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Abstract

We introduce a class of integral operators called Berezin type operators. It is a gener-
alization of the Berezin transform, and has a close relation to the Bergman—Carleson
measures. The concept is partly motivated by the relationship between Hardy—Carleson
measures and area operators. We mainly study the boundedness and the compactness
of Berezin type operators from a Bergman space Al! to a Lebesgue space L4? with
0 < p1, p2 < o0 and oy, ¢y > —1. We also show that Berezin type operators are
closely related to Toeplitz operators.

Keywords Berezin type operators - Toeplitz operators - Boundedness and
compactness - Bergman—Carleson measures

Mathematics Subject Classification 47G10 - 47B38 - 47B34 - 32A25

1 Introduction

LetB, = {z € C" : |z| < 1} be the unit ball in the nth dimensional complex Euclidean
space C". Let dv(z) be the normalized volume measure on B,,, such that v(B,)) = 1.
For0 < p <ooand —1 < @ < oo, let LY := LP(B,, dv,) denote the weighted
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Lebesgue space which contains measurable functions f on B, such that
I/p

1 fllp.e = /If(Z)Ipdva(z) < 09,

where dvy (z) = co(1 — |z]*)* dv(z), and ¢, is the normalized constant, such that
ve(B,) = 1. Let L*® := L°°(B,, dv) be the space of measurable functions on B,
such that

[l flloo = ess sup|f(z)] < oo.
zeB,

Let H(B,) be the space of all holomorphic functions on B,,. We denote by AP =
LY N H(B,) the weighted Bergman space on B, for 0 < p < oo, and denote by
H® := L*° N H(B,) the holomorphic bounded function space.

Let B > —1 and let u be a positive Borel measure on B,,. For f € H(B,), we
consider the following sublinear operator:

BIf@) = /u e dutw,

We call Bg a Berezin type operator. Note that, if 8 = n + 1 4+ 2« and du(w) =

dvg (w), then (1 — |z|)" 1+ Bg (f)(z) is the a-Berezin transform of the function | f|.
If f=s+4+wand f = 1, we denote

(1= [z
)|n+l+a+s d,u(w)

Bso()(2) := (1 — [z BE()(2) = /|1

This is called a Berezin type transform for the measure p. We refer to [13] for more
information about Berezin transforms.

Let D be the unit disk, let 31D be the unit circle, and let u be a nonnegative measure
on D. The area operator on the Hardy space H? is a sublinear operator defined by

|f @)
4@ = [ L. veeam,
IN(9]
where I'(¢) is a non-tangential approach region in D with vertex ¢ € 9D defined by

F@)={zeD:[f—z| <2(1 -z}

It has been proved in [1] that the A, is bounded from the Hardy space H” to L? (D)
if and only if u is a Hardy—Carleson measure. The result has been generalized to the
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case Ay, : H? — L9(dD) for possibly different p, g in [3]. Note that A, (1) is used
to characterize Hardy—Carleson measures; see, for example [5, 8, 9]. It is also known
that Berezin type transforms for measures are also used to characterize Bergman—
Carleson measures; see [6, 11]. This observation is one of our motivations to consider
the Berezin type operators on Bergman spaces.

The purpose of this paper is to study the boundedness and the compactness of the
Berezin type operator from one Bergman space Ag} to a Lebesgue space ng. It turns
out that our characterizations are the same for Toeplitz operators.

Recall that, given § > —1 and a positive Borel measure p on B,,, the Toeplitz
operator T,f is defined by

B _ f(w)
TulH@ = / (1 — (z, w))n+1+p du(w),  z €By. .y
By

It is clear that IT,i9 fl1= Bﬁ f for f € H(B,). Therefore, boundedness of a Berezin
type operator implies boundedness of the corresponding Toeplitz operator.

Our results will heavily depend on Carleson measures. For A > O and o > —1, we
say u is a (A, a)-Bergman—Carleson measure if, for any two positive numbers p and
q with g/p = A, there is a positive constant C > 0, such that

/ |f @17 dp@) < Cllf I«

]Bn

for any f € AL. We also denote by

lila =  sup / @I dn ().
B,

FeALNflpas]
n

We say a positive Borel measure p is a vanishing (A, o)-Bergman—Carleson measure
if for any two positive numbers p and g satisfying g/p = A and any sequence { f;} in
AP with Il fxll p,« < 1 and fx(z) — O uniformly on any compact subset of BB,

lim / fel9du(z) = 0.
k—o00
B,

For convenience, we assume that —1 < «y, a2, B < oo throughout the paper. We
list the following conditions and notations which will be used in our main results:

1 14+ o
n+1+p8 >nmax (1, — |+ , (C-1
pP1 P1
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1 14+ oap
n+1+8 >nmax |1, — |+ —— (C-2)
P2 P2
and
1 1 1 o o
A=1+4———, V=—(/3+—1__2>~ 1.2)
P p2 A Pt p2

Our first two main results are for the case 0 < p; < pr < o0.

Theorem 1.1 Let O < p; < p2 < 00, and let —1 < ay, o, B < oo satisfy (C-1) and
(C-2). Let A, y be given by (1.2). Then, the following statements are equivalent:

@) Bﬁ is bounded from A{;} to Lg%.
(i) T/ is bounded from AL} 10 AL2.
(iii) The measure p is a (A, y)-Bergman—Carleson measure.

Moreover, we have
AW RS LA RS 1 T%2

Theorem 1.2 Let 0 < p; < p2 < 00, and let —1 < a1, o, B < oo satisfy (C-1) and
(C-2). Let A, y be given by (1.2). Then, the following statements are equivalent:

@) Bﬁ is compact from Ag; to Lg;.
(i) T/ is compact from AL} 10 AP,
(iii) The measure | is a vanishing (A, y)-Bergman—Carleson measure.

Our next main result is for the case 0 < p» < p; < oo. For this result, we need a
well-known result on decomposition of the unit ball B,,.

For any a € B, with a # 0, we denote by ¢,(z) the Mobius transformation on
B, that interchanges the points 0 and a. It is known that ¢, satisfies the following
properties: ¢, o ¢,(z) = z, and

(1 —la»H(A =1z
11— (z,a)|?

