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Abstract
In this paper, with the help of some new atomic decomposition theorems, some �-
moment martingale inequalities in the framework of Lorentz spaces with variable
exponents are proved. The results obtained here generalize the previous results in
variable martingale Lorentz–Hardy spaces and various classical martingale Hardy
spaces.
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1 Introduction

Martingale inequalities occupy an important position in martingale space theory. The
topic we shall touch here is the�-moment martingale inequalities in the framework of
Lorentz spaces with variable exponents. In 1970, Burkholder and Gundy [6] first dis-
cussed the�-moment inequalities for martingales. Then the�-moment version of the
Burkholder–Davis–Gundy inequality was proved in [5]. Kikuchi [29] proved the �-
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moment martingale inequalities in the framework of rearrangement invariant Banach
function spaces. It should be noticed that the functions � in the articles mentioned
above are convex functions. In 2012, Jiao and Yu [24] proved some�-moment martin-
gale inequalities associated with concave functions. Later, Peng and Li [40] extended
the results in [24] to the framework of Lorentz spaces. Wu et al. [47] deduced some
modular martingale inequalities in the framework of Orlicz–Karamata spaces. Jiao et
al. [18] proved the �-moment version of Burkholder’s inequalities in rearrangement
invariant spaces. Some �-moment inequalities for noncommutative martingales (see
[4]) and independent and freely independent random variables (see [19]) were also
deduced.We point out that the results on�-momentmartingale inequalitiesmentioned
above are all in the framework of rearrangement invariant spaces. Hence one natural
question arises, that is,

Do�-momentmartingale inequalities also hold in the non-rearrangement invariant
setting?

In this article, we give an affirmative answer. More precisely, we shall extend the
�-moment martingale inequalities to the framework of function spaces of variable
exponents. As is well known, Lebesgue space with variable exponent is an important
kind of non-rearrangement invariant spaces and has beenwidely used in elasticity, fluid
dynamics, calculus of variations, differential equations and so on, see, for example, [2,
12, 42, 51, 52]. Such spaces were first introduced by Orlicz [39] in 1931. Kováčik and
Rákosník [30], Fan and Zhao [13] investigated various properties of variable Lebesgue
spaces and variable Sobolev spaces. A fundamental breakthrough of the study of
Lebesgue spaces with variable exponents is due to Diening [9, 10], who proposed the
so-called log-Hölder continuity condition to obtain the boundedness of the Hardy–
Littlewood maximal operator. Since then, much progress has been made in variable
exponent function space theory. Many important results such as atomic decomposi-
tion, boundedness of singular integral operator, Littlewood–Paley characterization,
dual theory, and so on, have been extended to the variable exponent setting, see, for
example, [7, 8, 11, 38, 43, 49].As generalizations of variableLebesgue spaces and vari-
able Hardy spaces, respectively, variable Lorentz spaces and variable Lorentz–Hardy
spaces have also been studied by many authors. Kempka and Vybíral [28] showed
many important properties of Lorentz spaces with variable exponents. Jiao et al. [27]
proved the maximal function characterizations, atomic decompositions, interpolation
results, duality results, Littlewood–Paley function characterizations, boundedness of
singular integral operators for variable Lorentz–Hardy spaces. We refer the reader to
[1, 31–33, 48, 53] for more information about variable Lorentz spaces and variable
Lorentz–Hardy spaces.

