m
∑

i=1

∥
∥x3,i

∥
∥p = r p

n
∑

i=1

∥
∥x1,i

∥
∥p + s p

m
∑

i=1

∥
∥x2,i

∥
∥p

.

Using Young’s Inequality, it follows that

dB̂
p (γ1 + γ2) ≤ 1

p∗

⎛

⎝ sup
g∈BB̂(D)

(
n+m
∑

i=1

∣
∣λ3,i

∣
∣p

∗ ∣
∣g′(z3,i )

∣
∣p

∗
) 1

p∗
⎞

⎠

p∗

+ 1

p

n+m
∑

i=1

∥
∥x3,i

∥
∥p

≤ r−p∗

p∗

⎛

⎝ sup
g∈BB̂(D)

(
n
∑

i=1

∣
∣λ1,i

∣
∣

p∗ ∣
∣g′(z1,i )

∣
∣

p∗
) 1

p∗
⎞

⎠

p∗

+ r p

p

n
∑

i=1

∥
∥x1,i

∥
∥

p

+ s−p∗

p∗

⎛

⎝ sup
g∈BB̂(D)

(
m
∑

i=1

∣
∣λ2,i

∣
∣p

∗ ∣
∣g′(z2,i )

∣
∣p

∗
) 1

p∗
⎞

⎠

p∗

+ s p

p

m
∑

i=1

∥
∥x2,i

∥
∥p

.

Since r , s were arbitrary in R+, taking above

r = (dB̂
p (γ1) + ε)

− 1
p∗

⎛

⎝ sup
g∈BB̂(D)

(
n
∑

i=1

∣
∣λ1,i

∣
∣

p∗ ∣
∣g′(z1,i )

∣
∣

p∗
) 1

p∗
⎞

⎠ ,

s = (dB̂
p (γ2) + ε)

− 1
p∗

⎛

⎝ sup
g∈BB̂(D)

(
m
∑

i=1

∣
∣λ2,i

∣
∣p

∗ ∣
∣g′(z2,i )

∣
∣p

∗
) 1

p∗
⎞

⎠ ,

we obtain that dB̂
p (γ1 + γ2) ≤ dB̂

p (γ1) + dB̂
p (γ2) + 2ε, and thus dB̂

p (γ1 + γ2) ≤
dB̂

p (γ1) + dB̂
p (γ2) by the arbitrariness of ε. Hence dB̂

p is a seminorm. To prove that it
is a norm, note first that

∣
∣
∣
∣
∣

n
∑

i=1

λi h
′(zi )x∗(xi )

∣
∣
∣
∣
∣
≤

n
∑

i=1

|λi |
∣
∣h′(zi )

∣
∣ ‖xi‖

≤
(

n
∑

i=1

|λi |p∗ ∣
∣h′(zi )

∣
∣p

∗
) 1

p∗ ( n
∑

i=1

‖xi‖p

) 1
p

≤ sup
g∈BB̂(D)

(
n
∑

i=1

|λi |p∗ ∣
∣g′(zi )

∣
∣p

∗
) 1

p∗ ( n
∑

i=1

‖xi‖p

) 1
p

,
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for any h ∈ BB̂(D) and x∗ ∈ BX∗ , by applying Hölder’s Inequality. Since the quantity
∣
∣
∑n

i=1 λi h′(zi )x∗(xi )
∣
∣ does not depend on the representation of γ because

n
∑

i=1

λi h
′(zi )x∗(xi ) =

(
n
∑

i=1

λiγzi ⊗ xi

)

(h · x∗) = γ (h · x∗),

taking the infimum over all representations of γ we deduce that

∣
∣
∣
∣
∣

n
∑

i=1

λi h
′(zi )x∗(xi )

∣
∣
∣
∣
∣
≤ dB̂

p (γ )

for any h ∈ BB̂(D) and x∗ ∈ BX∗ . Now, if dB̂
p (γ ) = 0, the preceding inequality yields

(
n
∑

i=1

λi x∗(xi )γzi

)

(h) =
n
∑

i=1

λi x∗(xi )h
′(zi ) = 0

for all h ∈ BB̂(D) and x∗ ∈ BX∗ . For each x∗ ∈ BX∗ , this implies that
∑n

i=1 λi x∗(xi )γzi = 0, and since�(D) is a linearly independent subset ofG(D)by [11,
Remark 2.8], it follows that x∗(xi )λi = 0 for all i ∈ {1, . . . , n}, hence λi = 0 for all
i ∈ {1, . . . , n} since BX∗ separates the points of X , and thus γ =∑n

i=1 λiγzi ⊗xi = 0.

