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Abstract

In this paper, with the help of some new atomic decomposition theorems, some ®-
moment martingale inequalities in the framework of Lorentz spaces with variable
exponents are proved. The results obtained here generalize the previous results in
variable martingale Lorentz—Hardy spaces and various classical martingale Hardy
spaces.
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1 Introduction

Martingale inequalities occupy an important position in martingale space theory. The
topic we shall touch here is the ®-moment martingale inequalities in the framework of
Lorentz spaces with variable exponents. In 1970, Burkholder and Gundy [6] first dis-
cussed the ®-moment inequalities for martingales. Then the ®-moment version of the
Burkholder-Davis—Gundy inequality was proved in [5]. Kikuchi [29] proved the -
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moment martingale inequalities in the framework of rearrangement invariant Banach
function spaces. It should be noticed that the functions @ in the articles mentioned
above are convex functions. In 2012, Jiao and Yu [24] proved some ®-moment martin-
gale inequalities associated with concave functions. Later, Peng and Li [40] extended
the results in [24] to the framework of Lorentz spaces. Wu et al. [47] deduced some
modular martingale inequalities in the framework of Orlicz—Karamata spaces. Jiao et
al. [18] proved the ®-moment version of Burkholder’s inequalities in rearrangement
invariant spaces. Some ®-moment inequalities for noncommutative martingales (see
[4]) and independent and freely independent random variables (see [19]) were also
deduced. We point out that the results on ®-moment martingale inequalities mentioned
above are all in the framework of rearrangement invariant spaces. Hence one natural
question arises, that is,

Do ®-moment martingale inequalities also hold in the non-rearrangement invariant
setting?

In this article, we give an affirmative answer. More precisely, we shall extend the
d-moment martingale inequalities to the framework of function spaces of variable
exponents. As is well known, Lebesgue space with variable exponent is an important
kind of non-rearrangement invariant spaces and has been widely used in elasticity, fluid
dynamics, calculus of variations, differential equations and so on, see, for example, [2,
12,42, 51, 52]. Such spaces were first introduced by Orlicz [39] in 1931. Kovéacik and
Rékosnik [30], Fan and Zhao [13] investigated various properties of variable Lebesgue
spaces and variable Sobolev spaces. A fundamental breakthrough of the study of
Lebesgue spaces with variable exponents is due to Diening [9, 10], who proposed the
so-called log-Holder continuity condition to obtain the boundedness of the Hardy—
Littlewood maximal operator. Since then, much progress has been made in variable
exponent function space theory. Many important results such as atomic decomposi-
tion, boundedness of singular integral operator, Littlewood—Paley characterization,
dual theory, and so on, have been extended to the variable exponent setting, see, for
example, [7, 8, 11,38,43,49]. As generalizations of variable Lebesgue spaces and vari-
able Hardy spaces, respectively, variable Lorentz spaces and variable Lorentz—Hardy
spaces have also been studied by many authors. Kempka and Vybiral [28] showed
many important properties of Lorentz spaces with variable exponents. Jiao et al. [27]
proved the maximal function characterizations, atomic decompositions, interpolation
results, duality results, Littlewood—Paley function characterizations, boundedness of
singular integral operators for variable Lorentz—Hardy spaces. We refer the reader to
[1, 31-33, 48, 53] for more information about variable Lorentz spaces and variable
Lorentz—Hardy spaces.

Inspired by the considerable progress of function space theory in the variable expo-
nent setting, the martingale space theory in the variable exponent setting has gained
a lot of interests in recent years. Aoyama [3] proved the Doob maximal inequality
under some strict restrictions on the variable exponent p(-). This is the first attempt
to study martingale space theory in the variable exponent setting. However, the con-
dition in [3] is too strong. Indeed, Nakai and Sadasue [37] gave a counterexample
to show that the condition in [3] is not necessary for the boundedness of the Doob
maximal operator on variable Lebesgue spaces. The major difficulties to study the
martingale space theory in the variable exponent setting are, on one hand, abstract

W Birkhauser



®-moment martingale inequalities. .. Page3of26 12

probability spaces do not enjoy natural metric structure, and thus the log-Holder con-
tinuity condition cannot be well defined any more; on the other hand, the arguments in
the classical setting are no longer efficient and the essential reason is that the variable
Lebesgue spaces and variable Lorentz spaces are not rearrangement invariant spaces.
To overcome these difficulties, Jiao et al. [25] introduced a condition without metric
characterization to replace the log-Holder continuity condition in some sense. Under
this new condition, they proved the weak-type and strong-type estimates of the Doob
maximal operator, established the atomic decompositions and obtained duality the-
orems as well as John—Nirenberg inequalities for the martingale Hardy spaces with
variable exponents. Subsequently, the variable martingale Hardy spaces and variable
martingale Lorentz—Hardy spaces were systematically studied in [21]. We refer the
reader to [15, 20, 22, 26, 45, 46] for more information about martingale Hardy spaces
and martingale Lorentz—Hardy spaces in the variable exponent setting.

We consider the ®-moment martingale inequalities associated with concave func-
tions in the framework of variable Lorentz spaces. Our main method is to establish
some new atomic decomposition theorems by simple atoms. As far as we know, this is
the first paper which deals with the ®-moment martingale inequalities in the variable
exponent setting. It should be pointed out that the atomic decomposition theorems of
this paper improve the atomic decomposition theorems in [21, 22]. Furthermore, let
p(-) = p, our results greatly broaden the scope of the atomic decomposition theorems
in [40]. In [40], the authors just considered the atomic decomposition theorems under
the conditions of 0 < g < 1 and ¢ < p < oo. They guessed the restricted conditions
may be removed via the method in [23]. But the method in [23] is only applicable
for “oo-atom decompositions”. In this paper, we present “r-atom decompositions”
(1 < r < 00) and remove the restricted conditions of 0 < g < landg < p < oo in
[40] via some refinement techniques.

