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Gabriel T. Prǎjiturǎ1 · Ruhan Zhao1 · Lifang Zhou2

Received: 16 February 2023 / Accepted: 24 May 2023 / Published online: 7 July 2023
© Tusi Mathematical Research Group (TMRG) 2023

Abstract
We introduce a class of integral operators called Berezin type operators. It is a gener-
alization of the Berezin transform, and has a close relation to the Bergman–Carleson
measures. The concept is partlymotivated by the relationship betweenHardy–Carleson
measures and area operators. We mainly study the boundedness and the compactness
of Berezin type operators from a Bergman space Ap1

α1 to a Lebesgue space L p2
α2 with

0 < p1, p2 ≤ ∞ and α1, α2 > −1. We also show that Berezin type operators are
closely related to Toeplitz operators.

Keywords Berezin type operators · Toeplitz operators · Boundedness and
compactness · Bergman–Carleson measures

Mathematics Subject Classification 47G10 · 47B38 · 47B34 · 32A25

1 Introduction

LetBn = {z ∈ C
n : |z| < 1} be the unit ball in the nth dimensional complex Euclidean

space Cn . Let dv(z) be the normalized volume measure on Bn , such that v(Bn) = 1.
For 0 < p < ∞ and −1 < α < ∞, let L p

α := L p(Bn, dvα) denote the weighted
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Lebesgue space which contains measurable functions f on Bn , such that

‖ f ‖p,α =
⎛
⎜⎝

∫

Bn

| f (z)|p dvα(z)

⎞
⎟⎠

1/p

< ∞,

where dvα(z) = cα(1 − |z|2)α dv(z), and cα is the normalized constant, such that
vα(Bn) = 1. Let L∞ := L∞(Bn, dv) be the space of measurable functions on Bn ,
such that

‖ f ‖∞ = ess sup
z∈Bn

| f (z)| < ∞.

Let H(Bn) be the space of all holomorphic functions on Bn . We denote by Ap
α =

L p
α ∩ H(Bn) the weighted Bergman space on Bn for 0 < p < ∞, and denote by

H∞ := L∞ ∩ H(Bn) the holomorphic bounded function space.
Let β > −1 and let μ be a positive Borel measure on Bn . For f ∈ H(Bn), we

consider the following sublinear operator:

Bβ
μ f (z) =

∫

Bn

| f (w)|
|1 − 〈z, w〉|n+1+β

dμ(w).

We call Bβ
μ a Berezin type operator. Note that, if β = n + 1 + 2α and dμ(w) =

dvα(w), then (1−|z|2)n+1+α Bβ
μ( f )(z) is the α-Berezin transform of the function | f |.

If β = s + α and f = 1, we denote

Bs,α(μ)(z) := (1 − |z|2)s Bβ
μ(1)(z) =

∫

Bn

(1 − |z|2)s

|1 − 〈z, w〉|n+1+α+s
dμ(w).

This is called a Berezin type transform for the measure μ. We refer to [13] for more
information about Berezin transforms.

Let D be the unit disk, let ∂D be the unit circle, and let μ be a nonnegative measure
on D. The area operator on the Hardy space H p is a sublinear operator defined by

Aμ( f )(ζ ) =
∫

�(ζ )

| f (z)|
1 − |z| dμ(z), ∀ζ ∈ ∂D,

where �(ζ ) is a non-tangential approach region in D with vertex ζ ∈ ∂D defined by

�(ζ ) = {z ∈ D : |ζ − z| < 2(1 − |z|)}.

It has been proved in [1] that the Aμ is bounded from the Hardy space H p to L p(∂D)

if and only if μ is a Hardy–Carleson measure. The result has been generalized to the
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case Aμ : H p → Lq(∂D) for possibly different p, q in [3]. Note that Aμ(1) is used
to characterize Hardy–Carleson measures; see, for example [5, 8, 9]. It is also known
that Berezin type transforms for measures are also used to characterize Bergman–
Carleson measures; see [6, 11]. This observation is one of our motivations to consider
the Berezin type operators on Bergman spaces.

The purpose of this paper is to study the boundedness and the compactness of the
Berezin type operator from one Bergman space Ap1

α1 to a Lebesgue space L p2
α2 . It turns

out that our characterizations are the same for Toeplitz operators.
Recall that, given β > −1 and a positive Borel measure μ on Bn , the Toeplitz

operator T β
μ is defined by

T β
μ ( f )(z) =

∫

Bn

f (w)

(1 − 〈z, w〉)n+1+β
dμ(w), z ∈ Bn . (1.1)

It is clear that |T β
μ f | ≤ Bβ

μ f for f ∈ H(Bn). Therefore, boundedness of a Berezin
type operator implies boundedness of the corresponding Toeplitz operator.

Our results will heavily depend on Carleson measures. For λ > 0 and α > −1, we
say μ is a (λ, α)-Bergman–Carleson measure if, for any two positive numbers p and
q with q/p = λ, there is a positive constant C > 0, such that

∫

Bn

| f (z)|q dμ(z) ≤ C‖ f ‖q
p,α

for any f ∈ Ap
α . We also denote by

‖μ‖λ,α = sup
f ∈Ap

α ,‖ f ‖p,α≤1

∫

Bn

| f (z)|q dμ(z).

We say a positive Borel measure μ is a vanishing (λ, α)-Bergman–Carleson measure
if for any two positive numbers p and q satisfying q/p = λ and any sequence { fk} in
Ap

α with ‖ fk‖p,α ≤ 1 and fk(z) → 0 uniformly on any compact subset of Bn

lim
k→∞

∫

Bn

| fk |qdμ(z) = 0.

For convenience, we assume that −1 < α1, α2, β < ∞ throughout the paper. We
list the following conditions and notations which will be used in our main results:

n + 1 + β > n max

(
1,

1

p1

)
+ 1 + α1

p1
, (C-1)
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n + 1 + β > n max

(
1,

1

p2

)
+ 1 + α2

p2
(C-2)

and

λ = 1 + 1

p1
− 1

p2
, γ = 1

λ

(
β + α1

p1
− α2

p2

)
. (1.2)

Our first two main results are for the case 0 < p1 ≤ p2 < ∞.

Theorem 1.1 Let 0 < p1 ≤ p2 < ∞, and let −1 < α1, α2, β < ∞ satisfy (C-1) and
(C-2). Let λ, γ be given by (1.2). Then, the following statements are equivalent:

(i) Bβ
μ is bounded from Ap1

α1 to L p2
α2 .

(ii) T β
μ is bounded from Ap1

α1 to Ap2
α2 .

(iii) The measure μ is a (λ, γ )-Bergman–Carleson measure.

Moreover, we have

‖Bβ
μ‖A

p1
α1→L

p2
α2

� ‖T β
μ ‖A

p1
α1→A

p2
α2

� ‖μ‖λ,γ .

Theorem 1.2 Let 0 < p1 ≤ p2 < ∞, and let −1 < α1, α2, β < ∞ satisfy (C-1) and
(C-2). Let λ, γ be given by (1.2). Then, the following statements are equivalent:

(i) Bβ
μ is compact from Ap1

α1 to L p2
α2 .

(ii) T β
μ is compact from Ap1

α1 to Ap2
α2 .

(iii) The measure μ is a vanishing (λ, γ )-Bergman–Carleson measure.

Our next main result is for the case 0 < p2 < p1 < ∞. For this result, we need a
well-known result on decomposition of the unit ball Bn .

For any a ∈ Bn with a �= 0, we denote by ϕa(z) the Möbius transformation on
Bn that interchanges the points 0 and a. It is known that ϕa satisfies the following
properties: ϕa ◦ ϕa(z) = z, and

1 − |ϕa(z)|2 = (1 − |a|2)(1 − |z|2)
|1 − 〈z, a〉|2 , z, a ∈ Bn . (1.3)

For z, w ∈ Bn , the pseudo-hyperbolic distance between z and w is defined by

ρ(z, w) = |ϕz(w)|,

and the hyperbolic distance on Bn between z and w induced by the Bergman metric
is given by

β(z, w) = tanh ρ(z, w) = 1

2
log

1 + |ϕz(w)|
1 − |ϕz(w)| .
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Throughout the paper, for z ∈ Bn and r > 0, let D(z, r) denote the Bergman metric
ball at z which is given by

D(z, r) = {w ∈ Bn : β(z, w) < r} .