Inspired by the considerable progress of function space theory in the variable expo-
nent setting, the martingale space theory in the variable exponent setting has gained
a lot of interests in recent years. Aoyama [3] proved the Doob maximal inequality
under some strict restrictions on the variable exponent p(·). This is the first attempt
to study martingale space theory in the variable exponent setting. However, the con-
dition in [3] is too strong. Indeed, Nakai and Sadasue [37] gave a counterexample
to show that the condition in [3] is not necessary for the boundedness of the Doob
maximal operator on variable Lebesgue spaces. The major difficulties to study the
martingale space theory in the variable exponent setting are, on one hand, abstract
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probability spaces do not enjoy natural metric structure, and thus the log-Hölder con-
tinuity condition cannot be well defined any more; on the other hand, the arguments in
the classical setting are no longer efficient and the essential reason is that the variable
Lebesgue spaces and variable Lorentz spaces are not rearrangement invariant spaces.
To overcome these difficulties, Jiao et al. [25] introduced a condition without metric
characterization to replace the log-Hölder continuity condition in some sense. Under
this new condition, they proved the weak-type and strong-type estimates of the Doob
maximal operator, established the atomic decompositions and obtained duality the-
orems as well as John–Nirenberg inequalities for the martingale Hardy spaces with
variable exponents. Subsequently, the variable martingale Hardy spaces and variable
martingale Lorentz–Hardy spaces were systematically studied in [21]. We refer the
reader to [15, 20, 22, 26, 45, 46] for more information about martingale Hardy spaces
and martingale Lorentz–Hardy spaces in the variable exponent setting.

We consider the �-moment martingale inequalities associated with concave func-
tions in the framework of variable Lorentz spaces. Our main method is to establish
some new atomic decomposition theorems by simple atoms. As far as we know, this is
the first paper which deals with the �-moment martingale inequalities in the variable
exponent setting. It should be pointed out that the atomic decomposition theorems of
this paper improve the atomic decomposition theorems in [21, 22]. Furthermore, let
p(·) ≡ p, our results greatly broaden the scope of the atomic decomposition theorems
in [40]. In [40], the authors just considered the atomic decomposition theorems under
the conditions of 0 < q ≤ 1 and q ≤ p < ∞. They guessed the restricted conditions
may be removed via the method in [23]. But the method in [23] is only applicable
for “∞-atom decompositions”. In this paper, we present “r -atom decompositions”
(1 < r ≤ ∞) and remove the restricted conditions of 0 < q ≤ 1 and q ≤ p < ∞ in
[40] via some refinement techniques.

The paper is organized as follows. In the next section, some preliminaries are intro-
duced. Atomic decompositions for martingale Lorentz–Hardy spaces with variable
exponents are presented in Sect. 3. In the final section, with the help of atomic decom-
positions, the �-moment martingale inequalities in the framework of Lorentz spaces
with variable exponents are deduced.

At the end of this section, we make some conventions. Throughout this paper, the
set of nonnegative integers, the set of integers, the set of real numbers and the set of
complex numbers are denoted by N, Z, R and C, respectively. We use C to denote
the positive constant that is independent of the essential variables involved but whose
value may vary from line to line. The symbol f � g stands for the inequality f ≤ Cg.
If f � g � f , then we write f ≈ g.

2 Preliminaries

In this section, we give preliminaries necessary to the whole paper.
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2.1 Variable Lebesgue spaces and variable Lorentz spaces

Let (�,F ,P) be a complete probability space and {Fn}n≥0 be a nondecreasing
sequence of sub-σ -algebras ofF such thatF = σ

(⋃
n≥0 Fn

)
.Ameasurable function

p(·) : � → (0,∞) is called a variable exponent. For A ∈ F , we denote

p−(A) = inf
x∈A

p(x), p+(A) = sup
x∈A

p(x)

and for convenience

p− = p−(�), p+ = p+(�).

Let P = P(�) denote the collection of all variable exponents p(·) such that 0 <

p− ≤ p+ < ∞. The variable Lebesgue space L p(·) = L p(·)(�,F ,P) is defined as
the space of all measurable functions f such that for some λ > 0,

ρ

(
f

λ

)
=
∫

�

( | f (x)|
λ

)p(x)

dP < ∞.

Then, the space L p(·) becomes a (quasi-)Banach function space when it is equipped
with the (quasi-)norm

‖ f ‖p(·) = inf

{
λ > 0 : ρ

(
f

λ

)
≤ 1

}
.

Let p = min{p−, 1}. For p− ≥ 1, the conjugate variable exponent p′(·) is defined
pointwise by

1

p(·) + 1

p′(·) = 1.

The following facts are well known (see [38]).