1 la(@)* = . z,aeB,. (1.3)

For z, w € B, the pseudo-hyperbolic distance between z and w is defined by

p(z, w) = [ (w)l,

and the hyperbolic distance on B, between z and w induced by the Bergman metric
is given by

1 1+ o,
B(z, w) = tanh p(z, w) = Elog%'
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Throughout the paper, for z € B,, and r > 0, let D(z, r) denote the Bergman metric
ball at z which is given by

D(z,r)y={weB,: B(z,w) <r}.
It is known that, for a fixed r > 0, the weighted volume
Ve (D(z, 1)) = (1 — [zH)rHite, (1.4

We refer to [12] for the above facts.
A sequence of points {ax} in B, is called a separated sequence (in the Bergman
metric) if there exists 6 > 0, such that 8(z;, z;) > § forany i # j.

Lemma 1.3 [12, Theorem 2.23 | There exists a positive integer N, such that for any
0 <r < 1, we can find a sequence {a;} in B, with the following properties:
i) B, = UjD(aj, r).

(ii) The sets D(aj, r /4) are mutually disjoint.

(i) Each point z € B, belongs to at most N of the sets D(aj, 4r).

Any sequence {a } satisfying the conditions of the above lemmais called a lattice (or
an r-lattice if one wants to stress the dependence on r) in the Bergman metric. Obvi-
ously, any r-lattice is separated. For convenience, we will denote by D; = D(aj, 1)
and D j = D(aj, 4r) throughout the paper. Then, Lemma 1.3 says that B, = U2, D;
and there is an positive integer N, such that every point z in B, belongs to at most N
of sets D;.

Theorem 1.4 Let 0 < pr < p1 < 00, and let —1 < ay, ap, B < 0o satisfy (C-1) and
(C-2). Let A, y be given by (1.2). Given 0 < r < 1, let {a;} be an r-lattice in B,, and
let D; and D ; be the associated Bergman metric balls given by Lemma 1.3. Then, the
following statements are equivalent:

(i) Bg is compact from AL} to L2
(i) 35 is bounded from AL} to L33
(iii) T is bounded from AL} 10 AL
(iv) T} is compact from AL! 1o AL

)

N n(D;) 1/(1=2)
{mjt = { = |aj|2)(n+1+y)x ! :

Moreover, we have
AT LA VROV [V RS

Remark 1.5 In the above theorems, the most parts of the results on Toeplitz operators
have been proved by Pau and the second author in [6]. The only exception is condition
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(v) in Theorem 1.4. In [6], it used the condition that “u is a (A, y)-Bergman—Carleson
measure” instead of (v) above. However, for the case 0 < p» < p; < 00, it may
happen that A < 0. In this case, the (A, y)-Bergman—Carleson measure condition
does not make sense, while (v) is still valid.

Our work here is mostly built up from the work in [6]. Our main contributions are
proofs of (iii)=>(i) in Theorems 1.1 and 1.2 and (v)=(i) in Theorem 1.4. We would
like to point out that our proofs are different from the proof of Theorem 1.2 in [6]. The
key ingredients of our proofs are two technical results, Lemma 4.1 and Lemma 4.2,
which allow us to treat all cases together. By comparison, in the proof of Theorem
1.2 in [6], for the case 1 < pp < 00, it used a new characterization of Bergman—
Carleson measures discovered in that paper. For proving compactness results for B’ ,
we have to be more careful, since we are dealing with a sublinear operator. We also
gave a detailed proof of a characterization of compactness of T,f o AL — AR for
0 < p1 < pa < oo (Proposition 3.2), which seems to be a folklore, but we could
not find a proof. The proof of Proposition 3.2 for the case 0 < p; < 1 is actually
surprisingly involved. Besides, we have also discussed the cases when p; = oo or/and
p2 = o0.

The paper is organized as follows. In Sect.2, we recall some notations and pre-
liminary results which will be used later. In Sect.3, we develop some tools for
characterizing compactness of Berezin type operators and Toeplitz operators. We give
the proofs of Theorems 1.1, 1.2 and 1.4 in Sect. 4. In Sect. 5 and Sect. 6, we study the
boundedness and the compactness of Bﬁ : Abl — L2 and Tf : Abl — AR for the
remaining cases when p; = oo or/and p; = 0.

Throughout the paper, the notation A < B means that there is a positive constant
C, such that A < CB, and the notation A < B means thatboth A < Band B < A
are satisfied.

2 Preliminaries

2.1 Carleson measures

The following result was obtained by several authors and can be found, for example,
in [11, Theorem 50], [11, p.71] and the references therein.

Theorem A. Suppose 1 < A < oo and —1 < a < 00, the following statements are
equivalent:

(1) wisa (A, a)-Bergman—Carleson measure.
(ii) For any real numberr withQ <r < 1 and any z € B,

u(D( ) S (1= [zHrter,
(iii) For some (every) s > 0, the Berezin type transform of i
By (nr14a0)n—n—1(1) € L™ (By),
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that is, there is a constant C > 0

— lal*)® J
aeB |1 _ Z a |(;1+1+a)k+s M(Z) =C.

Especially, if A = 1, we get that a positive Borel measure u on B, is a (1, a)-
Bergman—Carleson measure if and only if Bs o () € L°°(B,) for some (every)
s > 0.

Theorem B. Suppose 1 < A < oo and —1 < a < o, the following statements are
equivalent:

(1) w is a vanishing (A, o)-Bergman—Carleson measure.

(i) For some(any)s > 0

—la?)®

‘alg)] |1 — Z a |(Vl+1+0l))»+s

du(z) =0.

(iii) For any real numberr withOQ <r < 1 and any a € B,

n(D(a,r))

im =0.
lal—1 (1 _ |a|2)(n+1+a)A

Lemma2.1 Letl <X <ooand—1 <y < oo. Let i be a (A, y)-Bergman—Carleson
measure on B,,. Then, for any f € H(B,) and any 0 < p < 0o, we have

/ lf@)IP du(z) < / If ()P (1 — |z HFA=0FD gy (7).

Proof By [12, Lemma 2.24], we know that for 0 < r < 1, we have

1
|f(Z)|pEW / Lf (w)]” dv(w).