It is known that, for a fixed r > 0, the weighted volume

vα(D(z, r)) � (1 − |z|2)n+1+α. (1.4)

We refer to [12] for the above facts.
A sequence of points {ak} in Bn is called a separated sequence (in the Bergman

metric) if there exists δ > 0, such that β(zi , z j ) > δ for any i �= j .

Lemma 1.3 [12, Theorem 2.23 ] There exists a positive integer N, such that for any
0 < r < 1, we can find a sequence {a j } in Bn with the following properties:

(i) Bn = ∪ j D(a j , r).
(ii) The sets D(a j , r/4) are mutually disjoint.
(iii) Each point z ∈ Bn belongs to at most N of the sets D(a j , 4r).

Any sequence {a j } satisfying the conditions of the above lemma is called a lattice (or
an r -lattice if one wants to stress the dependence on r ) in the Bergman metric. Obvi-
ously, any r -lattice is separated. For convenience, we will denote by D j = D(a j , r)

and D̃ j = D(a j , 4r) throughout the paper. Then, Lemma 1.3 says that Bn = ∪∞
k=1D j

and there is an positive integer N , such that every point z in Bn belongs to at most N
of sets D̃ j .

Theorem 1.4 Let 0 < p2 < p1 < ∞, and let −1 < α1, α2, β < ∞ satisfy (C-1) and
(C-2). Let λ, γ be given by (1.2). Given 0 < r < 1, let {a j } be an r-lattice in Bn, and
let D j and D̃ j be the associated Bergman metric balls given by Lemma 1.3. Then, the
following statements are equivalent:

(i) Bβ
μ is compact from Ap1

α1 to L p2
α2 .

(ii) Bβ
μ is bounded from Ap1

α1 to L p2
α2 .

(iii) T β
μ is bounded from Ap1

α1 to Ap2
α2 .

(iv) T β
μ is compact from Ap1

α1 to Ap2
α2 .

(v)

{μ j } :=
{

μ(D j )

(1 − |a j |2)(n+1+γ )λ

}
∈ l1/(1−λ).

Moreover, we have

‖Bβ
μ‖A

p1
α1→L

p2
α2

� ‖T β
μ ‖A

p1
α1→A

p2
α2

� ‖{μ j }‖l1/(1−λ) .

Remark 1.5 In the above theorems, the most parts of the results on Toeplitz operators
have been proved by Pau and the second author in [6]. The only exception is condition
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(v) in Theorem 1.4. In [6], it used the condition that “μ is a (λ, γ )-Bergman–Carleson
measure” instead of (v) above. However, for the case 0 < p2 < p1 < ∞, it may
happen that λ ≤ 0. In this case, the (λ, γ )-Bergman–Carleson measure condition
does not make sense, while (v) is still valid.

Our work here is mostly built up from the work in [6]. Our main contributions are
proofs of (iii)⇒(i) in Theorems 1.1 and 1.2 and (v)⇒(i) in Theorem 1.4. We would
like to point out that our proofs are different from the proof of Theorem 1.2 in [6]. The
key ingredients of our proofs are two technical results, Lemma 4.1 and Lemma 4.2,
which allow us to treat all cases together. By comparison, in the proof of Theorem
1.2 in [6], for the case 1 < p2 < ∞, it used a new characterization of Bergman–
Carleson measures discovered in that paper. For proving compactness results for Bβ

μ ,
we have to be more careful, since we are dealing with a sublinear operator. We also
gave a detailed proof of a characterization of compactness of T β

μ : Ap1
α1 → Ap2

α2 for
0 < p1 ≤ p2 < ∞ (Proposition 3.2), which seems to be a folklore, but we could
not find a proof. The proof of Proposition 3.2 for the case 0 < p1 ≤ 1 is actually
surprisingly involved. Besides, we have also discussed the cases when p1 = ∞ or/and
p2 = ∞.

The paper is organized as follows. In Sect. 2, we recall some notations and pre-
liminary results which will be used later. In Sect. 3, we develop some tools for
characterizing compactness of Berezin type operators and Toeplitz operators. We give
the proofs of Theorems 1.1, 1.2 and 1.4 in Sect. 4. In Sect. 5 and Sect. 6, we study the
boundedness and the compactness of Bβ

μ : Ap1
α1 → L p2

α2 and T β
μ : Ap1

α1 → Ap2
α2 for the

remaining cases when p1 = ∞ or/and p2 = ∞.
Throughout the paper, the notation A � B means that there is a positive constant

C , such that A ≤ C B, and the notation A � B means that both A � B and B � A
are satisfied.

2 Preliminaries

2.1 Carlesonmeasures

The following result was obtained by several authors and can be found, for example,
in [11, Theorem 50], [11, p.71] and the references therein.

Theorem A. Suppose 1 ≤ λ < ∞ and −1 < α < ∞, the following statements are
equivalent:

(i) μ is a (λ, α)-Bergman–Carleson measure.
(ii) For any real number r with 0 < r < 1 and any z ∈ Bn

μ(D(z, r)) � (1 − |z|2)(n+1+α)λ.

(iii) For some (every) s > 0, the Berezin type transform of μ

Bs,(n+1+α)λ−n−1(μ) ∈ L∞(Bn),
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that is, there is a constant C > 0

sup
a∈Bn

∫

Bn

(1 − |a|2)s

|1 − 〈z, a〉|(n+1+α)λ+s
dμ(z) ≤ C .

Especially, if λ = 1, we get that a positive Borel measure μ on Bn is a (1, α)-
Bergman–Carleson measure if and only if Bs,α(μ) ∈ L∞(Bn) for some (every)
s > 0.

Theorem B. Suppose 1 ≤ λ < ∞ and −1 < α < ∞, the following statements are
equivalent:

(i) μ is a vanishing (λ, α)-Bergman–Carleson measure.
(ii) For some(any) s > 0

lim|a|→1

∫

Bn

(1 − |a|2)s

|1 − 〈z, a〉|(n+1+α)λ+s
dμ(z) = 0.

(iii) For any real number r with 0 < r < 1 and any a ∈ Bn

lim|a|→1

μ(D(a, r))

(1 − |a|2)(n+1+α)λ
= 0.

Lemma 2.1 Let 1 ≤ λ < ∞ and −1 < γ < ∞. Let μ be a (λ, γ )-Bergman–Carleson
measure on Bn. Then, for any f ∈ H(Bn) and any 0 < p < ∞, we have

∫

Bn

| f (z)|p dμ(z) �
∫

Bn

| f (z)|p(1 − |z|2)(n+1+γ )λ−(n+1) dv(z).

Proof By [12, Lemma 2.24], we know that for 0 < r < 1, we have

| f (z)|p ≤ 1

(1 − |z|2)n+1

∫

D(z,r)

| f (w)|p dv(w).

Hence, by Fubini’s theorem, the fact that (1 − |z|2) ≈ (1 − |w|2) for z ∈ D(w, r),
and Theorem A, we have that

∫

Bn

| f (z)|p dμ(z) ≤
∫

Bn

1

(1 − |z|2)n+1

∫
D(z,r)

| f (w)|p dv(w) dμ(z)

=
∫

Bn

| f (w)|p
∫

D(w,r)

dμ(z)

(1 − |z|2)n+1 dv(w)
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≈
∫

Bn

| f (w)|p
∫

D(w,r)

dμ(z)

(1 − |w|2)n+1 dv(w)

=
∫

Bn

| f (w)|p μ(D(w, r))

(1 − |w|2)n+1 dv(w)

�
∫

Bn

| f (w)|p(1 − |w|2)(n+1+γ )λ−(n+1) dv(w).

The proof is complete. ��

2.2 Some useful estimates

The following estimate iswell known, and can be found, for example, in [7, Proposition
1.4.10], [12, Theorem 1.12] and [4, Sect. 1.2].