(i) (Positivity) ‖ f ‖p(·) ≥ 0 and ‖ f ‖p(·) = 0 ⇔ f = 0;
(ii) (Homogeneity) ‖c f ‖p(·) = |c| · ‖ f ‖p(·), (c ∈ C);
(iii) (The θ -triangle inequality) ‖ f + g‖θ

p(·) ≤ ‖ f ‖θ
p(·) + ‖g‖θ

p(·), (0 < θ ≤ p).

We collect some useful lemmas, which will be used in the sequel.

Lemma 2.1 (See [8]) Let p(·) ∈ P and s > 0. Then for f ∈ Lsp(·), we have

‖ | f |s ‖p(·) = ‖ f ‖ssp(·).

Lemma 2.2 (See [7]) Let p(·) ∈ P. Then for all f ∈ L p(·) and ‖ f ‖p(·) �= 0, we have

∫

�

∣
∣∣∣

f (w)

‖ f ‖p(·)

∣
∣∣∣

p(w)

dP = 1.
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Lemma 2.3 (See [7, 13]) Let p(·) ∈ P and f ∈ L p(·). Then we have

(1) ‖ f ‖p(·) ≤ 1(= 1) if and only if
∫
�

| f |p(·)dP ≤ 1(= 1);
(2) If ‖ f ‖p(·) > 1, then ρ( f )1/p+ ≤ ‖ f ‖p(·) ≤ ρ( f )1/p−;
(3) If 0 < ‖ f ‖p(·) ≤ 1, then ρ( f )1/p− ≤ ‖ f ‖p(·) ≤ ρ( f )1/p+ .

Lemma 2.4 (Hölder’s inequality, see [7]) Let p(·), q(·), r(·) ∈ P such that

1

r(x)
= 1

p(x)
+ 1

q(x)
.

Then for all f ∈ L p(·) and g ∈ Lq(·), we have f g ∈ Lr(·) and

‖ f g‖r(·) ≤ C‖ f ‖p(·)‖g‖q(·).

We now present the definition of Lorentz spaces with variable exponents. For more
information about such spaces, see [28].

Definition 2.5 Let p(·) ∈ P and 0 < q ≤ ∞. The variable Lorentz space L p(·),q =
L p(·),q(�,F ,P) is defined as the space of all measurable functions f such that

∥∥ f
∥∥
p(·),q =

⎧
⎨

⎩

(∫∞
0 tq‖χ{| f |>t}‖qp(·) dtt

) 1
q

if 0 < q < ∞,

supt>0 t‖χ{| f |>t}‖p(·) if q = ∞,

is finite.

Note that L p(·),q is a quasi-Banach space for p(·) ∈ P and 0 < q ≤ ∞ (see [28]).
Obviously, L p(·),q is the generalization of classical Lorentz space L p,q and it coincides
with L p,q when p(·) ≡ p. Moreover, the functional ‖ · ‖p(·),q can be discretized as
follows.

Lemma 2.6 (See [28]) Let p(·) ∈ P and 0 < q ≤ ∞. If f ∈ L p(·),q , then

∥
∥ f
∥
∥
p(·),q ≈

⎧
⎨

⎩

(∑
k∈Z 2kq‖χ{| f |>2k }‖qp(·)

) 1
q

if 0 < q < ∞,

supk∈Z 2k‖χ{| f |>2k }‖p(·) if q = ∞.

2.2 Orlicz functions

Let G be the set of all functions � : [0,∞) → [0,∞) such that � is nondecreasing,
�(0) = 0, �(t) > 0 for all t > 0 and �(t) → ∞ as t → ∞. We refer the reader to
[16, 36, 41, 50] for more information about properties of functions in G and related
functions. We have the following simple but useful lemma.

Lemma 2.7 (See [35, 40]) Let � ∈ G be concave.

(1) If 0 < s ≤ 1 and t ≥ 0, then �(st) ≥ s�(t);
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(2) If s ≥ 1 and t ≥ 0, then �(st) ≤ s�(t).

Moreover, � is subadditive, continuous and bijective from [0,∞) to [0,∞).