The paper is organized as follows. In the next section, some preliminaries are intro-
duced. Atomic decompositions for martingale Lorentz—Hardy spaces with variable
exponents are presented in Sect. 3. In the final section, with the help of atomic decom-
positions, the ®-moment martingale inequalities in the framework of Lorentz spaces
with variable exponents are deduced.

At the end of this section, we make some conventions. Throughout this paper, the
set of nonnegative integers, the set of integers, the set of real numbers and the set of
complex numbers are denoted by N, Z, R and C, respectively. We use C to denote
the positive constant that is independent of the essential variables involved but whose
value may vary from line to line. The symbol f < g stands for the inequality f < Cg.
If f < g < f,then we write [ ~ g.

2 Preliminaries

In this section, we give preliminaries necessary to the whole paper.
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2.1 Variable Lebesgue spaces and variable Lorentz spaces

Let (2, F,P) be a complete probability space and {F,},>0 be a nondecreasing
sequence of sub-o -algebras of F such that F = o( UnZO .7-',1). A measurable function
p() 1 Q2 — (0, 00) is called a variable exponent. For A € F, we denote

p-(A) = ;ggp(xx p+(A) = sup p(x)

xX€eA

and for convenience

p-=p-(€), p+=p+(£2).

Let P = P(R2) denote the collection of all variable exponents p(-) such that 0 <
p— < py < oo. The variable Lebesgue space L) = Lp)(S2, F, P) is defined as
the space of all measurable functions f such that for some A > 0,

f FEE A
P(5)=[ (7)) ar e

Then, the space L () becomes a (quasi-)Banach function space when it is equipped
with the (quasi-)norm

||f||p(‘)=inf{)\>0:,o<§> < 1},

Let p = min{p_, 1}. For p_ > 1, the conjugate variable exponent p'(+) is defined
pointwise by

_I_
pC¢)  p'C)
The following facts are well known (see [38]).

(1) (Positivity) || fllp) = Oand || fllp) =0 < f =0;
(i) (Homogeneity) [lcf [lpc) = Il - [ fllpcy. (¢ € C);
(iii) (The O-triangle inequality) || /' + glI),(, < ||f||f)(,) + ||g||?7(_), 0<0<p).

We collect some useful lemmas, which will be used in the sequel.

1 1

Lemma 2.1 (See [8]) Let p(-) € P and s > 0. Then for f € Lgp(.), we have

LA pey = 11 -

Lemma2.2 (See [7]) Let p(-) € P.Thenforall f € Ly and | fllp.) # 0, we have

J.

p(w)

f(w)
I lpe

P=1.
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Lemma 2.3 (See [7, 13]) Let p(-) € P and f € L. Then we have

(1) I fllpey < W= 1) ifand only if [, | FIPOdP < 1(= 1);
(2) Il fllpy > 1, then p(HVP+ < fllpey < p(HVP=;
(3) O <N fllpey = 1, then P(f)”pi <Wfllpey < p(f)l/lu.

Lemma 2.4 (Holder’s inequality, see [7]) Let p(-), q(-), r(-) € P such that

1 _t 1
r(x)  px)  qx)’

Then forall f € Ly and g € Ly, we have fg € L,y and

Ifgllrey = Clfllpeliglyge)-

We now present the definition of Lorentz spaces with variable exponents. For more
information about such spaces, see [28].

Definition 2.5 Let p(-) € P and 0 < g < oo. The variable Lorentz space L), =
L yy,4(2, F,P) is defined as the space of all measurable functions f such that

1
e g dr\a -
”f”p(.) g = (f() tq”X{\f|>l}”p(.)Tt) if0 < g < o0,
sup;-o tlXqi =0 llpc) if g = o0,

is finite.

Note that L., is a quasi-Banach space for p(-) € P and 0 < g < oo (see [28]).
Obviously, L (.4 is the generalization of classical Lorentz space L, , and it coincides
with L, ;, when p(-) = p. Moreover, the functional || - || 5(),4 can be discretized as
follows.

Lemma 2.6 (See [28]) Let p(-) € Pand 0 < g < o0. If f € Ly, 4, then

1

k q .
170~ | (Teca2lrianlly,) ' 0<g <oo.
supyez 211 xq 7124 ) if g = oo.

2.2 Orlicz functions

Let G be the set of all functions & : [0, co) — [0, co) such that ® is nondecreasing,
®(0) =0, &(t) > O0forall t > 0and ®(t) — oo as t — oo. We refer the reader to
[16, 36, 41, 50] for more information about properties of functions in G and related
functions. We have the following simple but useful lemma.

Lemma 2.7 (See [35, 40]) Let ® € G be concave.
(1) If0 <s < landt >0, then ®(st) > sd(1);
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(2) If s = 1and t > 0, then (st) < sP(¢).

Moreover, @ is subadditive, continuous and bijective from [0, co) to [0, c0).
We now give the following lemma which will be used in the proof of the atomic
decomposition theorems in the next section.