D(z,r)

Hence, by Fubini’s theorem, the fact that (1 — 1z1%) ~ (1 — |w|?) for z € D(w, r),
and Theorem A, we have that

/If(z)l”du(z) _/mez £ )I? dv(w) du(2)

d
flf(w)l” | S aw

D(w,r)

) Birkhauser
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d
/ f )P / = “(Zz))nﬂ dv(w)

D(w,r)

D
/If( " a |(“f2)’n)i1 dv(w)

< / |f ()P (1 — [w]HPHHFA=0FD gy (),

Bn

The proof is complete. O

2.2 Some useful estimates

The following estimate is well known, and can be found, for example, in [7, Proposition
1.4.10], [12, Theorem 1.12] and [4, Sect. 1.2].

Lemma 2.2 Suppose z € B, t > —1, and c is real. The integral

Loy [P
e (2) = m v(w)

n

has the following asymptotic behavior as |z| — 1.

W) Ifc<n+ 1+t thenl (z) < 1.
(i) Ifc=n+ 141, then I.;(z) < log ﬁ
(i) Ifc>n+1+1, then I, ,(z) < (1 — |z|>)H1H—c.

Lemma 2.3 [6, Lemma C] Let {zx} be a separated sequence in B,, andn <t < s.
Then

0 2\t

(1 —z&l%) .
E mSC(l—mz)t 5, z € B,.
k=1 ’

Lemma 2.4 Suppose 0 < p < 00, a > —1. Let {c;} be a positive sequence, and let
{a;} be a separated sequence in B,. If s € R, such that

( 1) 1+«
s>nmax |1, — )+ )
p p

and f is a measurable function on B, such that
o

[ f(@)] < le_c—]?’

o (z,aj)|

W Birkhauser
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then f € LY and

o0 P
€

1flhe S e .
X~ _ . p—(n+14+a)
=P

Proof If 0 < p < 1, then we have that

If @17 Z o
J

By Lemma 2.2, we have that

o0} 1
p 4
IB/|f(z>| dvg (2) s?:l:c,- f Ty @

n

P

o0
Z (1- |a |2)vp (n+1+a)”

j=1

If p > 1,thens > n+ 1%. Let p’ be the conjugate exponent of p, such that
1/p + 1/p’ = 1. By Holder’s inequality and Lemma 2.3, we have

00 . P
lf @I = —t
; [1—(z,a;)*
00 (1— |a'|2)S7(1+°‘)/1’ p=l 00 P(l _ |aj|2)s(l—p)+(l+ot)/[7’

J ]
\X T ear Z - (@a)P

j=1
00 P(l _ |Cl]| )S(l-ﬁ)+(1+a)/[7,

< (1 = [g[y~Oerr Z’ = ar

Hence

(- |Z|2)—(1+0t)/17'

o0
||f||,,aNZ 1 =Py [ g ().

1= (z.a;)

B,
Sincea — (14+a)/p=0+a)/p—1> —1,and
s—m+l14+a)+U+a)/p=s—n—10+a)/p>0,

the typical integral estimate in Lemma 2.2 gives the result. O
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3 Compactness of Bﬁ and Tﬁ

Recall that, for a bounded linear operator 7' between two Banach spaces X and Y,
we say that T is compact if T maps any bounded set in X to a relative compact set
in Y. We also recall that a bounded linear operator T : X — Y is called completely
continuous if, for every weakly convergent sequence (x,) from X, the sequence (T x;,)
is norm-convergent in Y.

Let -1 < B < oo. Since Bﬁ is a sublinear operator, there may be different
ways to define its compactness. In this paper, following the above definition, we
say that Bﬁ : Ag} — Lg; is compact if it maps any bounded set in A{;; to a relative
compact set in ng where 0 < p1, p» < 00, and —1 < a1, ap < oo. It is clear that
Bf . AP — L2 is compact if and only if for any bounded sequence { f,} in AL!, the
image sequence {Bﬁ fu) has a convergent subsequence in L4?.

We first give the following sufficient condition for the compactness of Bﬁ DAL —
L3 for 0 < py, p2 < oo.

Proposition3.1 Let 0 < p1,p2 < 00, and —1 < «a1,02, f < 00. Assume that
B,’f : AYY — L2 is a bounded sublinear operator. Suppose that, for every bounded
sequence { f} in Aﬁ} , such that fr — O uniformly on every compact subsets of B, as
k — 0o, we have

Jim 1B fill p.o = 0.

Then, B is compact from AL! to LE2.

Proof Let { f} be a bounded sequence in AP 11 Then, there is a constant M > 0, such
that || fillp;,oy < M forall k > 1. By [12, Theorem 2.1], { fi} is uniformly bounded
on every compact subsets of B,. By Montel’s Theorem, there is a subsequence of
{/fk}, denoted by {fk;}, j = 1,2,3..., such that fy; — f uniformly on every compact
subsets of B,, for some holomorphic function f onB,,, as j — oo. By Fatou’s Lemma

/If(Z)I’”1 dvg, (2) =/jlirrgolfk_,(1)|p‘ dvg, (z)
By

B”

IA

tim [ 15, @17 duy 2
B,

IA

. 1
Bim | fi, 10} oy < M.
j—)OO

Thus, f € AL). Therefore, we get that Jx; — f — 0 uniformly on every compact
subsets of B, as j — oo. By our assumption, we get that

lim 1B (fi; = /lps.ar = 0.

W Birkhauser
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We can easily check that

IBE fi; — BE fllpsan < I1BECfi; = Dl pr.cr-

From this inequality, we obtain that

Jim B[ iy = B lpsas =0

which implies that Bﬁ f € LE?. Thus, {Bﬁ fi} has a convergent subsequence in L532,
and so Bf is compact from A%} to L2, O

The following characterization for compactness of T,f : Agll — Ag; for0 < p; <
p2 < oo may be well known, but we cannot find a reference, so we give a proof here.
The result contains the case when 0 < p; < 1 or0 < p < 1, in which we still define
the compactness of Tf in the same way as before, that is, we say that T,’f DA — AR
is compact if it maps a bounded set in A%! to a relatively compact set in A}2. For the
case when 0 < p; < 1, the proof below is surprisingly involved.

Proposition3.2 Let 0 < p; < pr» < oo, and let —1 < «ay, oz, B < 00. Suppose that
P2, oz and B satisfy (C-2), and suppose that T,f is bounded from AOIZ{ to Ag;. Then,
the following statements are equivalent:

(i) TM’S is compact from AL} to AL
(ii) For every bounded sequence { fi} in Ag}, such that fr — 0 uniformly on every
compact subsets of B,, as k — oo, we have

Jim T fill .o = 0.