Finally, we will show that dB̂
p is a Bloch reasonable crossnorm on lin(�(D)) ⊗ X .

Firstly, given z ∈ D and x ∈ X , we have

dB̂
p (γz ⊗ x) ≤

(

sup
g∈BB̂(D)

∣
∣g′(z)

∣
∣

p∗
) 1

p∗
‖x‖ ≤ ‖x‖

1 − |z|2 = ‖γz‖ ‖x‖ .

Secondly, given g ∈ B̂(D) and x∗ ∈ X∗, we have

∣
∣(g ⊗ x∗)(γ )

∣
∣ =

∣
∣
∣
∣
∣

n
∑

i=1

λi (g ⊗ x∗)(γzi ⊗ xi )

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

n
∑

i=1

λi g
′(zi )x∗(xi )

∣
∣
∣
∣
∣

≤
n
∑

i=1

|λi |
∣
∣g′(zi )

∣
∣
∣
∣x∗(xi )

∣
∣ ≤ pB(g)

∥
∥x∗∥∥

n
∑

i=1

|λi |
1 − |zi |2 ‖xi‖

= pB(g)
∥
∥x∗∥∥

n
∑

i=1

|λi |
∣
∣ f ′

zi
(zi )
∣
∣ ‖xi‖

≤ pB(g)
∥
∥x∗∥∥

(
n
∑

i=1

|λi |p∗ ∣
∣ f ′

zi
(zi )
∣
∣p

∗
) 1

p∗ ( n
∑

i=1

‖xi‖p

) 1
p

≤ pB(g)
∥
∥x∗∥∥ sup

g∈BB̂(D)

(
n
∑

i=1

|λi |p∗ ∣
∣g′(zi )

∣
∣

p∗
) 1

p∗ ( n
∑

i=1

‖xi‖p

) 1
p

.



p-Summing Bloch mappings on the complex unit disc Page 25 of 31 9

Taking infimum over all the representations of γ, we deduce that |(g ⊗ x∗)(γ )| ≤
pB(g) ‖x∗‖ dB̂

p (γ ). Hence g ⊗ x∗ ∈ (lin(�(D)) ⊗
dB̂

p
X)∗ with ‖g ⊗ x∗‖ ≤

pB(g) ‖x∗‖ . �

The next result shows that dB̂
p can be computed using a simpler formula in the cases

p = 1 and p = ∞. In fact, the 1-Chevet–Saphar Bloch norm is justly the projective
norm.

Proposition 2.7 For γ ∈ lin(�(D)) ⊗ X , we have

dB̂
1 (γ ) = inf

{
n
∑

i=1

|λi |
1 − |zi |2

‖xi‖
}

and

dB̂∞(γ ) = inf

{

sup
g∈BB̂(D)

(
n
∑

i=1

|λi |
∣
∣g′(zi )

∣
∣ ‖xi‖

)}

,

where the infimum is taken over all such representations of γ as
∑n

i=1 λiγzi ⊗ xi .

Proof Let γ ∈ lin(�(D)) ⊗ X and let
∑n

i=1 λiγzi ⊗ xi be a representation of γ. We
have

π(γ ) ≤
n
∑

i=1

|λi |
1 − |zi |2

‖xi‖ =
n
∑

i=1

|λi |
(

sup
g∈BB̂(D)

∣
∣g′(zi )

∣
∣

)

‖xi‖

≤
n
∑

i=1

max
1≤i≤n

(

|λi | sup
g∈BB̂(D)

∣
∣g′(zi )

∣
∣

)

‖xi‖

=
(

max
1≤i≤n

(

|λi | sup
g∈BB̂(D)

∣
∣g′(zi )

∣
∣

))
n
∑

i=1

‖xi‖

= sup
g∈BB̂(D)

(

max
1≤i≤n

(|λi |
∣
∣g′(zi )