Lemma 2.8 Let ® € G be concave and 0 < p < r < 00. For f € L,, there exists
A € FwithP(A) # 0 such that { f # 0} C A, then

197D, < P(A)7® ( 171 ) |
P(A)r

Proof 1t follows from Lemma 2.7 and Holder’s inequality that
o <|f|+ ||f||,l ) .
P(A)? »
|FIP(A)F £l
+1]®
H( 171l ) <P<A>i> o
1
I1f 1, | fIP(A)F
+1
(]P’(A)r) H( 171l ) xA
q)( ||f||rl> (‘ | IB(AYF
P(A)*

171
§<I>< ] (P(A) 171 P(A)pr+P<A>l)
P(A)~
f

2.1)

IeAfDIp =

p

p

A

1
XA H +P(A)?
p

£l

2.3 Martingales

Let us recall some standard notations from martingale theory. We refer the reader
to [14, 34, 44] for the theory of classical martingale space theory. Let (2, F, P)
and {F,},>0 be stated as in Sect. 2.1. The expectation operator and the conditional
expectation operator related to F,, are denoted by [E and [E,,, respectively. A sequence of
measurable functions f = (f;)s>0 C L1(S2, F, P) is called a martingale with respect
to {Fulnso if E,(fut1) = fn for every n > 0. Let M be the set of all martingale
f = (fu)n>o relative to {F, },>0 such that fy = 0. For f = (f,)u>0 € M, denote its
martingale difference by d f;, = f,, — fu—1 (n > 0, with convention f_; = 0). Define
the maximal function, the square function and the conditional square function of f,

W Birkhauser



®-moment martingale inequalities. .. Page 7 of 26

12

respectively, as follows

My (f) = sup [ ful, M(f) = sup|ful;

n<m n>0
172

m 12 oo
Su(f) = (Z |dfn|2) . S = (Z |dfn|2) ;
n=0 n=0
m 1/2 o
sm(f) = (ZEn_lldfnlz) . s(f) = (ZEn_udmz)
n=0

n=0

1/2

For f = (fu)n=0 € M, if f, € Ly, for every n > 0, then f is called an L (-
martingale. Furthermore, if || f |,y = sup,so | fullp) < 00, then f is called a

bounded L (. -martingale and it is denoted by f € L (..

Let A be the collection of all sequences (A,),>0 of nondecreasing, nonnegative
and adapted functions, set oo = lim,_, o0 Ay. For f € M, ® € G, p(-) € P and

0<qg <o0o,let

ALQp().q.0l(f) = {Mn=0 € A Sp(f) S dnmt1 (0= 1), Phoo) € Lp( g}

and

AlDp(.q.01(f) = {Gdnz0 € At [ ful S dhnmt (0= 1), P(hoo) € Lp(yq}-

Set
®Hlo,.. = inf NP Aol p().q
RLDIEY Odn=0€AQ () 4.01(f) oo/lp()
I1®(Nlp,., = inf 1P (Ao llp()g-

An)n=0€AIDp(y 4.01(f)

Now let us recall the notion of the log-Holder continuity condition. Given a function
p() € P(RY), let poo = limy_ o0 p(x), then p(-) is said to satisfy the log-Holder

continuity condition, if for all x, y € R",

lp(x) — pYI < m

and

lp(x) = pool = Toge T X))

We mention that if p_ > 1 and p(-) satisfies the log-Ho6lder continuity condition
in the Euclidean spaces R”, then the Hardy—Littlewood maximal operator is bounded
on L ) (IR") and the inverse Holder’s inequality holds for the characteristic functions
defined on cubes in L ,()(R") (see [8, 38]). Compared with the Euclidean space R",

) Birkhauser
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the probability space (€2, F, IP) has no natural metric structure. Fortunately, Jiao et al.
[15, 25, 26] found the following condition without metric characterization to replace
the log-Holder continuity condition in some sense. That is, there exists an absolute
constant K,y > 1 depending only on p(-) such that

P(B)P-B =P+ ® <k, VB el JAF. (2.2)
n>0

where F,, is generated by countable atoms (B € F, is called an atom if any A C B
with A € F,, satisfies P(A) = P(B) or P(A) = 0) and A(F,) is the set of all atoms in
Fn. We always assume that every JF,, is generated by at most countable many atoms
in the sequel.

Lemma 2.9 (See [15, 21, 26]) Let p(-) € P satisfy (2.2). Then
(1) For p— > land B € | J,>o A(Fy), we have

P(B) ~ llxsllpe) Il xBl p)-
(2) Forq(-) € P satisfying (2.2) and r(-) € P. If r(-) satisfies

1t 1
rx)  px)  qx)’

then r(-) also satisfies (2.2). Moreover, for B € UnZO A(F,), we have

lxsll-¢) = Ixsllpyllxsllge-

(3) For p— > land f € L (), we have

Mooy S WS llpey-

3 Atomic decompositions

In this section, we construct some new atomic decomposition theorems. The atoms
we used here are simple atoms. Note that there are two notions of atoms here, one is
a measurable set described in Sect. 2, the other is a measurable function defined as
follows.

Definition 3.1 Let p(:-) € P, 1 < r < oo and ® € G. A measurable function a is
called a simple (®, p(-), r)*-atom (resp. (P, p(-), r)S—atom, (D, p(), r)M—atom) if
there exists I € A(F;,) for some m € N such that

1. the support of a is contained in /;

2. Is@ll; Gesp. IS@lly, IM@I) = BV &~ (14=):
3. En(a) =0.

W Birkhauser



®-moment martingale inequalities. .. Page9of26 12

Given p(-) € P and 0 < g < oo. Denote by A*(®, p(-),q,r) (resp.
AS(®@, p(), q,r), AM(®, p(-),q,r)) the collection of all sequences of triples
@™ Iy Mkom, i JkeZom,ien, Where (@™ ez 1 jey are simple (®, p(-), r)*-
atoms (resp. (b, p(-), r)S-atoms, (B, p(-), )M -atoms), (T, kezmien C A(Fp)
are disjoint for fixed k and satisfying (1), (2) and (3) in Definition 3.1. Moreover,

2@—1(2/(4-1)
MHk,m,i =
e
X1 i 1o
and
00 1 q
ST it () [ <00 0= <00
keZ llm=0 i Xlem.i pC) PO

(with the usual modification for g = 00).