We need several lemmas to prove Proposition 3.2.

Lemma 3.3 Suppose that 1 < p < oo. Then, fi — 0 weakly in A% if and only if { fi}
is bounded in AL and fi — 0 uniformly on every compact subsets of B,,.

This result is well known and can be easily proved, so we omit the proof here. For
the case of the unit disk, see Problem 1 of Exercise 4.7 in [13].

Lemma3.4 LetO) < p < oo,andlet—1 <o < o0.Let]l <A <ooand—1 <y < o0
satisfy that

1 14+«
m+14+py)A>nmax |1, — |+ . 3.1
P 4

Let 1 be a (A, y)-Bergman—Carleson measure on B,,. If { fx} is a bounded sequence
in AL, such that f, — 0 uniformly on every compact subsets of B, as k — oo, then
we also have that Bﬁ fx = O0and T,f frx = 0 uniformly on every compact subsets of
B, as k — oo.

) Birkhauser
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Proof 1t suffices for us to prove Bﬁ fr — O onevery compact subsets of B,, ask — o0,
since |T), fx| < B, fr. For convenience, denote n = (n 4+ 1 + y)A — (n + 1). Since
A >1landy > —1, we have n > —1. Let { f;} be a bounded sequence in A%. Then,
there is a constant M > 0, such that || fx ||y, < M forall k > 1.

First, consider the case 0 < p < 1. In this case, (3.1) becomes

1
u<n+1+n’ (3.2)
p
Then, there exists A, such that
1
e Y (3.3)
p

Since 0 < p < 1, we get

l+a n+l4o
<
4 4

—n<A—-n<l+4n.

Therefore, there exists a constant B, such that A —n < B < min{l + n, A}, which
implies that

1
1Y poi4y (3.4)

Let

Then, since)0 < A — B < n, we see thatg > 1 and s > —1. Also, it is easy to check
that

1 1
nrlts _ 4 TS _p
q q
Hence, by (3.3) and (3.4), we obtain that
1 1
ntlte nAlHs 4y (.5)
p
and
1 1
L L (3.6)
p

W Birkhauser
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By [11, Theorem 69], (3.5) implies that Ay € AY, and so || fllgs S I fillpa < M.
Using (3.6), we get that
(1-5)7
n——1gq9 > _17
q

where ¢’ is the conjugate index of g, that is, it satisfies 1/q + 1/q" = 1. Hence,

/(1 — [w )30 dy(w) < oo.
By
Therefore, for any ¢ > 0, there exists a constant r € (0, 1), such that
/1a—mﬁWWmhww<ﬁﬂ 3.7)
B,\D,

where D, = {w € B,, : |w| < r}. By Lemma 2.1, we get that

| e (w)|(1 — |w|?)H1HnA=(tD)

|B£fk(Z)| S T (2. w) dv(w)
B,
mem—mﬂ"
- / f [1— w) |+ dv(w)
2\Dr D,
= Li(k,r) + Lk, 1). (3.8)

Using Holder’s inequality and (3.7), we get that

1/q

Ii(k,r) < / | i) (1 — Jw]?)* dv(w)
n\Br
1/q'

— 2y(n=s/q)q’'
f (I — w574 dv(w)

1 — (z, w)|(n+1+/3)q’
n\Dr
1/q
< ”fk”q,s
~ (1 — |z) 1B

/(mewwwwwm)
)1\57
Me
< .
(1 — |z])at+B

) Birkhauser
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Take any compact subset K in B,,. Then, for any z € K, there is a constant M’ > 0,
such that 1/(1 — |z])+1+A) < M’ Thus

Lk, r) < MM's. (3.9)

Since f; — 0 uniformly on every compact subsets of B, as k — oo, there exists an
integer N > 0, such that for any k > N and any w € D,

[fe(w)| < e.
Remembering that > —1, we have for any z € K
£ 2\n ’
Dy

By (3.9) and (3.10), we get that for any k > N and any z € K

|BE fiu(@)| < ik, r) + Dk, 1) Se.

Thus, Bﬁ fr(z) = 0 uniformly on any compact subsets of B, ask — oo for0 < p <
1.
Next, consider the case p > 1. In this case, (3.1) becomes

1+«
m+1+y)A>n+ P

Recall thatn = (n + 1 + y)A — (n + 1). Thus

1+«
n+l=m+14+y)A—n> P

which implies that

where 1/p + 1/p’ = 1. Hence

/(1 — lwH@=/PP qy(w) < 0.
B,

The rest of the proof is the same as the proof of the case 0 < p < 1, except that we
use p to replace ¢, and use « to replace s. We omit the details. O

W Birkhauser
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Lemma3.5 Let 0 < p; < pr <00, let —1 < a1, a0, B < 00, and let y, A be given
by (1.2). Suppose that p, ar and B satisfy (C-2). Then, we have

1 1+ o
m+1+y)A>nmax |1, — )+ . (3.11)
P1 P1

Proof Since 0 < p; < py < o0, it follows that A = 14+ 1/p; — 1/pr > 1. We get
the following two inequalities:

1
ntlyps it (.12)
P2
and
1
148> 12 (3.13)
p2

by (C-2). Bearing in mind the definitions of A, y in (1.2), then (3.13) gives that

1 ] 1
Atph=(4p) 4t _Ite Zdo
P1 P2 P1

Thus, y > —1, and

1
14y sngp i itor
pi 2
14+ o
>n+ :
p1

since 0 < p; < p» < oo. Furthermore, the inequality (3.12) implies that

n+1+a«a n+1+a«a n+1+a«a
Ml h=m+1+p8)+ L 2 S L
pP1 P2 p1

The proof is complete. O

Proof of Proposition 3.2 1t follows from [2, Proposition 3.3 in Chapter VI] that T}, :
Akl — AL is compact if and only if 7, : A}] — AL? is completely continuous for
1 < p1 < co. By Lemma 3.3, we know that (ii) is equivalent to that 7}, : Agl' — A({Z
is completely continuous for 1 < p; < oco. Therefore, it suffices for us to prove for
the case 0 < p; < 1.