Lemma 2.2 Suppose z ∈ Bn, t > −1, and c is real. The integral

Ic,t (z) =
∫

Bn

(1 − |w|2)t

|1 − 〈z, w〉|c dv(w)

has the following asymptotic behavior as |z| → 1.

(i) If c < n + 1 + t , then Ic,t (z) � 1.
(ii) If c = n + 1 + t , then Ic,t (z) � log 1

1−|z|2 .

(iii) If c > n + 1 + t , then Ic,t (z) � (1 − |z|2)n+1+t−c.

Lemma 2.3 [6, Lemma C] Let {zk} be a separated sequence in Bn, and n < t < s.
Then

∞∑
k=1

(1 − |zk |2)t

|1 − 〈z, zk〉|s ≤ C(1 − |z|2)t−s, z ∈ Bn .

Lemma 2.4 Suppose 0 < p < ∞, α > −1. Let {c j } be a positive sequence, and let
{a j } be a separated sequence in Bn. If s ∈ R, such that

s > n max

(
1,

1

p

)
+ 1 + α

p
,

and f is a measurable function on Bn, such that

| f (z)| ≤
∞∑
j=1

c j

|1 − 〈z, a j 〉|s ,
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then f ∈ L p
α and

‖ f ‖p
p,α �

∞∑
j=1

cp
j

(1 − |a j |2)sp−(n+1+α)
.

Proof If 0 < p ≤ 1, then we have that

| f (z)|p ≤
∞∑
j=1

cp
j

|1 − 〈z, a j 〉|sp
.

By Lemma 2.2, we have that

∫

Bn

| f (z)|pdvα(z) ≤
∞∑
j=1

cp
j

∫

Bn

1

|1 − 〈z, a j 〉|sp
dvα(z)

�
∞∑
j=1

cp
j

(1 − |a j |2)sp−(n+1+α)
.

If p > 1, then s > n + 1+α
p . Let p′ be the conjugate exponent of p, such that

1/p + 1/p′ = 1. By Hölder’s inequality and Lemma 2.3, we have

| f (z)|p =
⎛
⎝

∞∑
j=1

c j

|1 − 〈z, a j 〉|s

⎞
⎠

p

≤
⎛
⎝

∞∑
j=1

(1 − |a j |2)s−(1+α)/p

|1 − 〈z, a j 〉|s

⎞
⎠

p−1 ⎛
⎝

∞∑
j=1

cp
j (1 − |a j |2)s(1−p)+(1+α)/p′

|1 − 〈z, a j 〉|s

⎞
⎠

� (1 − |z|2)−(1+α)/p′
⎛
⎝

∞∑
j=1

cp
j (1 − |a j |2)s(1−p)+(1+α)/p′

|1 − 〈z, a j 〉|s

⎞
⎠ .

Hence

‖ f ‖p
p,α �

∞∑
j=1

cp
j (1 − |a j |2)s(1−p)+(1+α)/p′

∫

Bn

(1 − |z|2)−(1+α)/p′

|1 − 〈z, a j 〉|s dvα(z).

Since α − (1 + α)/p′ = (1 + α)/p − 1 > −1, and

s − (n + 1 + α) + (1 + α)/p′ = s − n − (1 + α)/p > 0,

the typical integral estimate in Lemma 2.2 gives the result. ��
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3 Compactness of Bˇ
� and Tˇ

�

Recall that, for a bounded linear operator T between two Banach spaces X and Y ,
we say that T is compact if T maps any bounded set in X to a relative compact set
in Y . We also recall that a bounded linear operator T : X → Y is called completely
continuous if, for every weakly convergent sequence (xn) from X , the sequence (T xn)

is norm-convergent in Y .
Let −1 < β < ∞. Since Bβ

μ is a sublinear operator, there may be different
ways to define its compactness. In this paper, following the above definition, we
say that Bβ

μ : Ap1
α1 → L p2

α2 is compact if it maps any bounded set in Ap1
α1 to a relative

compact set in L p2
α2 , where 0 < p1, p2 < ∞, and −1 < α1, α2 < ∞. It is clear that

Bβ
μ : Ap1

α1 → L p2
α2 is compact if and only if for any bounded sequence { fn} in Ap1

α1 , the

image sequence {Bβ
μ fn} has a convergent subsequence in L p2

α2 .

We first give the following sufficient condition for the compactness of Bβ
μ : Ap1

α1 →
L p2

α2 for 0 < p1, p2 < ∞.

Proposition 3.1 Let 0 < p1, p2 < ∞, and −1 < α1, α2, β < ∞. Assume that
Bβ

μ : Ap1
α1 → L p2

α2 is a bounded sublinear operator. Suppose that, for every bounded
sequence { fk} in Ap1

α1 , such that fk → 0 uniformly on every compact subsets of Bn as
k → ∞, we have

lim
k→∞ ‖Bβ

μ fk‖p2,α2 = 0.

Then, Bβ
μ is compact from Ap1

α1 to L p2
α2 .

Proof Let { fk} be a bounded sequence in Ap1
α1 . Then, there is a constant M > 0, such

that ‖ fk‖p1,α1 ≤ M for all k ≥ 1. By [12, Theorem 2.1], { fk} is uniformly bounded
on every compact subsets of Bn . By Montel’s Theorem, there is a subsequence of
{ fk}, denoted by { fk j }, j = 1, 2, 3..., such that fk j → f uniformly on every compact
subsets ofBn for some holomorphic function f onBn , as j → ∞. By Fatou’s Lemma

∫

Bn

| f (z)|p1 dvα1(z) =
∫

Bn

lim
j→∞ | fk j (z)|p1 dvα1(z)

≤ lim
j→∞

∫

Bn

| fk j (z)|p1 dvα1(z)

≤ lim
j→∞ ‖ fk j ‖p1

p1,α1 ≤ M .

Thus, f ∈ Ap1
α1 . Therefore, we get that fk j − f → 0 uniformly on every compact

subsets of Bn as j → ∞. By our assumption, we get that

lim
j→∞ ‖Bβ

μ( fk j − f )‖p2,α2 = 0.
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We can easily check that

‖Bβ
μ fk j − Bβ

μ f ‖p2,α2 ≤ ‖Bβ
μ( fk j − f )‖p2,α2 .

From this inequality, we obtain that

lim
j→∞ ‖Bβ

μ fk j − Bβ
μ f ‖p2,α2 = 0,

which implies that Bβ
μ f ∈ L p2

α2 . Thus, {Bβ
μ fk} has a convergent subsequence in L p2

α2 ,

and so Bβ
μ is compact from Ap1

α1 to L p2
α2 . ��

The following characterization for compactness of T β
μ : Ap1

α1 → Ap2
α2 for 0 < p1 ≤

p2 < ∞ may be well known, but we cannot find a reference, so we give a proof here.
The result contains the case when 0 < p1 < 1 or 0 < p2 < 1, in which we still define
the compactness of T β

μ in the sameway as before, that is, we say that T β
μ : Ap1

α1 → Ap2
α2

is compact if it maps a bounded set in Ap1
α1 to a relatively compact set in Ap2

α2 . For the
case when 0 < p1 ≤ 1, the proof below is surprisingly involved.

Proposition 3.2 Let 0 < p1 ≤ p2 < ∞, and let −1 < α1, α2, β < ∞. Suppose that
p2, α2 and β satisfy (C-2), and suppose that T β

μ is bounded from Ap1
α1 to Ap2

α2 . Then,
the following statements are equivalent:

(i) T β
μ is compact from Ap1

α1 to Ap2
α2 .

(ii) For every bounded sequence { fk} in Ap1
α1 , such that fk → 0 uniformly on every

compact subsets of Bn as k → ∞, we have

lim
k→∞ ‖T β

μ fk‖p2,α2 = 0.

We need several lemmas to prove Proposition 3.2.

Lemma 3.3 Suppose that 1 < p < ∞. Then, fk → 0 weakly in Ap
α if and only if { fk}

is bounded in Ap
α and fk → 0 uniformly on every compact subsets of Bn.