Remark 3.2 (i) Note that if we consider the special case ®(z) = ¢, then the simple
(P, p(-), r)*-atom (x = s, S, M) is the same as Definition 3.1 in Jiao et al. [22].
Moreover, if ®(t) = ¢, p(-) = p and r = o0, then the simple (D, p(-), r)*-atom
(x =, S, M) is the same as Definition 2.4 in Weisz [44].

(ii) It follows from [22] that if a is a simple (®, p(-), r)*-atom (x = s, S, M, resp.)
associated with I € A(F,,) for some m € N, then

s(@) =s(@yxr, S(a)=S@yr and M(a) = M(a)x;.

(iii) Let ® € G be concave. If (aF™1, Iiom.is Wiem.i) € A5(D, p(), g, r), then

¢<mmqu%Um)<yﬁ_
PUem)'r )~

Theorem 3.3 Let p(-) € P satisfy (2.2), ® € G be a concave function, 0 < g < 00

and 1 < r < oo. Ifthe martingale f = (fu)n>0 satisfies H@(s(f)) Hp(') g <% then

there exists a sequence of triples (ak'm'i, Iiomis Wkom.idkeZ.m.ieN C A(®, p(-), q,1)
such that for each n > 0,

n—1
fn = Z Z Z/Lk,m,i]En(ak’m’i) a.e., 3.1

keZm=0 i

and

g YV
(3.2)

2

keZ
SN@GUNperg, O <g <o00),

5ol (gt

m=0 i ”Xlk,m,i ”[7() p()

) Birkhauser
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(with the usual modification for ¢ = 00).
Conversely, if max{py,1} < r < oo and the martingale f = (fn)n>0 has a
decomposition of type (3.1), then for 0 < g < o0,

PN pe)g

Sinf {1y

keZ

q

> 1
§ z CD [Mkvmviq)l < >] XIk.m,i
X 7emi 1l pC)

m=0 i

@)

(with the usual modification for ¢ = 00), where the infimum is taken over all the
preceding decompositions of f of the form (3.1).

Proof Let f = ( f,)n=0 be a martingale with | @ (s(f))||
define

p(g < OO For every k € Z,

T =inf {n e N:s,41(f) > @125} (inf ¥ = c0).

Apparently, i is a stopping time and t; < 1441 for each k € Z. It is easy to see that
foreachn € N,

fo= (A = 1) ae.

keZ

where f™ := (fyag)n=0. Note that for fixed k € Zand m € N, {tx = m} € Fp,.
Then there exist disjoint atoms ({x ,,,,;)i C A(Fp) such that

(o =m} = Ulkm, (33)
For each n > 0, set
2@—1(2k+1) . Tkt+l _ £Tk
Mkm,i = and af™' = f"—"x:k i
p-1 ( 1 ) Wke,m,i ’
X1 i 1pC)

Hence, for each n > 0, f; can be represented as follows

o= Z (ffk+l fn )X{rk<n}

keZ

— Z Z Tk+l _ X{tk—m}
keZ m=0

—ZZZ P ) Kt = ZZZMkm,akml
kezZm=0 i keZm=0 i

W Birkhauser
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For fixed k, m and i, (a,]i""’i),,zo is a martingale. Moreover, in view of the definition
of T, we have s (f™) = s, (f) < @ (2"). Hence, using the definition of py i, we
obtain

S((a,l;’m’i)nZO)

Es(frf“')+s(f;f")<¢,1( ! )
Ikm,i 2 oy

That is, (a,li’m’i)nzo is an Lp-bounded martingale. Thus there exists an akmi e L,
such that B, (@) = ¢*™ and

: 1
s (@™, < P(I )"/ @7 (—) :
X1 p )

Furthermore,

n n
(fnrh—1 - fnrk)XIk.m,,- = <Z X{lfrk+1}dﬁ - Z X{lfrk}dfl> XI.m.i

=0 =0

n
= Xlkm,i Z d fix (o <i<nis)
=0
n

= Xlkm,i Z dfixim<i<tei)-
I=m+1

Hence, E,, (a®™ ) = 0. Thus, we conclude that a¥"7 is really a simple (®, p(-), r)*-
atom.

Now we show (3.2). For 0 < g < 00, since X(r,<co) = Dm0 2o Xlgm,» it follows
from {tx < o0} = {s(f) > <I>_1(2k)} and Lemma 2.7 that

o0 1 q
SIS S0 [mmeo ()| o
keZ lm=0 i Xl millp() 20
o] q
=Y XYoo & x| = D2 P <ol
keZ lm=0 i 120} keZ
zk
= 20 ylhn S D1 ol 2
X{@(s(fN=2py = Xios(n=21lpey Y y
keZ keZ 2
2k 0
ady ady
= Zf <y||X{<I>(s(f))>y}||p(~)> - =/ (y||X{d>(s(f))>y}||p(-)) —
keZ 2k y 0 y

= ||<1>(s(f))||;1,<-),q'

) Birkhauser
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For ¢ = o0, similarly to the proof of the case 0 < g < 0o, we have

i Z o |:Mk,m,icbl <;>} Xlim.i

m—=0 i ”Xlk,m,i ”p()

re)
k+2 k+2

<2t | Xire<oo}ll p(y = 2 * ||X{<[>(5(f))>2/<}”p(~)

S HPGUNIpe,00-

Thus, we conclude that (a*" Liom.is Wkom.i)keZom.ieN C AS(P, p(-), q,r)and (3.2)
holds.