We now give the following lemma which will be used in the proof of the atomic
decomposition theorems in the next section.

Lemma 2.8 Let � ∈ G be concave and 0 < p ≤ r ≤ ∞. For f ∈ Lr , there exists
A ∈ F with P(A) �= 0 such that { f �= 0} ⊂ A, then

‖�(| f |)‖p � P(A)
1
p �

(
‖ f ‖r
P(A)

1
r

)

.

Proof It follows from Lemma 2.7 and Hölder’s inequality that

‖�(| f |)‖p ≤
∥
∥∥∥�

(

| f | + ‖ f ‖r
P(A)

1
r

)

χA

∥
∥∥∥
p

(2.1)

≤
∥∥
∥∥∥

(
| f |P(A)

1
r

‖ f ‖r + 1

)

�

(
‖ f ‖r
P(A)

1
r

)

χA

∥∥
∥∥∥
p

= �

(
‖ f ‖r
P(A)

1
r

)∥∥
∥∥∥

(
| f |P(A)

1
r

‖ f ‖r + 1

)

χA

∥∥
∥∥∥
p

� �

(
‖ f ‖r
P(A)

1
r

)⎛

⎝

∥∥∥
∥∥
| f |P(A)

1
r

‖ f ‖r χA

∥∥∥
∥∥
p

+ P(A)
1
p

⎞

⎠

≤ �

(
‖ f ‖r
P(A)

1
r

)(
P(A)

1
r

‖ f ‖r ‖ f ‖rP(A)
1
p − 1

r + P(A)
1
p

)

� P(A)
1
p �

(
‖ f ‖r
P(A)

1
r

)

.

��

2.3 Martingales

Let us recall some standard notations from martingale theory. We refer the reader
to [14, 34, 44] for the theory of classical martingale space theory. Let (�,F ,P)

and {Fn}n≥0 be stated as in Sect. 2.1. The expectation operator and the conditional
expectation operator related toFn are denoted byE andEn, respectively.A sequence of
measurable functions f = ( fn)n≥0 ⊂ L1(�,F ,P) is called a martingale with respect
to {Fn}n≥0 if En( fn+1) = fn for every n ≥ 0. Let M be the set of all martingale
f = ( fn)n≥0 relative to {Fn}n≥0 such that f0 = 0. For f = ( fn)n≥0 ∈ M, denote its
martingale difference by d fn = fn − fn−1 (n ≥ 0, with convention f−1 = 0). Define
the maximal function, the square function and the conditional square function of f ,
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respectively, as follows

Mm( f ) = sup
n≤m

| fn|, M( f ) = sup
n≥0

| fn|;

Sm( f ) =
(

m∑

n=0

|d fn|2
)1/2

, S( f ) =
( ∞∑

n=0

|d fn|2
)1/2

;

sm( f ) =
(

m∑

n=0

En−1|d fn|2
)1/2

, s( f ) =
( ∞∑

n=0

En−1|d fn|2
)1/2

.

For f = ( fn)n≥0 ∈ M, if fn ∈ L p(·) for every n ≥ 0, then f is called an L p(·)-
martingale. Furthermore, if ‖ f ‖p(·) = supn≥0 ‖ fn‖p(·) < ∞, then f is called a
bounded L p(·)-martingale and it is denoted by f ∈ L p(·).

Let 	 be the collection of all sequences (λn)n≥0 of nondecreasing, nonnegative
and adapted functions, set λ∞ = limn→∞ λn . For f ∈ M, � ∈ G, p(·) ∈ P and
0 < q ≤ ∞, let

	[Qp(·),q,�]( f ) = {(λn)n≥0 ∈ 	 : Sn( f ) ≤ λn−1 (n ≥ 1), �(λ∞) ∈ L p(·),q
}

and

	[Dp(·),q,�]( f ) = {(λn)n≥0 ∈ 	 : | fn| ≤ λn−1 (n ≥ 1), �(λ∞) ∈ L p(·),q
}
.