∣
∣
)
) n
∑

i=1

‖xi‖

and therefore π(γ ) ≤ dB̂
1 (γ ). Conversely, since dB̂

1 is a Bloch reasonable crossnorm,
we have

dB̂
1 (γ ) ≤

n
∑

i=1

|λi | dB̂
1 (γzi ⊗ xi ) =

n
∑

i=1

|λi |
∥
∥γzi

∥
∥ ‖xi‖ =

n
∑

i=1

|λi |
1 − |zi |2 ‖xi‖ ,

and thus dB̂
1 (γ ) ≤ π(γ ).
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On the other hand, we have

sup
g∈BB̂(D)

(
n
∑

i=1

|λi |
∣
∣g′(zi )

∣
∣ ‖xi‖

)

≤
(

max
1≤i≤n

‖xi‖
)

sup
g∈BB̂(D)

(
n
∑

i=1

|λi |
∣
∣g′(zi )

∣
∣

)

,

and taking the infimum over all representations of γ gives

inf

{

sup
g∈BB̂(D)

(
n
∑

i=1

|λi |
∣
∣g′(zi )

∣
∣ ‖xi‖

)

: γ =
n
∑

i=1

λiγzi ⊗ xi

}

≤ dB̂∞(γ ).

Conversely, we can assumewithout loss of generality that xi �= 0 for all i ∈ {1, . . . , n}
and since γ =∑n

i=1 λi ‖xi‖ γzi ⊗ (xi/ ‖xi‖), we obtain

dB̂∞(γ ) ≤ sup
g∈BB̂(D)

(
n
∑

i=1

|λi | ‖xi‖
∣
∣g′(zi )

∣
∣

)

,

and taking the infimum over all representations of γ, we conclude that

dB̂∞(γ ) ≤ inf

{

sup
g∈BB̂(D)

(
n
∑

i=1

|λi |
∣
∣g′(zi )

∣
∣ ‖xi‖

)

: γ =
n
∑

i=1

λiγzi ⊗ xi

}

.

�

2.4 Duality

Given p ∈ [1,∞], we will show that the dual of the space G(D)⊗̂
dB̂

p∗
X can be

canonically identified as the space of p-summing Bloch mappings from D to X∗.

Theorem 2.8 Let 1 ≤ p ≤ ∞. Then �B̂
p (D, X∗) is isometrically isomorphic to

(G(D)⊗̂
dB̂

p∗
X)∗, via the mapping  : �B̂

p (D, X∗) → (G(D)⊗̂
dB̂

p∗
X)∗ defined by

( f )(γ ) =
n
∑

i=1

λi
〈

f ′(zi ), xi
〉

for f ∈ �B̂
p (D, X∗) and γ = ∑n

i=1 λiγzi ⊗ xi ∈ lin(�(D)) ⊗ X . Furthermore, its
inverse comes given by

〈

−1(ϕ)(z), x
〉

= 〈ϕ, γz ⊗ x〉

for ϕ ∈ (G(D)⊗̂
dB̂

p∗
X)∗, z ∈ D and x ∈ X .
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Moreover, on the unit ball of �B̂
p (D, X∗) the weak* topology coincides with the

topology of pointwise σ(X∗, X)-convergence.

Proof We prove it for 1 < p < ∞. The cases p = 1 and p = ∞ follow similarly.
Let f ∈ �B̂

p (D, X∗) and let 0( f ) : lin(�(D)) ⊗ X → C be its associate linear
functional given by

0( f )(γ ) =
n
∑

i=1

λi
〈

f ′(zi ), xi
〉

for γ =∑n
i=1 λiγzi ⊗ xi ∈ lin(�(D)) ⊗ X . Note that 0( f ) ∈ (lin(�(D)) ⊗

dB̂
p∗

X)∗

with ‖0( f )‖ ≤ πB
p ( f ) since

|0( f )(γ )| =
∣
∣
∣
∣
∣

n
∑

i=1

λi
〈

f ′(zi ), xi
〉

∣
∣
∣
∣
∣
≤

n
∑

i=1

|λi |
∥
∥ f ′(zi )

∥
∥ ‖xi‖

≤
(

n
∑

i=1

|λi |p
∥
∥ f ′(zi )

∥
∥

p

) 1
p
(

n
∑

i=1

‖xi‖p∗
) 1

p∗

≤ πB
p ( f ) sup

g∈BB̂(D)

(
n
∑

i=1

|λi |p
∣
∣g′(zi )

∣
∣p

) 1
p
(

n
∑

i=1

‖xi‖p∗
) 1

p∗
,

and taking infimum over all the representations of γ, we deduce that |0( f )(γ )| ≤
πB

p ( f )dB̂
p∗(γ ). Since γ was arbitrary, then 0( f ) is continuous on lin(�(D)) ⊗

dB̂
p∗

X

with ‖0( f )‖ ≤ πB
p ( f ).