To prove the converse part, let f = (f,),>0 have a decomposition of type (3.1). It
follows from the sublinearity of the conditional square operator s and subadditivity of
@ that

O(s(f) =P (Xyez Ymeo 2ot Mkomis(@™h) (3.4)
<Y ver Someo 2 P (ke mis@mh) ae.

For an arbitrary integer ko, let

00
Z Z Z q)(ﬂk,m,is(ak‘m’i)) =T+ T,

k€Zm=0 i
where
ko—1 oo '
Ti= Y Y Y ®(umis@™h)
k=—ocom=0 i
and

o= Y > ®(mis@™h).

k=kom=0 i

For0 < g < o0o.Let0 < 0 < min{p_, g, 1}. We can choose A such that | < X <
min{1/6, r/p4}. Using Holder’s inequality, we obtain

ko—1 % ko—1 o ' g
Tl < < Z 2/{0}.") Z 2—ko‘A [Z Z (b(luk’m’is(ak,m,l)):|
k=—o00

k=—o00 m=0 i
koo ! v [ k-l % Rk :
=<—2M, 1) Y 2 [ZZMuk,m,is(ak*"”))] :
N k=—c0 m=0 i

W Birkhauser
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where 0 < 0 < 1 — 1/A and 1/1 + 1/A" = 1. By the O-triangle inequality and
Lemma 2.1, we obtain

Iz, =200yl p0y < 2k%||Tﬁ||p<.> (3.5)
ko—1 00 A
S 2k0)»(071) Z 271«7)» |:Z Z CD(,uk,m,,'s(ak’m’i)):|
k=—00 m=0 i PO
ko—1 0 Ve
5 2k0)»(0—1) Z 2—koA9 |:Z Z @ Mk . ,S(Clk o, z))
k=—00 m=0 i 10}
0
ko—1 00 170
< pkor(o—1) Z o—koio Z Z qD(luLk,m,iS(Clk’m'i))w
k=—00 m=0 i Q)

%‘

Now, we first estimate

S5 (k. is@ )«

m=0 i

Ek,a = )
J:10)
0

where k € Zand 0 < o < min{1/6,r/py}. Since 0 < 8 < min{p_, g, 1}, we know
that || - || p» is @a norm. By the duality, there exists a nonnegative measurable function

]
h € Lecy with |z, < 1 such that

ukastZZ (i 5@ ))*

m=0 i
where

1 0

é‘(_a))+m:1 a.e.w € Q.

By Lemma 2.9(2), we know that ¢(-) satisfies (2.2). Dueto 0 < o < 1/0, r > 1,
Holder’s inequality and Lemma 2.8, we get

B £ 305 |@tem st )|

e
T

m=0 i
as ko af
=2 Y [ @Gumis@ )| hxanl
m=0 i r r—ab
e . k,m,i af N
S Z Z ® (Mk ?;’EI'LS(CZ )l/r)”r) ]P)(Ik’m’i)Ta M X “ =
m=0 i

) Birkhauser



12 Page 140f26 Z.Haoetal.

ey \

= Lim.ills(a
ZZZ®< Pl ) /" ) Pliem.)

m=0 i

r—af

1 r "
[ —— h e dP
Pllkm.i) i,

3 pimills @5\
1,1 r r_ra r
= Z Z@ < ]P(Ik,m,i)l/r ) ‘/S;Xlk,m.i [M(h "):| dP

m=0 i
picm.ills (@m0 =
/ Z 2. ( P(lmi) V" K MG ]| T 0
m=0 i .t
af
i lls @m0,
Z Z ® P(1, yr Xlim,i
m=0 i k,m,i %
r—af
[Ma=] 7|
¢()
Since o p4+ < r, we have
—af —af
ess inf {(a))r AN & N > 1.
weR r pyr—6 r
Using Lemma 2.1 and Lemma 2.9(3), we have
B r—af rfaB r—af
M(hm)] " = HM(h, 016)’ < H =l )
H[ £0) ()= (O
= |lallg) < 1.

According to Remark 3.2(iii) and the disjointness of (I u.i)m.ieN for fixed k € Z, we
have

(3.6)

: 0
(D Lk i lls (@) [\ .
P(Lemi) /" T

)40}
o

< 2(k+2)(x9

>

m=0 i

0 0
DD Xtk

m=0 i Pe)

40}
o

— 2(k+2)a9
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For 1/A < n < 1 — o, taking o = A in (3.6), it follows from (3.5), (3.6) and Holder’s
inequality that

X7y >2k03 1 p) (3.7)
ko—1 1/6
5 zkok(nfl) Z 27k019 Ek,)u }
k=—00
ko—1 9 1/6
< okor(o—1) Z 2kr6(1—0) ZZXIk
k=—o0 m=0 i 120}
ko—1 00 0 176
— okor(o—1) Z kA0 (1= —11) H kA ZZXIk .
k=—o00 m=0 i 1 )
q—0
ko—1 g0
< pkor(@=1) Z zkw(l—c—n)q‘fe}
k=—o00
ko—1 oo g V4
x4 20 29D Kk
k=—o00 m=0 i I10)
ko—1 I
sawnl 3 a5
k=—00 m=0 i 120}