Set

‖�( f )‖Qp(·),q = inf
(λn)n≥0∈	[Qp(·),q,�]( f )

‖�(λ∞)‖p(·),q ,

‖�( f )‖Dp(·),q = inf
(λn)n≥0∈	[Dp(·),q,�]( f )

‖�(λ∞)‖p(·),q .

Now let us recall the notion of the log-Hölder continuity condition. Given a function
p(·) ∈ P(Rn), let p∞ = limx→∞ p(x), then p(·) is said to satisfy the log-Hölder
continuity condition, if for all x, y ∈ R

n,

|p(x) − p(y)| ≤ C

log(e + 1
|x−y| )

and

|p(x) − p∞| ≤ C

log(e + |x |) .

We mention that if p− > 1 and p(·) satisfies the log-Hölder continuity condition
in the Euclidean spaces Rn, then the Hardy–Littlewood maximal operator is bounded
on L p(·)(Rn) and the inverse Hölder’s inequality holds for the characteristic functions
defined on cubes in L p(·)(Rn) (see [8, 38]). Compared with the Euclidean space Rn,
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the probability space (�,F ,P) has no natural metric structure. Fortunately, Jiao et al.
[15, 25, 26] found the following condition without metric characterization to replace
the log-Hölder continuity condition in some sense. That is, there exists an absolute
constant Kp(·) ≥ 1 depending only on p(·) such that

P(B)p−(B)−p+(B) ≤ Kp(·), ∀ B ∈
⋃

n≥0

A(Fn), (2.2)

where Fn is generated by countable atoms (B ∈ Fn is called an atom if any A ⊂ B
with A ∈ Fn satisfies P(A) = P(B) or P(A) = 0) and A(Fn) is the set of all atoms in
Fn . We always assume that every Fn is generated by at most countable many atoms
in the sequel.

Lemma 2.9 (See [15, 21, 26]) Let p(·) ∈ P satisfy (2.2). Then

(1) For p− > 1 and B ∈⋃n≥0 A(Fn), we have

P(B) ≈ ‖χB‖p(·)‖χB‖p′(·).

(2) For q(·) ∈ P satisfying (2.2) and r(·) ∈ P. If r(·) satisfies
1

r(x)
= 1

p(x)
+ 1

q(x)
,

then r(·) also satisfies (2.2). Moreover, for B ∈⋃n≥0 A(Fn), we have

‖χB‖r(·) ≈ ‖χB‖p(·)‖χB‖q(·).

(3) For p− > 1 and f ∈ L p(·), we have

‖M( f )‖p(·) � ‖ f ‖p(·).

3 Atomic decompositions

In this section, we construct some new atomic decomposition theorems. The atoms
we used here are simple atoms. Note that there are two notions of atoms here, one is
a measurable set described in Sect. 2, the other is a measurable function defined as
follows.

Definition 3.1 Let p(·) ∈ P, 1 < r ≤ ∞ and � ∈ G. A measurable function a is
called a simple (�, p(·), r)s-atom (resp. (�, p(·), r)S-atom, (�, p(·), r)M -atom) if
there exists I ∈ A(Fm) for some m ∈ N such that

1. the support of a is contained in I ;
2. ‖s(a)‖r (resp. ‖S(a)‖r , ‖M(a)‖r ) ≤ P(I )1/r�−1

(
1

‖χI ‖p(·)

)
;

3. Em(a) = 0.
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Given p(·) ∈ P and 0 < q ≤ ∞. Denote by As(�, p(·), q, r) (resp.
AS(�, p(·), q, r), AM (�, p(·), q, r)) the collection of all sequences of triples
(ak,m,i , Ik,m,i , μk,m,i )k∈Z,m,i∈N, where (ak,m,i )k∈Z,m,i∈N are simple (�, p(·), r)s-
atoms (resp. (�, p(·), r)S-atoms, (�, p(·), r)M -atoms), (Ik,m,i )k∈Z,m,i∈N ⊂ A(Fm)

are disjoint for fixed k and satisfying (1), (2) and (3) in Definition 3.1. Moreover,

μk,m,i = 2�−1(2k+1)

�−1
(

1
‖χIk,m,i ‖p(·)

)

and

∑

k∈Z

∥∥
∥∥∥

∞∑

m=0

∑

i

�

[
μk,m,i�

−1
(

1

‖χIk,m,i ‖p(·)

)]
χIk,m,i

∥∥
∥∥∥

q

p(·)
< ∞, (0 < q < ∞),

(with the usual modification for q = ∞).