Let0 < p; < l,and let 0 < p; < p» < oo. The proof of (ii)=(i) follows
from the same discussion as in the proof of Proposition 3.1. Thus, we only need to
prove that (i)=(ii). Suppose that (i) holds, i.e., that T,f : Agl‘ — Ag; is compact.
Then, T,’f : Ag: — Ag; is bounded. It follows from Theorem 1 that u is a (A, y)-
Bergman—Carleson measure on B,, where A, y are given by (1.2). Let {fi} be a
bounded sequence in A%!, such that fy — 0 uniformly on every compact subsets of
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B, as k — oo. Suppose, on the contrary, that (ii) is not true. Then, there existan ¢ > 0
and a subsequence {fi;} of { f}, such that

ITf fi)l pray > &, forall j =1,2,3.... (3.14)

Since T,’f is compact from Aj! to A}, we can find a further subsequence { Jrjm bs
m=1,2,3...,and g € A}2, such that

; B _
tim (TP fi, = €l = 0. (3.15)
By [12, Theorem 2.1], we have that

B
1Ty fx;,, — &llpa.er
ﬂ _ M Jm P2,02
T f3, D = 8@ = T S e

(3.16)

for all m > 1. Hence

TP fi,, @) — g@| = 0 (3.17)

uniformly on every compact subsets of B,,, as m — oo.
By the definitions of A, y given in (1.2), and by lemma 3.5, we have that

n+14+a;
P1

(n+1+p)r >

for 0 < p; < 1. Since {f} is a bounded sequence in Agl' and fi, (z) — O uni-
formly on every compact subset of B,, as m — o0, it follows from Lemma 3.4 that
T,f fx. (z) = 0 uniformly on compact subsets of B,,. Thus, we must have g = 0 by

Jm

(3.17). Therefore, by (3.15), we get that
Tim (177 fi, llppcr = 0,

which contradicts to (3.14). Hence, (ii) must be true. The proof is complete. O

4 Proofs of the main theorems

Lemma4.1 Let0 < py, p2 < o0, let —1 < a1, a2, B < 00, and let . and y be given
by (1.2). Suppose that p>, ap and B satisfy (C-2). Given 0 < r < 1, let {a;} be an
r-lattice in By, and let D; and f)j be the associated Bergman metric balls given by
Lemma 1.3. Then, we have
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p2/pi
o

/3 (D) P2
IBE (OB Z( T, |2)<n+1+m> / | £ ()17 dva, (£)

j:1 Y
Dj

4.1)

Proof Using the fact that |1 — (z, w)| < |1 — (z, a;)| for w € D}, we have that

BL(HE) 521/ — |f(w)|ll+1+ﬁdu(w)
j:

J

sZ(sup If(w)l> / T |,,+1+ﬂ dp(w)

j=1 \WeD;

- n(Dj)
S Z ( sup |f(w)|> |] — <Z’aj>|n+]+ﬁ'

j=1 weDj
By [12, Lemma 2.24], we have that
1/p1

1
IS | g / | £ ()17 dva, (€)

D;

for any w € D;. Denote

1/p1

~ 1
Tl = (1_|aj|2)n+1+mf|f(¢)|mdval(z> ,

D;

we get that

| fap)ln(D;)

1—{z, aj>|n+1+/3 :

IBEH@DIS D | (4.2)
j=1

Thus, we obtain (4.1) by taking p = ps,a = ap,5 = n+1+pandc; = |f(aj)|,u(Dj)
in Lemma 2.4. O

Lemma4.2 Given 0 <r < 1, let {a;} be an r-lattice in B, let Dj = D(aj, 1) be the
associated Bergman metric balls given by Lemma 1.3, and let {by(a;)} be a sequence
depending on aj, such that
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o0
sgpz |bi(aj)] < oo. 4.3)
j=1

Suppose, in addition, for any compact subset K of By, the sequence {by(a;)} satisfies
that

li bi(aj)| = 0, 4.4
kgrgojeZF] AChI (44)

where I' .= {j : aj € K}. Let {c(a;)} be a sequence of real numbers depending on
{a;j}. Then, we have the following two results.

(i) If{c(a;)} is a bounded sequence, such that lim‘ajpl c(a;) =0, then
o0
li Nbi(a;) =0.
Jim > " e(aj)bi(a;)

j=1

(ii) LetO <t <00,0 <s < landy =t/(1 —5). If{c(a;)} €Y, then
o0
li Nbp(a)® =0.
Jim ;c(an k(a))

Proof (i) Since lim|aj|ﬁl c(aj) = 0, it follows that for any & > 0, there is an r €
(0, 1), such that |c(a;)| < ¢ for all |a;| > r;. Therefore

o0

Y clajbelaj)
j=1
< D le@pb@pl+ Y le@)bi(ay
Jilajl<r Jilajl>ry
< s le(@) Y I@plte Yo @l @45)
Jilajl=n Jjtlajl<r Jilaj|>r

Since the set {a : |a| < r1}is a compact subset of B, by (4.4), we get that

li br(a;)| = 0.
Jim 0 Ibitay)]

Jilajl<ri

Letting ¢ — 0 and then letting k — oo in (4.5), we obtain the result in (i).
(ii) Since {c(a;)} € 7, it follows that, for any & > 0, there is an r; € (0, 1), such
that

Z (@) < e.

Jilajl>ra
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Since {a : |a| < ry} is a compact subset of B,,, by (4.4), we have
lim br(aj)| = 0.
Jim Y lbiay)l
Jilajl<ra
Since 1/s > 1, by Holder inequality, we have that
oo
Y c@ap'beap| < Y de@apllbe@pl + Y letap!bi(a)l
j=1 jilajl<ra Jilajl>r
1—s N
<[ > le@pr > Ibila))
Jilajl<ra jilajl<r
1—s s
+ D le@pr > Ibi(a))
Jjtlajl>r Jjilajl>ra
1—s s
<[ > le@pr D Ibila))
Jilajl<ra jilajl<r
1—
+e'7 Y bi(a))l.
Jilajl>ra
Letting ¢ — 0 and then letting k — o0, we obtain the result in (ii). O

4.1 Proofs of Theorem 1.1 and Theorem 1.2

The implications (i)=>(ii) in Theorem 1.1 and Theorem 1.2 are obvious. The implica-
tions (ii)=-(iii) in Theorem 1.1 and Theorem 1.2 are given by [6, Theorem 1.2] and
[6, Theorem 4.2], respectively. Thus, we only need to prove that (iii)=>(i) in these two
Theorems. Given 0 < r < 1, let {a;} be an r-lattice in B,, and let D; and D; be the

associated Bergman metric balls given by Lemma 1.3.