Then, it follows from the Abel transformation and the monotonicity of ®~! that

o0
Y 2%t 1 (3.8)
ko=—00
00 ko—1
< Z okog(1—An) Z Hkhqn ZZXIM,
fo=—00 m=0 i PO
00 q 00
= Z okdqn ZZX’MJ Z okog (1)
k=—00 m=0 i 110) ko=k+1
00 00 q
5 Z qu ZZX["""J
k=—co llm=0 i pe)
<X E 0 [mmo () [
keZ lm=0 i ”XIkJn.i ”P(‘) ()

) Birkhauser



12 Page 160f26 Z.Haoetal.

Now, we estimate 7>. For the above symbol 6, let0 < 8 < & < 1. Taking @ = f in
(3.6), it follows from Minkowski’s inequality and (3.6) that

1
Xm0y lp6) = 555173 ) (3.9)
1 o0 00 ) BO 1/6
— 27| || = . etwmis@r ]| |
2 k=kom=0 i &
= Om_O 1 6
1 0 00 s 1/60
= 3| 2 | L Z om0 |
2 Pl r'er 20
=ko " m 1 2]
1 00 1/60
- = (k+2)p0
S 1PILFI R b3 szm,\ "
k=kg k=kq i
1 1/6
~ k6 (B—§) y k&0
2kop ka:Z 2 H ZZX[““H ()}
0 1
I RSP I v
<3| 220 [l |
= k=ko i
1 kg 1/q
PR q
Szkos ZZ HZZXIkmz‘ ()} .

k=kg i

By the Abel transformation and the monotonicity of ®~!, we have

o0

> 2%y 1, (3.10)
ko=—00
< Z koq(1— S)ZW&HZZX%,’
ko=—00 k=kqo i pC)
— Z 2kngZZXIkm, Z 2koq (1)
m=0 i ) ko=—00

= Z 2] ZZXW

m=0 i
1 q
<3| Yol (—” o
keZ "' m=0 i Xlk.m,i p() ()

Combining (3.4), (3.8) and (3.10), we conclude that

[ @GN0, ~ kZ; 240809 | g =20 [
0E
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< Z 2kotha| X(11+T>2k0+1) “(fao

k()EZ
< Z 2(ko+l)q(||x{T1>2k0} ||;1)(') + || xry5 20 ||Z7(.))
koeZ
ko€Z koeZ
1 q
<y Z doo [Mk mi ® (—)]XI,W_,. :
keZ " m=0 i ”Xlk.m,i ”P(') 120

Taking over all the admissible representations of (3.1) for f, we obtain the desired
result.

For g = 0o. On one hand, since 0 < o < 1 — 5, it follows from (3.7) that

2% X7, 52001 1 o) G.11)

o0 ) 16
> ), }
0 ()
ko—1 o0 SV
— Ako(o—A1) kO (=10 —1) Ak
-2 DR D) DT Y
k=—00 =0 i
ko—1 1/6
< phoGo—itD) Z k8 (h—ho 1)} sup2 H ZZX’““H 0
i
o0
<2 3 Y
m=0 i

keZ

ko—1
5 2k0()»07)»+1) Z 2k)»9(170)

‘p(~).

On the other hand, since 0 < 8 < 1, it follows from (3.9) that

2%l gy 2t0) 1 o) (3.12)
1/6
S PRSI Do) 3P
k= k() i pe)
1/6
< oko(1=p) szO(ﬂ ])WHZZX&W }
= i Pe)
<2tnf 52| | S5 ]
k=ko keZ T m=0 i
oo
<] 3w |
keZ ,,,2:‘;2,: “rllpe)
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By (3.11), (3.12) and the monotonicity of &~ !, we obtain
~ ko+1
|| @(S(f)) ”p(),oo ~ ksipzz o+ || X{(I)(S(f))>2k0+l} ”p()
0

S SUP 2% X7, 5% ||,,(.) + Su% 2% X(1y>2k0} ”,;(.)

< sukaH ZZXIWH

m=0 i

3 St (o) J

”Xlk,m‘,‘ ||p(~)

‘()

< sup
kel

pe)
Taking over all the admissible representations of (3.1) for f, we obtain the desired
result. This completes the proof of the theorem. O

Obviously, we can obtain that the converse part of Theorem 3.3 also holds for
[®(M)| and [@(S(N)] ., as follows.

(g
Theorem 3.4 Let p(-) € P satisfy (2.2), ® € G be a concave function, 0 < g < oo
and max{py,1} < r < oo. If the martingale f = (f.)n=0 has a decom-

position of type (3.1) with (a"™1 I i, ttkm i kezmien C AM(®, p(), q,r)
(resp. AS(®, p(), q, r)), then for 0 < g < o0,

o), 0,
00 1 q 1/q
<135 50 [t ()
kez lm=0 i X1 1 pC) "

<mp. |2 .0

i Z o [Mk,m,i<1>_l (;)] Xlm.i

m=0 i ”Xlk,m,i ”P()

q 1/q>

(with the usual modification for g = 00), where the infimum is taken over all the
preceding decompositions of f of the form (3.1).

Sinf{>°

keZ

140

We now establish the co-atom decompositions for ®(f) in D)4 and Q) 4-

Theorem 3.5 Let p(-) € P satisfy(2.2), ® € G be a concave functionand(0 < g < oo.