Remark 3.2 (i) Note that if we consider the special case �(t) = t, then the simple
(�, p(·), r)
-atom (
 = s, S, M) is the same as Definition 3.1 in Jiao et al. [22].
Moreover, if �(t) = t, p(·) ≡ p and r = ∞, then the simple (�, p(·), r)
-atom
(
 = s, S, M) is the same as Definition 2.4 in Weisz [44].

(ii) It follows from [22] that if a is a simple (�, p(·), r)
-atom (
 = s, S, M, resp.)
associated with I ∈ A(Fm) for some m ∈ N, then

s(a) = s(a)χI , S(a) = S(a)χI and M(a) = M(a)χI .

(iii) Let � ∈ G be concave. If (ak,m,i , Ik,m,i , μk,m,i ) ∈ As(�, p(·), q, r), then

�

(
μk,m,i‖s(ak,m,i )‖r

P(Ik,m,i )1/r

)
≤ 2k+2.

Theorem 3.3 Let p(·) ∈ P satisfy (2.2), � ∈ G be a concave function, 0 < q ≤ ∞
and 1 < r ≤ ∞. If the martingale f = ( fn)n≥0 satisfies

∥∥�
(
s( f )

)∥∥
p(·),q < ∞, then

there exists a sequence of triples (ak,m,i , Ik,m,i , μk,m,i )k∈Z,m,i∈N ⊂ As(�, p(·), q, r)
such that for each n ≥ 0,

fn =
∑

k∈Z

n−1∑

m=0

∑

i

μk,m,iEn(a
k,m,i ) a.e., (3.1)

and

⎧
⎨

⎩

∑

k∈Z

∥∥
∥∥∥

∞∑

m=0

∑

i

�

[
μk,m,i�

−1
(

1

‖χIk,m,i ‖p(·)

)]
χIk,m,i

∥∥
∥∥∥

q

p(·)

⎫
⎬

⎭

1/q

(3.2)

� ‖�(s( f ))‖p(·),q , (0 < q < ∞),
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(with the usual modification for q = ∞).

Conversely, if max{p+, 1} < r ≤ ∞ and the martingale f = ( fn)n≥0 has a
decomposition of type (3.1), then for 0 < q < ∞,

‖�(s( f ))‖p(·),q

� inf

⎧
⎨

⎩

∑

k∈Z

∥
∥∥∥∥

∞∑

m=0

∑

i

�

[
μk,m,i�

−1
(

1

‖χIk,m,i ‖p(·)

)]
χIk,m,i

∥
∥∥∥∥

q

p(·)

⎫
⎬

⎭

1/q

,

(with the usual modification for q = ∞), where the infimum is taken over all the
preceding decompositions of f of the form (3.1).

Proof Let f = ( fn)n≥0 be a martingale with
∥∥�
(
s( f )

)∥∥
p(·),q < ∞. For every k ∈ Z,

define

τk = inf
{
n ∈ N : sn+1( f ) > �−1(2k)

}
(inf ∅ = ∞).

Apparently, τk is a stopping time and τk ≤ τk+1 for each k ∈ Z. It is easy to see that
for each n ∈ N,

fn =
∑

k∈Z

(
f τk+1
n − f τk

n

)
a.e.,

where f τk := ( fn∧τk )n≥0. Note that for fixed k ∈ Z and m ∈ N, {τk = m} ∈ Fm .

Then there exist disjoint atoms (Ik,m,i )i ⊂ A(Fm) such that

{τk = m} =
⋃

i

Ik,m,i . (3.3)

For each n ≥ 0, set

μk,m,i = 2�−1(2k+1)

�−1
(

1
‖χIk,m,i ‖p(·)

) and ak,m,i
n = f τk+1

n − f τk
n

μk,m,i
χIk,m,i .