This result is well known and can be easily proved, so we omit the proof here. For
the case of the unit disk, see Problem 1 of Exercise 4.7 in [13].

Lemma 3.4 Let0 < p < ∞, and let−1 < α < ∞. Let1 ≤ λ < ∞and−1 < γ < ∞
satisfy that

(n + 1 + γ )λ > n max

(
1,

1

p

)
+ 1 + α

p
. (3.1)

Let μ be a (λ, γ )-Bergman–Carleson measure on Bn. If { fk} is a bounded sequence
in Ap

α , such that fk → 0 uniformly on every compact subsets of Bn as k → ∞, then
we also have that Bβ

μ fk → 0 and T β
μ fk → 0 uniformly on every compact subsets of

Bn as k → ∞.
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Proof It suffices for us to prove Bβ
μ fk → 0 on every compact subsets ofBn as k → ∞,

since |Tμ fk | ≤ Bμ fk . For convenience, denote η = (n + 1 + γ )λ − (n + 1). Since
λ ≥ 1 and γ > −1, we have η > −1. Let { fk} be a bounded sequence in Ap

α . Then,
there is a constant M > 0, such that ‖ fk‖p,α ≤ M for all k ≥ 1.

First, consider the case 0 < p ≤ 1. In this case, (3.1) becomes

n + 1 + α

p
< n + 1 + η, (3.2)

Then, there exists A, such that

n + 1 + α

p
< A < n + 1 + η. (3.3)

Since 0 < p ≤ 1, we get

1 + α

p
≤ n + 1 + α

p
− n < A − n < 1 + η.

Therefore, there exists a constant B, such that A − n < B < min{1 + η, A}, which
implies that

1 + α

p
< B < 1 + η. (3.4)

Let

q = n

A − B
, s = nB

A − B
− 1.

Then, since 0 < A − B < n, we see that q > 1 and s > −1. Also, it is easy to check
that

n + 1 + s

q
= A,

1 + s

q
= B.

Hence, by (3.3) and (3.4), we obtain that

n + 1 + α

p
<

n + 1 + s

q
< n + 1 + η (3.5)

and

1 + α

p
<

1 + s

q
< 1 + η. (3.6)
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By [11, Theorem 69], (3.5) implies that Ap
α ⊆ Aq

s , and so ‖ fk‖q,s � ‖ fk‖p,α ≤ M .
Using (3.6), we get that

(
η − s

q

)
q ′ > −1,

where q ′ is the conjugate index of q, that is, it satisfies 1/q + 1/q ′ = 1. Hence,

∫

Bn

(1 − |w|2)(η−s/q)q ′
dv(w) < ∞.

Therefore, for any ε > 0, there exists a constant r ∈ (0, 1), such that

∫

Bn\Dr

(1 − |w|2)(η−s/q)q ′
dv(w) < εq ′

, (3.7)

where Dr = {w ∈ Bn : |w| < r}. By Lemma 2.1, we get that

|Bβ
μ fk(z)| �

∫

Bn

| fk(w)|(1 − |w|2)(n+1+γ )λ−(n+1)

|1 − 〈z, w〉|n+1+β
dv(w)

=
⎛
⎜⎝

∫

Bn\Dr

+
∫

Dr

⎞
⎟⎠ | fk(w)|(1 − |w|2)η

|1 − 〈z, w〉|n+1+β
dv(w)

= I1(k, r) + I2(k, r). (3.8)

Using Hölder’s inequality and (3.7), we get that

I1(k, r) ≤
⎛
⎜⎝

∫

Bn\Dr

| fk(w)|q(1 − |w|2)s dv(w)

⎞
⎟⎠

1/q

×
⎛
⎜⎝

∫

Bn\Dr

(1 − |w|2)(η−s/q)q ′

|1 − 〈z, w〉|(n+1+β)q ′ dv(w)

⎞
⎟⎠

1/q ′

� ‖ fk‖q,s

(1 − |z|)(n+1+β)q ′

⎛
⎜⎝

∫

Bn\Dr

(1 − |w|2)(η−s/q)q ′
dv(w)

⎞
⎟⎠

1/q ′

≤ Mε

(1 − |z|)(n+1+β)q ′ .
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Take any compact subset K in Bn . Then, for any z ∈ K , there is a constant M ′ > 0,
such that 1/(1 − |z|)(n+1+β)q ′ ≤ M ′. Thus

I1(k, r) � M M ′ε. (3.9)

Since fk → 0 uniformly on every compact subsets of Bn as k → ∞, there exists an
integer N > 0, such that for any k ≥ N and any w ∈ Dr

| fk(w)| < ε.

Remembering that η > −1, we have for any z ∈ K

I2(k, r) ≤ ε

(1 − |z|)n+1+β

∫

Dr

(1 − |w|2)η dv(w) � M ′ε. (3.10)

By (3.9) and (3.10), we get that for any k ≥ N and any z ∈ K

|Bβ
μ fk(z)| ≤ I1(k, r) + I2(k, r) � ε.

Thus, Bβ
μ fk(z) → 0 uniformly on any compact subsets of Bn as k → ∞ for 0 < p ≤

1.
Next, consider the case p > 1. In this case, (3.1) becomes

(n + 1 + γ )λ > n + 1 + α

p
,

Recall that η = (n + 1 + γ )λ − (n + 1). Thus

η + 1 = (n + 1 + γ )λ − n >
1 + α

p
,

which implies that

(
η − α

p

)
p′ > −1,

where 1/p + 1/p′ = 1. Hence

∫

Bn

(1 − |w|2)(η−α/p)p′
dv(w) < ∞.

The rest of the proof is the same as the proof of the case 0 < p ≤ 1, except that we
use p to replace q, and use α to replace s. We omit the details. ��
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Lemma 3.5 Let 0 < p1 ≤ p2 < ∞, let −1 < α1, α2, β < ∞, and let γ, λ be given
by (1.2). Suppose that p2, α2 and β satisfy (C-2). Then, we have

(n + 1 + γ )λ > n max

(
1,

1

p1

)
+ 1 + α1

p1
. (3.11)

Proof Since 0 < p1 ≤ p2 < ∞, it follows that λ = 1 + 1/p1 − 1/p2 ≥ 1. We get
the following two inequalities:

n + 1 + β >
n + 1 + α2

p2
(3.12)

and

1 + β >
1 + α2

p2
(3.13)

by (C-2). Bearing in mind the definitions of λ, γ in (1.2), then (3.13) gives that

(1 + γ )λ = (1 + β) + 1 + α1

p1
− 1 + α2

p2
>

1 + α1

p1
> 0,

Thus, γ > −1, and

(n + 1 + γ )λ > n + n + 1 + α1

p1
− n

p2

≥ n + 1 + α1

p1
,

since 0 < p1 ≤ p2 < ∞. Furthermore, the inequality (3.12) implies that

(n + 1 + γ )λ = (n + 1 + β) + n + 1 + α1

p1
− n + 1 + α2

p2
>

n + 1 + α1

p1
.

The proof is complete. ��
Proof of Proposition 3.2 It follows from [2, Proposition 3.3 in Chapter VI] that Tμ :
Ap1

α1 → Ap2
α2 is compact if and only if Tμ : Ap1

α1 → Ap2
α2 is completely continuous for

1 < p1 < ∞. By Lemma 3.3, we know that (ii) is equivalent to that Tμ : Ap1
α1 → Ap2

α2

is completely continuous for 1 < p1 < ∞. Therefore, it suffices for us to prove for
the case 0 < p1 ≤ 1.

Let 0 < p1 ≤ 1, and let 0 < p1 ≤ p2 < ∞. The proof of (ii)⇒(i) follows
from the same discussion as in the proof of Proposition 3.1. Thus, we only need to
prove that (i)⇒(ii). Suppose that (i) holds, i.e., that T β

μ : Ap1
α1 → Ap2

α2 is compact.