(iii))=(i) for Theorem 1.1. Suppose that u is a (A, y)-Bergman—Carleson measure.
Since the condition 0 < p; < py < oo implies that A > 1 and p>/p1 > 1, it follows

from (4.1) and Theorem A. that:

p2/p1

IBE (O 1Py S el /If(é)lp‘dval(f)
Jj=1 D
J

P2/ pi

Sha?, [ 3 [ 17 @1, ©
D]

=13

p p
SR 1 -
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Hence, Bg is bounded from A} to L52.

(iii)=(i) for Theorem 1.2. Suppose that w is a vanishing (X, y)-Bergman—
Carleson measure. It follows from Proposition 3.1 that we only need to show that
I B,’f Skl pp,a; — O for any bounded sequence { f;} in Agl] converging to 0 uniformly
on compact subsets of B,,. Let

. p
claj) = ( n(Dj) ) 2’

(1 — |aj|>)e+1+n2

and let

p2/p1

b(aj) = flfk(é“)l”'dval(i)
D;

J

Using (4.1) again, we get

IBEfolfar S Y claj)biay). (4.6)
Jj=1

Since p>/p1 > 1 and {f} is a bounded sequence in AQ} , it follows that:

p2/p1

o0 o0
sup Y- lhx ()l = sup Y- [ 1@, @
i—1 —1 |
J ] Dj
S sup il < .

Let K be any compact subset in B,, and I" be given as in Lemma 4.2. Then, I is a
finite set. Since { fx} converges to 0 uniformly on compact subsets of B,,, it follows
that:

p2/p1

Jim > lbetapl = fim Y- /|fk<c>|l’ldval<;> —o.
jEF jEF D}

By Theorem B., we have lim, = c(a;) = 0. Therefore, by (i) of Lemma 4.2, we get
that limg_; o ||B,/f(fk)||[,2,,,[2 = 0. The proof is complete.

4.2 Proof of Theorem 1.4
We prove this theorem by showing that
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1) = >1) = >(i) = (v) = (1) = ({1v) = (ii).
The implications (i) = (ii) = (iii) and (i) = (iv) = (iii) are trivial. Notice that the
condition 0 < py < p; < ocoisequivalentto —oco < A < 1, and the proof of Case 2 in
(1) = (ii) of [6, Theorem 1.2] actually works for showing our implication (iii) = (v),
with condition (v) here replacing the (A, y)-Bergman—Carleson measure condition in
[6]. Therefore, we only need to prove that (v)=>(i).

(v) = (1). Given 0 < r < 1, let {a;} be an r-lattice in By, and let D; and Dj be
the associated Bergman metric balls given by Lemma 1.3. Assume that (v) holds. It
follows from Proposition 3.1 that we need only show that || Bg Jill pp,an — O for any
bounded sequence {fi} in A} converging to zero uniformly on compact subsets of
B,,. We follow a similar argument as in the proof of (iii) = (i) in Theorem 1.2. Denote

by

u(Dj)
(1- |aj |2)(n+1+y))L ’

c(aj) =

bk(aj)=/|fk<;>|"ldva1(;>.
D,

J

As in the proof of Theorem 1.2, we know that the sequence {by(a;)} satisfies (4.3)
and (4.4) in Lemma 4.2. Let t = p;,and let0 < s = p>/p1 < 1. Then

t pipp 1
l—s pi—p2 1—Xi

J/ =
By (v), we see that {c(a;)} € I”. Thus, by Lemma 4.2, we get that
lim (| B, (fi)ll py.en = 0.
k— o0

The proof is complete.

5 The case when p; = o0

In this section, we study the boundedness and compactness of Bﬁ : A{;l' — L and
T,’f t ARl — H>® for 0 < p; < oo.

Proposition 5.1 Let 0 < p1 < coand let —1 < a1, B < oo satisfy (C-1). Let

1 1 o]
A=14+—, y=—\B+—]. 5.1
14 A 14\

If T,f is bounded from Agll to H*, then w is a (A, y)-Bergman—Carleson measure.
Proof For any fixed a € B,,, take function

(] _ |a|2)n+l+ﬂf(n+l+a1)/p|
(1 —(z, a))"+1+/5

fa@) =
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Then, the condition (C-1) and Lemma 2.2 give that f € Agll and || fllp;,«; =< 1. Since
[1 — (w,a)| < 1 — |a|? forany w € D(a, r), it follows that:

du(w)
a, w)| 2t 1+h)

Tf fula) =(1—|a|2)”+1+/3—("+1+a1)/171/|1_<
B,

> (1 — |a[2yr 1B~ Tan)/p) dp(w)
- 1= {a. w) POFTHP)
D(a,r)
w(D(a,r))
- 1- |a|2)(n+l+)/)k'

5.2)

The boundedness of Toeplitz operator T,f : Abl — H™ gives that

TS fa@)| < ITY falloo < NTL U fall pr s -
Therefore, we get that
(D@, r) SITLI —Ja) "+,

It follows from Theorem A. that u is a (A, y)-Bergman—Carleson measure. O

Proposition5.2 Let 0 < p; < 1l and let —1 < a1, B < oo satisfy (C-1). Let A, y be

given by (5.1). If the measure w is a (A, y)-Bergman—Carleson measure, then Bﬁ is
bounded from AL to L*°.

Proof Given 0 < r < 1, let {a;} be an r-lattice in B,, and let D; and D; be the
associated Bergman metric balls given in Lemma 1.3. Since 0 < p; < 1, it follows
from (4.2) that:

1/p1
o
wu(D;)
sup BLH@| S Y i ey [ 1@, @
zeB, ]=1 J ~
Dj
1/p1
oo
S iy Z[If(()lpldval(s“) (5.3)
j=12
Sy 1F lpr e -
Thus, Bﬁ : AYl — L™ is bounded. The proof is complete. O

Combining Proposition 5.1, Proposition 5.2, and the fact that |Tf fl < Bﬁ f, we
obtain the following result.