Since lin(�(D)) is a norm-dense linear subspace of G(D) and dB̂
p∗ is a norm on

G(D) ⊗ X , then G(D) ⊗ X is a dense linear subspace of G(D) ⊗
dB̂

p∗
X and therefore

also of its completionG(D)⊗̂
dB̂

p∗
X .Hence there is a unique continuous mapping( f )

from G(D)⊗̂
dB̂

p∗
X to C that extends 0( f ). Further, ( f ) is linear and ‖( f )‖ =

‖0( f )‖ .

Let  : �B̂
p (D, X∗) → (G(D)⊗̂

dB̂
p∗

X)∗ be the map so defined. Since 0 is a linear

monomorphism from �B̂
p (D, X∗) to (G(D) ⊗ X)∗ by Corollary 2.3, it follows easily

that  is so. To prove that  is a surjective isometry, let ϕ ∈ (G(D)⊗̂
dB̂

p∗
X)∗ and

define Fϕ : D → X∗ by

〈

Fϕ(z), x
〉 = ϕ(γz ⊗ x) (z ∈ D, x ∈ X) .

As in the proof of Proposition 2.4, it is similarly proved that Fϕ ∈ H(D, X∗) and
there exists a mapping fϕ ∈ B̂(D, X∗) with pB( fϕ) ≤ ‖ϕ‖ such that f ′

ϕ = Fϕ.
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We now prove that fϕ ∈ �B̂
p (D, X∗). Fix n ∈ N, λ1, . . . , λn ∈ C and z1, . . . , zn ∈

D. Let ε > 0. For each i ∈ {1, . . . , n}, there exists xi ∈ X with ‖xi‖ ≤ 1 + ε such
that

〈

f ′
ϕ(zi ), xi

〉 = ∥∥ f ′
ϕ(zi )

∥
∥ . It is clear that the map T : Cn → C, defined by

T (t1, . . . , tn) =
n
∑

i=1

tiλi
∥
∥ f ′

ϕ(zi )
∥
∥ , ∀(t1, . . . , tn) ∈ C

n,

is linear and continuous on (Cn, ‖ · ‖p∗) with ‖T ‖ = (∑n
i=1 |λi |p

∥
∥ f ′

ϕ(zi )
∥
∥p) 1p . For

any (t1, . . . , tn) ∈ C
n with ‖(t1, . . . , tn)‖p∗ ≤ 1, we have

|T (t1, . . . , tn)| =
∣
∣
∣
∣
∣
ϕ

(
n
∑

i=1

tiλiγzi ⊗ xi

)∣
∣
∣
∣
∣
≤ ‖ϕ‖ dB̂

p∗

(
n
∑

i=1

λiγzi ⊗ ti xi

)

≤ ‖ϕ‖
⎛

⎝ sup
g∈BB̂(D)

(
n
∑

i=1

|λi |p
∣
∣g′(zi )

∣
∣

p

) 1
p
⎞

⎠

(
n
∑

i=1

‖ti xi‖p∗
) 1

p∗

≤ (1 + ε) ‖ϕ‖ sup
g∈BB̂(D)

(
n
∑

i=1

|λi |p
∣
∣g′(zi )

∣
∣p

) 1
p

,

therefore

(
n
∑

i=1

|λi |p
∥
∥ f ′

ϕ(zi )
∥
∥

p

) 1
p

≤ (1 + ε) ‖ϕ‖ sup
g∈BB̂(D)

(
n
∑

i=1

|λi |p
∣
∣g′(zi )

∣
∣

p

) 1
p

,

and since ε was arbitrary, we have

(
n
∑

i=1

|λi |p
∥
∥ f ′

ϕ(zi )
∥
∥

p

) 1
p

≤ ‖ϕ‖ sup
g∈BB̂(D)

(
n
∑

i=1

|λi |p
∣
∣g′(zi )

∣
∣

p

) 1
p

,

and we conclude that fϕ ∈ �B̂
p (D, X∗) with πB

p ( fϕ) ≤ ‖ϕ‖ .