Then, T β
μ : Ap1

α1 → Ap2
α2 is bounded. It follows from Theorem 1 that μ is a (λ, γ )-

Bergman–Carleson measure on Bn , where λ, γ are given by (1.2). Let { fk} be a
bounded sequence in Ap1

α1 , such that fk → 0 uniformly on every compact subsets of
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Bn as k → ∞. Suppose, on the contrary, that (ii) is not true. Then, there exist an ε > 0
and a subsequence { fk j } of { fk}, such that

‖T β
μ fk j ‖p2,α2 ≥ ε, for all j = 1, 2, 3.... (3.14)

Since T β
μ is compact from Ap1

α1 to Ap2
α2 , we can find a further subsequence { fk jm

},
m = 1, 2, 3..., and g ∈ Ap2

α2 , such that

lim
m→∞ ‖T β

μ fk jm
− g‖p2,α2 = 0. (3.15)

By [12, Theorem 2.1], we have that

|T β
μ fk jm

(z) − g(z)| ≤ ‖T β
μ fk jm

− g‖p2,α2

(1 − |z|2)(n+1+α2)/p2
(3.16)

for all m ≥ 1. Hence

|T β
μ fk jm

(z) − g(z)| → 0 (3.17)

uniformly on every compact subsets of Bn , as m → ∞.
By the definitions of λ, γ given in (1.2), and by lemma 3.5, we have that

(n + 1 + γ )λ >
n + 1 + α1

p1

for 0 < p1 ≤ 1. Since { fk} is a bounded sequence in Ap1
α1 and fk jm

(z) → 0 uni-
formly on every compact subset of Bn as m → ∞, it follows from Lemma 3.4 that
T β

μ fk jm
(z) → 0 uniformly on compact subsets of Bn . Thus, we must have g = 0 by

(3.17). Therefore, by (3.15), we get that

lim
m→∞ ‖T β

μ fk jm
‖p2,α2 = 0,

which contradicts to (3.14). Hence, (ii) must be true. The proof is complete. ��

4 Proofs of themain theorems

Lemma 4.1 Let 0 < p1, p2 < ∞, let −1 < α1, α2, β < ∞, and let λ and γ be given
by (1.2). Suppose that p2, α2 and β satisfy (C-2). Given 0 < r < 1, let {a j } be an
r-lattice in Bn, and let D j and D̃ j be the associated Bergman metric balls given by
Lemma 1.3. Then, we have
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‖Bβ
μ( f )‖p2

p2,α2 �
∞∑
j=1

(
μ(D j )

(1 − |a j |2)(n+1+γ )λ

)p2

⎛
⎜⎜⎝

∫

D̃ j

| f (ζ )|p1dvα1(ζ )

⎞
⎟⎟⎠

p2/p1

.

(4.1)

Proof Using the fact that |1 − 〈z, w〉| � |1 − 〈z, a j 〉| for w ∈ D j , we have that

|Bβ
μ( f )(z)| �

∞∑
j=1

∫

D j

| f (w)|
|1 − 〈z, w〉|n+1+β

dμ(w)

�
∞∑
j=1

(
sup

w∈D j

| f (w)|
)∫

D j

1

|1 − 〈z, w〉|n+1+β
dμ(w)

�
∞∑
j=1

(
sup

w∈D j

| f (w)|
)

μ(D j )

|1 − 〈z, a j 〉|n+1+β
.

By [12, Lemma 2.24], we have that

| f (w)| �

⎛
⎜⎜⎝

1

(1 − |a j |2)n+1+α1

∫

D̃ j

| f (ζ )|p1dvα1(ζ )

⎞
⎟⎟⎠

1/p1

for any w ∈ D j . Denote

| f̂ (a j )| :=

⎛
⎜⎜⎝

1

(1 − |a j |2)n+1+α1

∫

D̃ j

| f (ζ )|p1dvα1(ζ )

⎞
⎟⎟⎠

1/p1

,

we get that

|Bβ
μ( f )(z)| �

∞∑
j=1

| f̂ (a j )|μ(D j )

|1 − 〈z, a j 〉|n+1+β
. (4.2)

Thus,we obtain (4.1) by taking p = p2,α = α2, s = n+1+β and c j = | f̂ (a j )|μ(D j )

in Lemma 2.4. ��
Lemma 4.2 Given 0 < r < 1, let {a j } be an r-lattice in Bn, let D j = D(a j , r) be the
associated Bergman metric balls given by Lemma 1.3, and let {bk(a j )} be a sequence
depending on a j , such that
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sup
k

∞∑
j=1

|bk(a j )| < ∞. (4.3)

Suppose, in addition, for any compact subset K of Bn, the sequence {bk(a j )} satisfies
that

lim
k→∞

∑
j∈�

|bk(a j )| = 0, (4.4)

where � := { j : a j ∈ K }. Let {c(a j )} be a sequence of real numbers depending on
{a j }. Then, we have the following two results.

(i) If {c(a j )} is a bounded sequence, such that lim|a j |→1 c(a j ) = 0, then

lim
k→∞

∞∑
j=1

c(a j )bk(a j ) = 0.

(ii) Let 0 < t < ∞, 0 < s < 1 and γ = t/(1 − s). If {c(a j )} ∈ lγ , then

lim
k→∞

∞∑
j=1

c(a j )
t bk(a j )

s = 0.

Proof (i) Since lim|a j |→1 c(a j ) = 0, it follows that for any ε > 0, there is an r1 ∈
(0, 1), such that |c(a j )| < ε for all |a j | > r1. Therefore

∣∣∣∣∣∣
∞∑
j=1

c(a j )bk(a j )

∣∣∣∣∣∣
≤

∑
j : |a j |≤r1

|c(a j )bk(a j )| +
∑

j : |a j |>r1

|c(a j )bk(a j )|

≤ sup
j : |a j |≤r1

|c(a j )|
∑

j : |a j |≤r1

|bk(a j )| + ε
∑

j : |a j |>r1

|bk(a j )|. (4.5)

Since the set {a : |a| ≤ r1} is a compact subset of Bn , by (4.4), we get that

lim
k→∞

∑
j : |a j |≤r1

|bk(a j )| = 0.

Letting ε → 0 and then letting k → ∞ in (4.5), we obtain the result in (i).
(ii) Since {c(a j )} ∈ lγ , it follows that, for any ε > 0, there is an r2 ∈ (0, 1), such

that

∑
j : |a j |>r2

|c(a j )|γ < ε.
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Since {a : |a| ≤ r2} is a compact subset of Bn , by (4.4), we have

lim
k→∞

∑
j : |a j |≤r2

|bk(a j )| = 0.

Since 1/s > 1, by Hölder inequality, we have that
∣∣∣∣∣∣

∞∑
j=1

c(a j )
t bk(a j )

s

∣∣∣∣∣∣
≤

∑
j : |a j |≤r2

|c(a j )|t |bk(a j )|s +
∑

j : |a j |>r2

|c(a j )|t |bk(a j )|s

≤
⎛
⎝ ∑

j : |a j |≤r2

|c(a j )|γ
⎞
⎠

1−s ⎛
⎝ ∑

j : |a j |≤r2

|bk(a j )|
⎞
⎠

s

+
⎛
⎝ ∑

j : |a j |>r2

|c(a j )|γ
⎞
⎠

1−s ⎛
⎝ ∑

j : |a j |>r2

|bk(a j )|
⎞
⎠

s

≤
⎛
⎝ ∑

j : |a j |≤r2

|c(a j )|γ
⎞
⎠

1−s ⎛
⎝ ∑

j : |a j |≤r2

|bk(a j )|
⎞
⎠

s

+ε1−s
∑

j : |a j |>r2

|bk(a j )|.

Letting ε → 0 and then letting k → ∞, we obtain the result in (ii). ��

4.1 Proofs of Theorem 1.1 and Theorem 1.2

The implications (i)⇒(ii) in Theorem 1.1 and Theorem 1.2 are obvious. The implica-
tions (ii)⇒(iii) in Theorem 1.1 and Theorem 1.2 are given by [6, Theorem 1.2] and
[6, Theorem 4.2], respectively. Thus, we only need to prove that (iii)⇒(i) in these two
Theorems. Given 0 < r < 1, let {a j } be an r -lattice in Bn , and let D j and D̃ j be the
associated Bergman metric balls given by Lemma 1.3.