Theorem5.3 Let 0 < p; < l and let —1 < a1, B < oo satisfy (C-1). Let 1,y be
given by (5.1). Then, the following statements are equivalent:
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(i) Bg is bounded from Ak, to L.
(ii) T,’f is bounded from AL} to H*.
(iii) The measure | is a (A, y)-Bergman—Carleson measure.

Moreover, we have
1B Az s oo = NTE N gzt oo < Ity

For the case 1 < p; < oo, we have the following partial result.

Proposition5.4 Let 1 < p; < ocoandlet —1 < a1, B < oo satisfy (C-1). Let A, y be
given by (5.1). Then, the following statements are equivalent.

(1) For any (A, y)-Bergman—Carleson measure |, Bﬁ is bounded from A{;} to L*°.
(ii) The integral operator

dv(w) 5.4

_ 2\B+(n+1+a1)/p1
SHE ::/ (I —wl%) P f(w)l

11— (z, w>|n+l+ﬁ
IBIl

is bounded from AL} to L*°.

Proof (ii)=(i). Suppose that S : A4l — L is bounded. Let u be an arbitrary
(%, y)-Bergman—Carleson measure. It follows from Lemma 2.1 that:

A Fw)
1B 1) —f W

>|n+1+ﬂ

i7¢w) .
< My / O )

_ B+(n+1+0a1)/p1
||Ay/ (=) |f(w)ldv(w)

11— (z, w>|n+l+ﬁ

= ||//L||k,y(8f)(w)-

Thus, the boundedness of S : Al — L implies the boundedness of Bﬁ DAL —
LOO

(i) =(ii). Suppose that Bﬁ Aﬁ} — L is bounded for any (X, y)-Bergman—
Carleson measure. Consider du(z) = (1 — |z|»)P+H1+e)/Pi gy (z). Tt can be easily
checked that u is a (A, y)-Bergman—Carleson measure. Since
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BIf@) = f|1— L repdnw)

/ (1 — [wHPHOtIFan/p £ ()] do(w)

11— (z, w)|n+1+ﬁ
= (Sf)(w),

the boundedness of Bf : AL — L* implies the boundedness of S : AL — L. O

Remark 5.5 1t follows from [10, Theorem 1.3] that for 1 < p; < 00, S : Lgll — L
is unbounded. However, we do not know whether S : Agll — L is bounded. Also,

the above proposition does not fully solve the problem about when Bﬂ is bounded
from ALl to L. Therefore, we propose the following open problems.

Open Problem 1 Let 1 < p < o0, and let —1 < a < oo. Is the operator S bounded
from the Bergman space A% to L>°?

OpenProblem2 let 1 < p < oo, and let —1 < o < oo. How to characterize
boundedness of Bﬁ : AP — L% and T,f c AL > H™>9

Next let us consider compactness of Bﬁ : ALl — L. By the same discussion as
in the proof of Proposition 3.1, we can obtain the following result.

Proposition5.6 Let0 < py < 1, let pp = ocoandlet —1 < a1 < o0. Suppose that, for
every bounded sequence { fi} in AL, such that fi — O uniformly on every compact
subsets of B, as k — 00, we have

lim || Bf filloo = 0.
k—00

Then, Bﬁ : Abl — L is compact.

We can also get the the following result on T,f by a similar discussion as in the
proof of Proposition 3.2 combining with Proposition 5.1.

Proposition 5.7 Let 0 < p; < oo and let —1 < a1, B < oo satisfy (C-1). Suppose
that Tf is bounded from Agl' to H®. Then, the following statements are equivalent.

(1) T,’f is compact from Agl' to H*.

(ii) For every bounded sequence { f} in Agll, such that fy — 0 uniformly on every
compact subsets of B, as k — oo, we have

lim || T/ =0.
kggoll w Jilloo =0

Proof The implication (ii) = (i) follows from the same discussion as in Proposition
3.1. The implication (i) = (ii) follows from a similar discussion as in Proposition 3.2.
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In fact, if 7/ : AL! — H® is compact, then T} : AL! — H™ is bounded. It follows
from Proposition 5.1 that w is a (&, y)-Bergman—Carleson measure on B,,, where A, y
are given by (5.1). It is easy to see that

n+14+a; n+14+a;
> .
P1 P1

m+1+YrA=n+1+8+

Thus, a similar discussion to Lemma 3.4 and Proposition 3.2 gives that (ii) holds. The
proof is complete. O

Theorem5.8 Let 0 < p; < l and let —1 < a1, B < oo satisfy (C-1). Let 1,y be
given by (5.1). Then, the following statements are equivalent:

(1) Bﬁ is compact from AL to L™.
(ii) Tf is compact from Ag} to H.
(iii) The measure  is a vanishing (A, y)-Bergman—Carleson measure.

Proof (i)=(ii). This is is trivial.
(i1)=(iii). Suppose that T,f is compact from Agll to H*. Let {ay} be a sequence in
B, with |ai| — 1. Consider the functions

a- |ak|2)n+l+ﬂf(n+l+ol1)/p1
fi@) = T14P
(I — Az, ax)"

for k = 1,2,3,.... It follows from Lemma 2.2 that supy || fxllp;.e; < 00, and it is
obvious that f; converges to zero uniformly on compact subsets of B,,. Thus, by
Proposition 5.7, we have that ||T,ffk lloo = 0. Fix any r with O < r < 1. By the same
discussion as in the proof of Proposition 5.1, we get that

w(D(ag,r)) p ,
(1 — |ag|?)(r+147)2 =T, filar) = 1T} frlloo = O

as k — oo. Thus, u is a vanishing (A, y)-Bergman—Carleson measure.

(iii))=(i). Suppose that u is a vanishing (X, y)-Bergman—Carleson measure. By
proposition 5.6, it suffices to prove that ||B£ frlloo — O for any bounded sequence
{fi} in AL} converging to zero uniformly on compact subsets of B,,. Let {a j} be an
r-lattice in B,,. Let

w(Dj)
(1— |aj |2)(n+1+y))»

claj) =
and
1/p1

br(aj) = /Ifk(é)lp'dval({) ,

D
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Since 0 < p1 < 1, it follows from inequality (5.3) that:

sup |BS (/)@ S Y clapbiay).

z€B, =1

By the same discussion as in the proof of Theorem 1.2, we know that the sequence
{bk (a;)} satisfies the condition of Lemma 4.2. Since ( is a vanishing (A, y)-Bergman—
Carleson measure, we know that lim|a_l.|_>1 c(a;) = 0. Hence, by (i) of Lemma 4.2,

we get that limg_, o ||B£ Jxlloo = 0. The proof is complete. m]

OpenProblem3 Let 1 < p < o0, and let —1 < o < oo. How to characterize
compactness of B : AL — L® and T/ : AL — H>?