If the martingale f = (fy)n>0 satisfies ||d>(f)||pp(_).q < 00, then there exists a

sequence of triples (ak-m-t Iicom.is Wkom.i)keZom.ieN C AM (@, p(), q, 00) such that
foreachn > 0, (3.1) holds and

q 1/q
(3.13)

2

keZ

i Z @ [Mk,m,iq)l <;>} Xliem,i

m=0 i “X[k,m,i “P()

140!
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SIO()llp,,,. (0 <gq <o),

(with the usual modification for ¢ = 00).
Conversely, if the martingale f = (fy)n>0 has a decomposition of type (3.1), then
for0 < g < o0,

e (Hllp,,,
oo 1 q
<ot SIS 0 furmso () |
kez llm=0 i KXlem,i 1p () 00

(with the usual modification for g = 00), where the infimum is taken over all the
preceding decompositions of f of the form (3.1).

Proof The proof follows the ideas in Theorem 3.3, so we omit some details. For
0 < g < oo. Suppose that f = (f)n>0 satisfies ||¢’(f)||Dp<A),q < 00. We define
stopping times as follows

=inf{neN:, > @125}, infy = oo,

where (1,),>0 is a sequence of nondecreasing, nonnegative and adapted functions
such that | f;| < A,—1 and ®(Ao) € Lp() 4.

Let (ak*m*")kezym,ieN and ((k,m.i)kez.m.icN be defined as in the proof of the Theo-
rem 3.3. Obviously, akmiisa simple (P, p(-), 00)M-atom for fixed k € Z, m,i € N.
Now we present (akmi Lcm.is Mkom,i)keZ.m.ieN C AM(®, p(-), g, 00). Since {1; <
00} = {@ (L) > 2K}, then we have

1 q
Sy e [ikmio™ () |
| L X 190 O
k42 k+2
< 2%y ol = D 2 M ey = 1
keZ keZ
S NPl

rC)q’

Taking the infimum over (A,),>0 € A[Dp(.),4,0](f), we obtain the desired result.
For the converse part, let

n
=)0 D ki 1M @ Do -

keZm=0 i

Clearly, (An)n>0 is a nondecreasing, nonnegative and adapted sequence with | f;,| <
An—1. For an arbitrary ko, set

ko—1 oo

Do 20D (ki IM @D lloo) X1,

k=—ocom=0 i

) Birkhauser
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and

oo 00 .
=2 2> (ki IM @D loo) -

k=kom=0 i

By replacing T} (resp. T») in the proof of Theorem 3.3 with J; (resp. J2), we get

q
I1*(Hlip,,, = |Id>(koo)||p()q < ||11||p()q + ||12||p()q
1 q
2| E e fmnio () |
kez " m=0 i Kleam,i lp() O

Taking over all the admissible representations of (3.1) for f, we obtain the desired
result. The proof of the case ¢ = oo is analogous. This completes the proof of the
theorem. O

Similar to the method of the proof above, we can present the atomic decomposition
for ®(f) under the functional of || - || Qpirg

Theorem 3.6 Let p(-) € P satisfy(2.2), ® € G be a concave functionandQ < g < oo.
If the martingale f = (fu)n>0 satisfies ||<I>(f)||Qp<A),q < 00, then there exists a

sequence of triples (a*™ ', I i, Ik.m.ikez.mien C AS(®, p(-), q, 00) such that
foreachn > 0, (3.1) holds and

q 1/q

2

keZ
SIP(Hllg,,, ©<g<o0),

0 1
Z Z % I:,ka,m,iq)1 (—):| Xl m.i

m=0 i ”Xlk,m‘i ”p()

140

(with the usual modification for ¢ = 00).
Conversely, if the martingale f = (f,)n>0 has a decomposition of type (3.1), then
for0 < q < oo,

12Ny,
[ee) 1 q 1/q
it {1 Y e e () |
keZ lm=0 i Xlgm,i lp() o0

(with the usual modification for ¢ = 00), where the infimum is taken over all the
preceding decompositions of f of the form (3.1).
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4 ®-moment martingale inequalities

In this section, using the atomic decompositions we presented above, we deduce some
fundamental ®-moment martingale inequalities on variable Lorentz spaces. We need
the following lemma.

Lemma 4.1 (See [14, 34]) Let h be a martingale. Then

MWz = 218112 = 2lIs(R)ll2 < 2[|M (R) |2;

Is(m)llr < \/g M|, =2);
Is(m)llr < \/g Ism]|,. «=2).

Moreover, if the stochastic basis {F,}n>0 is regular, then
M) = IS = lls() |y, (0 <r < o0). 4.1

Theorem 4.2 Let p(-) € P satisfy (2.2) and ® € G be a concave function. Then

(1) For0 < py <2and0 < g < oo,

|eM N,y S @GN [eSUN] )y S @GN

p()q ~ r)q’ p().q ~ rq”
(2) For(0 < q < o0,
oGN] ,00 S 12WDp,,. - [@6UD],0, S 2]y, .-

(3) ForO < py <2and0 < q < o0,

[eHllg,,, SIeWhlp

0(-).q

S| Qv

r().q

Proof (1) Let 0 < p1 < 2 and 0 < g < oo. Suppose that f = (fy)u>0 is a
martingale with || CD(s( f )) Hp (g < O By Theorem 3.3, there exists a sequence
of triples (a“™ | It i, 1tk,m,i Jkez,m,ien C A*(®, p(-), g, 2) such that (3.1) and
(3.2) hold. Using Lemma 4.1, we have

1 . .
”M(—ak’m”) ” < ||s(c1k”"”)||2 < P(Ik,m,i)l/zq)_l(—)-
2 2 Xtk mi )

Hence, 1ak™ 1 is a simple (@, p(-), 2)-atom and

1 .
(_ak,m,t’ Tomis thiom. c AM(@, p().q.2).