(iii)⇒(i) for Theorem 1.1. Suppose that μ is a (λ, γ )-Bergman–Carleson measure.
Since the condition 0 < p1 ≤ p2 < ∞ implies that λ > 1 and p2/p1 ≥ 1, it follows
from (4.1) and Theorem A. that:

‖Bβ
μ( f )‖p2

p2,α2 � ‖μ‖p2
λ,γ

∞∑
j=1

⎛
⎜⎜⎝

∫

D̃ j

| f (ζ )|p1dvα1(ζ )

⎞
⎟⎟⎠

p2/p1

� ‖μ‖p2
λ,γ

⎛
⎜⎜⎝

∞∑
j=1

∫

D̃ j

| f (ζ )|p1dvα1(ζ )

⎞
⎟⎟⎠

p2/p1

� ‖μ‖p2
λ,γ ‖ f ‖p2

p1,α1 .
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Hence, Bβ
μ is bounded from Ap1

α1 to L p2
α2 .

(iii)⇒(i) for Theorem 1.2. Suppose that μ is a vanishing (λ, γ )-Bergman–
Carleson measure. It follows from Proposition 3.1 that we only need to show that
‖Bβ

μ fk‖p2,α2 → 0 for any bounded sequence { fk} in Ap1
α1 converging to 0 uniformly

on compact subsets of Bn . Let

c(a j ) =
(

μ(D j )

(1 − |a j |2)(n+1+γ )λ

)p2
,

and let

bk(a j ) =

⎛
⎜⎜⎝

∫

D̃ j

| fk(ζ )|p1dvα1(ζ )

⎞
⎟⎟⎠

p2/p1

.

Using (4.1) again, we get

‖Bβ
μ( fk)‖p2

p2,α2 �
∞∑
j=1

c(a j )bk(a j ). (4.6)

Since p2/p1 ≥ 1 and { fk} is a bounded sequence in Ap1
α1 , it follows that:

sup
k

∞∑
j=1

|bk(a j )| = sup
k

∞∑
j=1

⎛
⎜⎜⎝

∫

D̃ j

| fk(ζ )|p1dvα1(ζ )

⎞
⎟⎟⎠

p2/p1

� sup
k

‖ fk‖p2
p1,α1 < ∞.

Let K be any compact subset in Bn and � be given as in Lemma 4.2. Then, � is a
finite set. Since { fk} converges to 0 uniformly on compact subsets of Bn , it follows
that:

lim
k→∞

∑
j∈�

|bk(a j )| = lim
k→∞

∑
j∈�

⎛
⎜⎜⎝

∫

D̃ j

| fk(ζ )|p1dvα1(ζ )

⎞
⎟⎟⎠

p2/p1

= 0.

By Theorem B., we have lim|a j |→1 c(a j ) = 0. Therefore, by (i) of Lemma 4.2, we get

that limk→∞ ‖Bβ
μ( fk)‖p2,α2 = 0. The proof is complete.

4.2 Proof of Theorem 1.4

We prove this theorem by showing that
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(i) ⇒ (ii) ⇒ (iii) ⇒ (v) ⇒ (i) ⇒ (iv) ⇒ (iii).

The implications (i) ⇒ (ii) ⇒ (iii) and (i) ⇒ (iv) ⇒ (iii) are trivial. Notice that the
condition 0 < p2 < p1 < ∞ is equivalent to−∞ < λ < 1, and the proof of Case 2 in
(i) ⇒ (ii) of [6, Theorem 1.2] actually works for showing our implication (iii) ⇒ (v),
with condition (v) here replacing the (λ, γ )-Bergman–Carleson measure condition in
[6]. Therefore, we only need to prove that (v)⇒(i).

(v) ⇒ (i). Given 0 < r < 1, let {a j } be an r -lattice in Bn , and let D j and D̃ j be
the associated Bergman metric balls given by Lemma 1.3. Assume that (v) holds. It
follows from Proposition 3.1 that we need only show that ‖Bβ

μ fk‖p2,α2 → 0 for any
bounded sequence { fk} in Ap1

α1 converging to zero uniformly on compact subsets of
Bn . We follow a similar argument as in the proof of (iii)⇒ (i) in Theorem 1.2. Denote
by

c(a j ) = μ(D j )

(1 − |a j |2)(n+1+γ )λ
, bk(a j ) =

∫

D̃ j

| fk(ζ )|p1dvα1(ζ ).

As in the proof of Theorem 1.2, we know that the sequence {bk(a j )} satisfies (4.3)
and (4.4) in Lemma 4.2. Let t = p2, and let 0 < s = p2/p1 < 1. Then

γ = t

1 − s
= p1 p2

p1 − p2
= 1

1 − λ
.

By (v), we see that {c(a j )} ∈ lγ . Thus, by Lemma 4.2, we get that

lim
k→∞ ‖Bμ( fk)‖p2,α2 = 0.

The proof is complete.

5 The case when p2 = ∞

In this section, we study the boundedness and compactness of Bβ
μ : Ap1

α1 → L∞ and

T β
μ : Ap1

α1 → H∞ for 0 < p1 < ∞.

Proposition 5.1 Let 0 < p1 < ∞ and let −1 < α1, β < ∞ satisfy (C-1). Let

λ = 1 + 1

p1
, γ = 1

λ

(
β + α1

p1

)
. (5.1)

If T β
μ is bounded from Ap1

α1 to H∞, then μ is a (λ, γ )-Bergman–Carleson measure.

Proof For any fixed a ∈ Bn , take function

fa(z) = (1 − |a|2)n+1+β−(n+1+α1)/p1

(1 − 〈z, a〉)n+1+β
.
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Then, the condition (C-1) and Lemma 2.2 give that f ∈ Ap1
α1 and ‖ f ‖p1,α1 � 1. Since

|1 − 〈w, a〉| � 1 − |a|2 for any w ∈ D(a, r), it follows that:

T β
μ fa(a) = (1 − |a|2)n+1+β−(n+1+α1)/p1

∫

Bn

dμ(w)

|1 − 〈a, w〉|2(n+1+β)

≥ (1 − |a|2)n+1+β−(n+1+α1)/p1

∫

D(a,r)

dμ(w)

|1 − 〈a, w〉|2(n+1+β)

≥ C
μ(D(a, r))

(1 − |a|2)(n+1+γ )λ
. (5.2)

The boundedness of Toeplitz operator T β
μ : Ap1

α1 → H∞ gives that

|T β
μ fa(a)| ≤ ‖T β

μ fa‖∞ ≤ ‖T β
μ ‖‖ fa‖p1,α1 .

Therefore, we get that

μ(D(a, r)) � ‖T β
μ ‖(1 − |a|2)(n+1+γ )λ.

It follows from Theorem A. that μ is a (λ, γ )-Bergman–Carleson measure. ��
Proposition 5.2 Let 0 < p1 ≤ 1 and let −1 < α1, β < ∞ satisfy (C-1). Let λ, γ be
given by (5.1). If the measure μ is a (λ, γ )-Bergman–Carleson measure, then Bβ

μ is
bounded from Ap1

α1 to L∞.

Proof Given 0 < r < 1, let {a j } be an r -lattice in Bn , and let D j and D̃ j be the
associated Bergman metric balls given in Lemma 1.3. Since 0 < p1 ≤ 1, it follows
from (4.2) that:

sup
z∈Bn

|Bβ
μ( f )(z)| �

∞∑
j=1

μ(D j )

(1 − |a j |2)(n+1+γ )λ

⎛
⎜⎜⎝

∫

D̃ j

| f (ζ )|p1dvα1(ζ )

⎞
⎟⎟⎠

1/p1

� ‖μ‖λ,γ

⎛
⎜⎜⎝

∞∑
j=1

∫

D̃ j

| f (ζ )|p1dvα1(ζ )

⎞
⎟⎟⎠

1/p1

(5.3)

� ‖μ‖λ,γ ‖ f ‖p1,α1 .