6 The case whenp| = ©

In this section, we consider the case when p; = oo.

6.1 The case when p; = 00, p; = 00

If we follow the definition of A and y in (1.2), we get that in this case A = 1, y = 8.
Our first result here shows that the (1, §)-Bergman—Carleson measure condition does
not characterize boundedness of Bg tH® — L.

Lemma 6.1 Let —1 < B < oo. There exists a (1, B)-Bergman—Carleson measure |1,
such that Bg is unbounded from H* to L*°.

Proof Letdu = (1—|z|%)# dv(z).Itcanbe easily checked that pisa (1, §)-Bergman—
Carleson measure, and

(1= wP)P|f ()]
B _
Bl @ _/ T (2w prriep V)

n

Let f =1 € H®. Then, Bgl ¢ L°° by lemma 2.2. The proof is complete. O

Open Problem 4 How to characterize boundedness and the compactness of Bg :
H* — L and T,’f :H® — H*®?

6.2 The case when p; = 00, 0 < p; < o0.

We give the following sufficient condition for the boundedness of the Berezin type
operator Bf : H® — LP2.
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Proposition6.2 Let 0 < pr < oo and let —1 < an, B < oo satisfy (C-2). Given
0 <r <1, let {a;} be any r-lattice in By, and let Dj = D(aj, r) be the associated
Bergman metric balls given by Lemma 1.3. Suppose that

(v} = { MD;) }elPZ. 6.1)

(1- |aj |2)”+1+/3—(n+1+012)/172

Then, Bg is bounded from H* to Lg; .

Proof Since |1 — (z, w)| < |1 — (z, a;)| for w € Dy, it follows that:

— 1
B <
BLHE! S 1 F o ;Df ()

C (D)
Shfllee Y T (Z,ajgww.

j=1

By Lemma 2.4, we get

. » 1/p2
B w(Dj)r?
||Buf”172""2 S 1 f Nl Z (1- |aj|2)(n+l+ﬁ)p2*(n+l+a2)
j=1
S I f llool{vj ez
Therefore, we get that Bﬁ cH® — Agg is bounded. |

By a similar argument as in the proof of Proposition 3.1, we can get the following
sufficient condition for the compactness of Bg tH® — Agg for 0 < py < .

Proposition 6.3 Ler 0 < py < o0, and let —1 < ap < 00. Assume that sz cH® —
Lé’g is bounded. Suppose that, for every bounded sequence { fi} in H*, such that
fr — O uniformly on every compact subsets of B,, as k — oo, we have

Jim 1B fell ps,r = 0.

Then, Bg is compact from H* to Lg;

Lemma 6.4 Given0 <r < 1, let {a;} be an r-lattice in B, let D; = D(aj, r) be the
associated Bergman metric balls given by Lemma 1.3, and let {by(a;)} be a sequence
depending on aj, such that

sup sup |bg(a;)| < oo.
J
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Suppose, in addition, for any compact subset K of By, the sequence {by(a;)} satisfies

that

lim sup |bg(aj)| — O,
k—)OOjEF

where I' := {j : a; € K}. Let {c(a;)} be a sequence of real numbers depending on

{a;} satisfying that {c(a;)} € I'. Then

00
li Nbr(a;i) =0.
kl)ngojzlc(a]) k(a])

Proof Since {c(a;)} € I', then for any given ¢ > 0, there is a r3 € (0, 1), such that

Y letay)] <e.

Jilajl>r3
Thus, we have
o0
Y ocapbap| <= Y lelapbiapl+ Y letaj)bila;)
j=1 Jilajl<rs Jilajl>r3
< sup (@l Y le(a))
Jlajl=rs Jilajl<rs
+ sup (@)l Y le(a))l
Jjilajl>rs jilajl>rs3

< sup bi(apl Y le(aj)| +é supsup lbi(a).
J

jla;|<r .
Jilajl<rs jtlajl<rs

Letting ¢ — 0, and then letting k — oo, we get the result, since

lim sup |bk(a;)| =0.

k=00 j:laj|<r3

O

Proposition 6.5 Let 0 < py < 0o, and let —1 < az, B < o0 satisfy (C-2). Let {v;} be

the sequence given by (6.1) which satisfies that {v;} € [P2. Then, Bg is compact from

H® to L.

Proof Let {a;} be an r-lattice. By Proposition 6.3 that it suffices for us to prove that

limg_, 00 ||Bﬁ (f) I ps,a, = O for any bounded sequence { fy} € H, such that f;y — 0
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uniformly on every compact subsets of B, as k — oo. First, it is easy to get that

>\ N fixp; oot (D))

|Bf (/i@ 5; 1= (o, a)[F I

Let

B (D ) P2
clap =z jaj [2yn A=t e/ p2
and
bi(aj) = | fixp; 1%

Using Lemma 2.4, we get that

1Bl < Zc(a,)bk(an 6.2)

j=1

Notice that {c(a;)} = {v}*} € 1" and

supsup bi(a;)| = supsup | fexp, 15 =< sup I ficll& < oo.
J J

Let K be any compact subset in B, and I' = {j : a; € K}. Then I' is a finite set.
Since f; — 0 uniformly on every compact subsets of B, as k — oo, it follows that
for any given & > 0, and for all z € Ujer D, we have that

sup |bx(aj)| = sup || fixp; 15 < e.
jer jer

Letting ¢ — 0 and letting k — oo, we get that

lim sup |br(aj)| — 0.
—>OO/'€F

It follows from Lemma 6.4 that limy_, o || Bﬁ (fi)ll ps,a, = 0, completing the proof. O
Finally, we propose the following open problem.

Open Problem 5 How to characterize boundedness and compactness of 35 tH® —
L2 and TP : H® — AD2?
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