Finally, for any γ =∑n
i=1 λiγzi ⊗ xi ∈ lin(�(D)) ⊗ X , we get

( fϕ)(γ ) =
n
∑

i=1

λi
〈

f ′
ϕ(zi ), xi

〉 =
n
∑

i=1

λiϕ(γzi ⊗ xi ) = ϕ

(
n
∑

i=1

λiγzi ⊗ xi

)

= ϕ(γ ).

Hence( fϕ) = ϕ on a dense subspace ofG(D)⊗̂
dB̂

p∗
X and, consequently,( fϕ) = ϕ,

which shows the last statement of the theorem.Moreover,πB
p ( fϕ) ≤ ‖ϕ‖ = ∥∥( fϕ)

∥
∥ .

For the final assertion of the statement, let ( fi )i∈I be a net in �B̂
p (D, X∗) and

f ∈ �B̂
p (D, X∗). Assume ( fi )i∈I → f weak* in �B̂

p (D, X∗), this means that
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(( fi ))i∈I → ( f ) weak* in (G(D)⊗̂
dB̂

p∗
X)∗, that is, (( fi )(γ ))i∈I → ( f )(γ )

for all γ ∈ G(D)⊗̂
dB̂

p∗
X . In particular,

(〈 f ′
i (z), x〉)i∈I = (( fi )(γz ⊗ x))i∈I → ( f )(γz ⊗ x) = 〈 f ′(z), x〉

for every z ∈ D and x ∈ X . Given z ∈ D and x ∈ X , we have

|〈 fi (z) − f (z), x〉| =
∣
∣
∣
∣

∫

[0,z]
〈

f ′
i (w) − f ′(w), x

〉

dw

∣
∣
∣
∣

≤ |z|max
{∣
∣
〈

f ′
i (w) − f ′(w), x

〉∣
∣ : w ∈ [0, z]}

= |z| ∣∣〈 f ′
i (wz) − f ′(wz), x

〉∣
∣

for all i ∈ I and some wz ∈ [0, z], and thus (〈 fi (z), x〉)i∈I → 〈 f (z), x〉 . This tells
us that ( fi )i∈I converges to f in the topology of pointwise σ(X∗, X)-convergence.
Hence the identity on�B̂

p (D, X∗) is a continuous bijection from theweak* topology to
the topology of pointwise σ(X∗, X)-convergence. On the unit ball, the first topology
is compact and the second one is Hausdorff, and so they must coincide. �

In particular, in view of Theorem 2.8 and taking into account Propositions 1.1, 2.4
and 2.7, we can identify the space B̂(D, X∗) with the dual space of G(D)⊗̂X ⊆
B̂(D, X∗)∗.

Corollary 2.9 B̂(D, X∗) is isometrically isomorphic to (G(D)⊗̂X)∗, via the mapping
 : B̂(D, X∗) → (G(D)⊗̂X)∗ given by

( f )(γ ) =
n
∑

i=1

λi
〈

f ′(zi ), xi
〉

for f ∈ B̂(D, X∗) and γ = ∑n
i=1 λiγzi ⊗ xi ∈ G(D) ⊗ X . Furthermore, its inverse

is given by

〈

−1(ϕ)(z), x
〉

= 〈ϕ, γz ⊗ x〉

for ϕ ∈ (G(D)⊗̂X)∗, z ∈ D and x ∈ X . �
We conclude this paper with some open questions we hope researchers will take

up. In Theorem 1.6, note that if f ∈ �B̂
2 (D, X), then

ιX ◦ f ′ = T ◦ I∞,2 ◦ h′ : D h′→ L∞(μ)
I∞,2→ L2(μ)

T→ �∞(BX∗).

Hence ιX ◦ f ′ factors in this way through the Hilbert space L2(μ). It would be inter-
esting to introduce and study the class of Bloch mappings whose derivatives factor
through a Hilbert space.
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Motivated by the seminal paper of Farmer and Johnson [9] that raised a similar ques-
tion in the setting of Lipschitz p-summing mappings, what results about p-summing
linear operators have analogues for p-summing Bloch mappings?
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