Thus, Bβ
μ : Ap1

α1 → L∞ is bounded. The proof is complete. ��
Combining Proposition 5.1, Proposition 5.2, and the fact that |T β

μ f | ≤ Bβ
μ f , we

obtain the following result.

Theorem 5.3 Let 0 < p1 ≤ 1 and let −1 < α1, β < ∞ satisfy (C-1). Let λ, γ be
given by (5.1). Then, the following statements are equivalent:
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(i) Bβ
μ is bounded from Ap1

α1 to L∞.

(ii) T β
μ is bounded from Ap1

α1 to H∞.
(iii) The measure μ is a (λ, γ )-Bergman–Carleson measure.

Moreover, we have

‖Bβ
μ‖A

p1
α1→L∞ � ‖T β

μ ‖A
p1
α1→H∞ � ‖μ‖λ,γ .

For the case 1 < p1 < ∞, we have the following partial result.

Proposition 5.4 Let 1 < p1 < ∞ and let −1 < α1, β < ∞ satisfy (C-1). Let λ, γ be
given by (5.1). Then, the following statements are equivalent.

(i) For any (λ, γ )-Bergman–Carleson measure μ, Bβ
μ is bounded from Ap1

α1 to L∞.
(ii) The integral operator

(S f )(z) :=
∫

Bn

(1 − |w|2)β+(n+1+α1)/p1 | f (w)|
|1 − 〈z, w〉|n+1+β

dv(w) (5.4)

is bounded from Ap1
α1 to L∞.

Proof (ii)⇒(i). Suppose that S : Ap1
α1 → L∞ is bounded. Let μ be an arbitrary

(λ, γ )-Bergman–Carleson measure. It follows from Lemma 2.1 that:

|Bβ
μ f (z)| =

∫

Bn

| f (w)|
|1 − 〈z, w〉|n+1+β

dμ(w)

� ‖μ‖λ,γ

∫

Bn

| f (w)|
|1 − 〈z, w〉|n+1+β

(1 − |w|2)(n+1+γ )λ−n−1dv(w)

= ‖μ‖λ,γ

∫

Bn

(1 − |w|2)β+(n+1+α1)/p1 | f (w)|
|1 − 〈z, w〉|n+1+β

dv(w)

= ‖μ‖λ,γ (S f )(w).

Thus, the boundedness of S : Ap1
α1 → L∞ implies the boundedness of Bβ

μ : Ap1
α1 →

L∞.
(i) ⇒(ii). Suppose that Bβ

μ : Ap1
α1 → L∞ is bounded for any (λ, γ )-Bergman–

Carleson measure. Consider dμ(z) = (1 − |z|2)β+(n+1+α1)/p1dv(z). It can be easily
checked that μ is a (λ, γ )-Bergman–Carleson measure. Since
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Bβ
μ f (z) =

∫

Bn

| f (w)|
|1 − 〈z, w〉|n+1+β

dμ(w)

=
∫

Bn

(1 − |w|2)β+(n+1+α1)/p1 | f (w)|
|1 − 〈z, w〉|n+1+β

dv(w)

= (S f )(w),

the boundedness of Bβ
μ : Ap1

α1 → L∞ implies the boundedness of S : Ap1
α1 → L∞. ��

Remark 5.5 It follows from [10, Theorem 1.3] that for 1 < p1 < ∞, S : L p1
α1 → L∞

is unbounded. However, we do not know whether S : Ap1
α1 → L∞ is bounded. Also,

the above proposition does not fully solve the problem about when Bβ
μ is bounded

from Ap1
α1 to L∞. Therefore, we propose the following open problems.

Open Problem 1 Let 1 < p < ∞, and let −1 < α < ∞. Is the operator S bounded
from the Bergman space Ap

α to L∞?

Open Problem 2 Let 1 < p < ∞, and let −1 < α < ∞. How to characterize
boundedness of Bβ

μ : Ap
α → L∞ and T β

μ : Ap
α → H∞?

Next let us consider compactness of Bβ
μ : Ap1

α1 → L∞. By the same discussion as
in the proof of Proposition 3.1, we can obtain the following result.

Proposition 5.6 Let 0 < p1 ≤ 1, let p2 = ∞ and let −1 < α1 < ∞. Suppose that, for
every bounded sequence { fk} in Ap1

α1 , such that fk → 0 uniformly on every compact
subsets of Bn as k → ∞, we have

lim
k→∞ ‖Bβ

μ fk‖∞ = 0.

Then, Bβ
μ : Ap1

α1 → L∞ is compact.

We can also get the the following result on T β
μ by a similar discussion as in the

proof of Proposition 3.2 combining with Proposition 5.1.

Proposition 5.7 Let 0 < p1 < ∞ and let −1 < α1, β < ∞ satisfy (C-1). Suppose
that T β

μ is bounded from Ap1
α1 to H∞. Then, the following statements are equivalent.

(i) T β
μ is compact from Ap1

α1 to H∞.
(ii) For every bounded sequence { fk} in Ap1

α1 , such that fk → 0 uniformly on every
compact subsets of Bn as k → ∞, we have

lim
k→∞ ‖T β

μ fk‖∞ = 0.

Proof The implication (ii) ⇒ (i) follows from the same discussion as in Proposition
3.1. The implication (i) ⇒ (ii) follows from a similar discussion as in Proposition 3.2.
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In fact, if T β
μ : Ap1

α1 → H∞ is compact, then T β
μ : Ap1

α1 → H∞ is bounded. It follows
from Proposition 5.1 thatμ is a (λ, γ )-Bergman–Carleson measure onBn , where λ, γ

are given by (5.1). It is easy to see that

(n + 1 + γ )λ = n + 1 + β + n + 1 + α1

p1
>

n + 1 + α1

p1
.

Thus, a similar discussion to Lemma 3.4 and Proposition 3.2 gives that (ii) holds. The
proof is complete. ��
Theorem 5.8 Let 0 < p1 ≤ 1 and let −1 < α1, β < ∞ satisfy (C-1). Let λ, γ be
given by (5.1). Then, the following statements are equivalent:

(i) Bβ
μ is compact from Ap1

α1 to L∞.

(ii) T β
μ is compact from Ap1

α1 to H∞.
(iii) The measure μ is a vanishing (λ, γ )-Bergman–Carleson measure.

Proof (i)⇒(ii). This is is trivial.
(ii)⇒(iii). Suppose that T β

μ is compact from Ap1
α1 to H∞. Let {ak} be a sequence in

Bn with |ak | → 1. Consider the functions

fk(z) = (1 − |ak |2)n+1+β−(n+1+α1)/p1

(1 − 〈z, ak〉)n+1+β

for k = 1, 2, 3, .... It follows from Lemma 2.2 that supk ‖ fk‖p1,α1 < ∞, and it is
obvious that fk converges to zero uniformly on compact subsets of Bn . Thus, by
Proposition 5.7, we have that ‖T β

μ fk‖∞ → 0. Fix any r with 0 < r < 1. By the same
discussion as in the proof of Proposition 5.1, we get that

μ(D(ak, r))

(1 − |ak |2)(n+1+γ )λ
≤ T β

μ fk(ak) ≤ ‖T β
μ fk‖∞ → 0

as k → ∞. Thus, μ is a vanishing (λ, γ )-Bergman–Carleson measure.
(iii)⇒(i). Suppose that μ is a vanishing (λ, γ )-Bergman–Carleson measure. By

proposition 5.6, it suffices to prove that ‖Bβ
μ fk‖∞ → 0 for any bounded sequence

{ fk} in Ap1
α1 converging to zero uniformly on compact subsets of Bn . Let {a j } be an

r -lattice in Bn . Let

c(a j ) = μ(D j )

(1 − |a j |2)(n+1+γ )λ

and

bk(a j ) =

⎛
⎜⎜⎝

∫

D̃ j

| fk(ζ )|p1dvα1(ζ )

⎞
⎟⎟⎠

1/p1

,
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Since 0 < p1 ≤ 1, it follows from inequality (5.3) that:

sup
z∈Bn

|Bβ
μ( fk)(z)| �

∞∑
j=1

c(a j )bk(a j ).