2 )keZ,m,ieN

) Birkhauser
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Moreover, applying (3.1), (3.2), Lemma 2.7 and Theorem 3.4, we obtain that for
eachn > 0,

n—1
%fn = Z Z Z/’Lk,m,iEn(% ak,m,i) a.c.,

keZ m=0 i

and
”q)(M(f))”p(-),q =2 H@(M(%f)) Hp('),q

o8]
< . 1(;)} |
”{Z qu’[“ SR PP ol

keZ " m=0 i
S IPEUNIper g (0 <g <00),

q }Uq
pC)

(with the usual modification for ¢ = o0). The second inequality of (1) can be
proved analogously.

(2) Let max{p+,2} <r < 00,0 < g < oo and martingale f = (f,)n>0 satisfy
I1®(HllD,., < oo According to Theorem 3.5, there exists a sequence of triples
@™, Ly em,)Dkezom,ien C AM(®, p(-), q, 00) such that for each n > 0,
(3.1) and (3.13) hold. For fixed k € Z, m,i € N, we get

2 . . .
f; Is@ ™ < |M@"™H]||, < x| M @™

_ 1
=< P(Ik,m,i)l/rcb l(m>
k,m,i W pL

By Lemma 4.1 and o™ being a simple (®, p(-), o) -atom. So \/?ak’m’i isa
simple (P, p(-), r)*-atom and

2 .
(\/;ak’m’l ’ Ik,m,iv Mk,m,i) C As(q)’ p()v qv r)'

keZ,m,ieN

It follows from (3.1), (3.2), (3.13) and Lemma 2.7 that for each n > 0,

) n—1 3 .
\/;fn =Y > > tkmiEa <\/;ak’m”) ae.,

keZ m=0 i

()

and

.
oG], = \E

W Birkhauser
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o0 1 q l/q
AT T T [mmio () e
keZ lm=0 i X1 I p ) 0
<o, ©<q<oo.

(with the usual modification for ¢ = o0). The second inequality of (2) can be
proved analogously.

B)Let0 < py < 2,0 < g < o0and f = (fu)n=0 be a martingale with
I®(Nllg,.,, < oo Forany e > 0, there exists (hn)n>0 € AlQp().q,01(f)
such that [|® (Aeo)l p(),q < I1P(S) ”Qp(.).q + €. Then, there has

|fn| = |fn - fn—l + fn—l| = |fn - fn—l| + Mn—l(f)
< Sn(f) + Mu—1(f) < dp—1 + Mp—1(f).

Applying (1) and (2), we have

| (oo + MD)] , = @) + @(MD)]
S NP0 lperg + [ MDY,
SR NNg,, +€+ [D(s(N)]
SR Nlg,., +e

4.2)

r().q

Hence, (An + M, (f))
and (4.2), we have

€ A[Dp(.),q,01(f). From the definition of | - [p,, ,

n>0

1©(Nlip,,, S 12Nl +e.

Taking ¢ —> 0, we obtain the right inequality in (3).

We consider the rest part of (3) in the following. Let f = (f,;),>0 be a martingale
with ||<I>(f)||pp(v)_q < o0. For any n > 0, there exists (Vu)n>0 € AlDp(),q.0]1(f)
such that | ® (yoo) I p(y,g < I1P(H)lp + n. Then, this yields

r().q

Sn(f) = Sn—1() + 1 fn = fa—1l < Sp—1(f) +2M,(f)
= Snfl(f)‘i‘zynfl'

Combining (1) and (2), we get

[2(SCH +2v00) |y 4 = [2(S(H) + 2 (2700) 43)

(S(H)
S Jestn)
(S(H)

p()q
+[ @y

< [@(SO) ) + 21200,
SN0, + 19D, +n
<l1eNlp,,, +1-

Hp(~),q p()sq

) Birkhauser
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This means (S, (f) +2¥a), - € AlQp().q.01(f)- By the definition of | - | Q,,, and
(4.3), we have B

1e(H)llg,.,, S IOlp,,, + 1.

Taking n —> 0, we obtain the left inequality in (3). We conclude that

12(Nllp,,, S 1PHla,,, S I1PHlD,,,-
O

Remark 4.3 Let p(-) = p. Then, we obtain all the results in Peng and Li [40]. More-
over, if p(-) = 1 = ¢, then we obtain all the results in Jiao and Yu [24].

Remark 4.4 Let ®(t) = t. Then, we obtain some results in [21]. Moreover, if ®(¢) = ¢

and p(-) = p, then we obtain many results in the classical martingale space theory as
in [17, 44].

Furthermore, if the stochastic basis is regular, similarly to proof of Theorem 3.5 in
[21], the other part of Theorem 3.4 also holds, then we can easily get the following
further conclusion via (4.1) and the proof process of Theorems 4.2.

Theorem 4.5 Let p(-) € P satisfy(2.2), ® € G be aconcave functionand( < q < oo.
If the stochastic basis {F,}n>0 is regular, then

[eM N,y ~ @SN

~ e,

p().q

viog @GN
~ ey

p()q p()q

PO’

If the stochastic basis {F; },>0 is regular, let ®(¢) = ¢, then we obtain from The-
orem 4.5 that the five variable martingale Lorentz—Hardy spaces are equivalent, see
also Corollary 3.8 in [22].

Corollary 4.6 Let p(-) € P satisfy (2.2) and 0 < q < oo. If the stochastic basis
{Fnln=o is regular, then

M _ N _ s _ —
Hytrg = Hporq = Hpirg = 20 = Poorg

with equivalent quasi-norms.
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