By the same discussion as in the proof of Theorem 1.2, we know that the sequence
{bk(a j )} satisfies the condition of Lemma 4.2. Sinceμ is a vanishing (λ, γ )-Bergman–
Carleson measure, we know that lim|a j |→1 c(a j ) = 0. Hence, by (i) of Lemma 4.2,

we get that limk→∞ ‖Bβ
μ fk‖∞ = 0. The proof is complete. ��

Open Problem 3 Let 1 < p < ∞, and let −1 < α < ∞. How to characterize
compactness of Bβ

μ : Ap
α → L∞ and T β

μ : Ap
α → H∞?

6 The case when p1 = ∞
In this section, we consider the case when p1 = ∞.

6.1 The case when p1 = ∞, p2 = ∞

If we follow the definition of λ and γ in (1.2), we get that in this case λ = 1, γ = β.
Our first result here shows that the (1, β)-Bergman–Carleson measure condition does
not characterize boundedness of Bβ

μ : H∞ → L∞.

Lemma 6.1 Let −1 < β < ∞. There exists a (1, β)-Bergman–Carleson measure μ,
such that Bβ

μ is unbounded from H∞ to L∞.

Proof Let dμ = (1−|z|2)β dv(z). It can be easily checked thatμ is a (1, β)-Bergman–
Carleson measure, and

Bβ
μ f (z) =

∫

Bn

(1 − |w|2)β | f (w)|
|1 − 〈z, w〉|n+1+β

dv(w).

Let f = 1 ∈ H∞. Then, Bβ
μ1 /∈ L∞ by lemma 2.2. The proof is complete. ��

Open Problem 4 How to characterize boundedness and the compactness of Bβ
μ :

H∞ → L∞ and T β
μ : H∞ → H∞?

6.2 The case when p1 = ∞, 0 < p2 < ∞.

We give the following sufficient condition for the boundedness of the Berezin type
operator Bβ

μ : H∞ → L p2
α2 .
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Proposition 6.2 Let 0 < p2 < ∞ and let −1 < α2, β < ∞ satisfy (C-2). Given
0 < r < 1, let {a j } be any r-lattice in Bn, and let D j = D(a j , r) be the associated
Bergman metric balls given by Lemma 1.3. Suppose that

{ν j } =:
{

μ(D j )

(1 − |a j |2)n+1+β−(n+1+α2)/p2

}
∈ l p2 . (6.1)

Then, Bβ
μ is bounded from H∞ to L p2

α2 .

Proof Since |1 − 〈z, w〉| � |1 − 〈z, a j 〉| for w ∈ D j , it follows that:

|Bβ
μ( f )(z)| � ‖ f ‖∞

∞∑
j=1

∫

D j

1

|1 − 〈z, w〉|n+1+β
dμ(w)

� ‖ f ‖∞
∞∑
j=1

μ(D j )

|1 − 〈z, a j 〉|n+1+β
.

By Lemma 2.4, we get

‖Bβ
μ f ‖p2,α2 � ‖ f ‖∞

⎛
⎝

∞∑
j=1

μ(D j )
p2

(1 − |a j |2)(n+1+β)p2−(n+1+α2)

⎞
⎠

1/p2

� ‖ f ‖∞‖{ν j }‖l p2 .

Therefore, we get that Bβ
μ : H∞ → Ap2

α2 is bounded. ��
By a similar argument as in the proof of Proposition 3.1, we can get the following

sufficient condition for the compactness of Bα
μ : H∞ → Ap2

α2 for 0 < p2 < ∞.

Proposition 6.3 Let 0 < p2 < ∞, and let −1 < α2 < ∞. Assume that Bβ
μ : H∞ →

L p2
α2 is bounded. Suppose that, for every bounded sequence { fk} in H∞, such that

fk → 0 uniformly on every compact subsets of Bn as k → ∞, we have

lim
k→∞ ‖Bβ

μ fk‖p2,α2 = 0.

Then, Bβ
μ is compact from H∞ to L p2

α2 .

Lemma 6.4 Given 0 < r < 1, let {a j } be an r-lattice in Bn, let D j = D(a j , r) be the
associated Bergman metric balls given by Lemma 1.3, and let {bk(a j )} be a sequence
depending on a j , such that

sup
k

sup
j

|bk(a j )| < ∞.
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Suppose, in addition, for any compact subset K of Bn, the sequence {bk(a j )} satisfies
that

lim
k→∞ sup

j∈�

|bk(a j )| → 0,

where � := { j : a j ∈ K }. Let {c(a j )} be a sequence of real numbers depending on
{a j } satisfying that {c(a j )} ∈ l1. Then

lim
k→∞

∞∑
j=1

c(a j )bk(a j ) = 0.

Proof Since {c(a j )} ∈ l1, then for any given ε > 0, there is a r3 ∈ (0, 1), such that

∑
j : |a j |>r3

|c(a j )| < ε.

Thus, we have

∣∣∣∣∣∣
∞∑
j=1

c(a j )bk(a j )

∣∣∣∣∣∣
≤

∑
j : |a j |≤r3

|c(a j )bk(a j )| +
∑

j : |a j |>r3

|c(a j )bk(a j )|

≤ sup
j : |a j |≤r3

|bk(a j )|
∑

j : |a j |<r3

|c(a j )|

+ sup
j : |a j |>r3

|bk(a j )|
∑

j : |a j |>r3

|c(a j )|

≤ sup
j : |a j |≤r3

|bk(a j )|
∑

j : |a j |<r3

|c(a j )| + ε sup
k

sup
j

|bk(a j )|.

Letting ε → 0, and then letting k → ∞, we get the result, since

lim
k→∞ sup

j : |a j |≤r3
|bk(a j )| = 0.

��

Proposition 6.5 Let 0 < p2 < ∞, and let −1 < α2, β < ∞ satisfy (C-2). Let {ν j } be

the sequence given by (6.1) which satisfies that {ν j } ∈ l p2 . Then, Bβ
μ is compact from

H∞ to L p2
α2 .

Proof Let {a j } be an r -lattice. By Proposition 6.3 that it suffices for us to prove that

limk→∞ ‖Bβ
μ( fk)‖p2,α2 = 0 for any bounded sequence { fk} ∈ H∞, such that fk → 0
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uniformly on every compact subsets of Bn as k → ∞. First, it is easy to get that

|Bβ
μ( fk)(z)| �

∞∑
j=1

‖ fkχD j ‖∞μ(D j )

|1 − 〈z, a j 〉|n+1+β
.

Let

c(a j ) =
(

μ(D j )

(1 − |a j |2)n+1+β−(n+1+α2)/p2

)p2

and

bk(a j ) = ‖ fkχD j ‖p2∞ .

Using Lemma 2.4, we get that

‖Bβ
μ( fk)‖p2

p2,α2 �
∞∑
j=1

c(a j )bk(a j ). (6.2)

Notice that {c(a j )} = {ν p2
j } ∈ l1 and

sup
k

sup
j

|bk(a j )| = sup
k

sup
j

‖ fkχD j ‖p2∞ ≤ sup
k

‖ fk‖p2∞ < ∞.

Let K be any compact subset in Bn and � = { j : a j ∈ K }. Then � is a finite set.
Since fk → 0 uniformly on every compact subsets of Bn as k → ∞, it follows that
for any given ε > 0, and for all z ∈ ∪ j∈� D j , we have that

sup
j∈�

|bk(a j )| = sup
j∈�

‖ fkχD j ‖p2∞ < ε.

Letting ε → 0 and letting k → ∞, we get that

lim
k→∞ sup

j∈�

|bk(a j )| → 0.

It follows from Lemma 6.4 that limk→∞ ‖Bβ
μ( fk)‖p2,α2 = 0, completing the proof. ��

Finally, we propose the following open problem.

Open Problem 5 How to characterize boundedness and compactness of Bβ
μ : H∞ →

L p2
α2 and T β

μ : H∞ → Ap2
α2 ?
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