Hence, for each n ≥ 0, fn can be represented as follows

fn =
∑

k∈Z

(
f τk+1
n − f τk

n

)
χ{τk<n}

=
∑

k∈Z

n−1∑

m=0

(
f τk+1
n − f τk

n

)
χ{τk=m}

=
∑

k∈Z

n−1∑

m=0

∑

i

(
f τk+1
n − f τk

n

)
χIk,m,i =

∑

k∈Z

n−1∑

m=0

∑

i

μk,m,i a
k,m,i
n .
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For fixed k, m and i, (ak,m,i
n )n≥0 is a martingale. Moreover, in view of the definition

of τk, we have s( f τk ) = sτk ( f ) ≤ �−1(2k). Hence, using the definition of μk,m,i , we
obtain

s
(
(ak,m,i

n )n≥0
) ≤ s( f τk+1

n ) + s( f τk
n )

μk,m,i
≤ �−1

(
1

‖χIk,m,i ‖p(·)

)
.

That is, (ak,m,i
n )n≥0 is an L2-bounded martingale. Thus there exists an ak,m,i ∈ L2

such that En(ak,m,i ) = ak,m,i
n and

‖s(ak,m,i )‖r ≤ P(Ik,m,i )
1/r�−1

(
1

‖χIk,m,i ‖p(·)

)
.

Furthermore,

( f τk+1
n − f τk

n )χIk,m,i =
(

n∑

l=0

χ{l≤τk+1}d fl −
n∑

l=0

χ{l≤τk }d fl

)

χIk,m,i

= χIk,m,i

n∑

l=0

d flχ{τk<l≤τk+1}

= χIk,m,i

n∑

l=m+1

d flχ{τk<l≤τk+1}.

Hence, Em(ak,m,i ) = 0. Thus, we conclude that ak,m,i is really a simple (�, p(·), r)s-
atom.

Nowwe show (3.2). For 0 < q < ∞, since χ{τk<∞} =∑∞
m=0

∑
i χIk,m,i , it follows

from {τk < ∞} = {s( f ) > �−1(2k)
}
and Lemma 2.7 that

∑

k∈Z

∥∥∥∥∥

∞∑

m=0

∑

i

�

[
μk,m,i�

−1
(

1

‖χIk,m,i ‖p(·)

)]
χIk,m,i

∥∥∥∥∥

q

p(·)

=
∑

k∈Z

∥
∥∥∥∥

∞∑

m=0

∑

i

�
(
2�−1(2k+1)

)
χIk,m,i

∥
∥∥∥∥

q

p(·)
≤
∑

k∈Z
2(k+2)q‖χ{τk<∞}‖qp(·)

=
∑

k∈Z
2(k+2)q‖χ{�(s( f ))>2k }‖qp(·) �

∑

k∈Z
‖χ{�(s( f ))>2k }‖qp(·)

∫ 2k

2k−1
yq

dy

y

≤
∑

k∈Z

∫ 2k

2k−1

(
y‖χ{�(s( f ))>y}‖p(·)

)q dy
y

=
∫ ∞

0

(
y‖χ{�(s( f ))>y}‖p(·)

)q dy
y

= ‖�(s( f ))‖qp(·),q .
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For q = ∞, similarly to the proof of the case 0 < q < ∞, we have

∥∥
∥∥∥

∞∑

m=0

∑

i

�

[
μk,m,i�

−1
(

1

‖χIk,m,i ‖p(·)

)]
χIk,m,i

∥∥
∥∥∥
p(·)

≤ 2k+2‖χ{τk<∞}‖p(·) = 2k+2‖χ{�(s( f ))>2k }‖p(·)
� ‖�(s( f ))‖p(·),∞.

Thus, we conclude that (ak,m,i , Ik,m,i , μk,m,i )k∈Z,m,i∈N ⊂ As(�, p(·), q, r) and (3.2)
holds.

To prove the converse part, let f = ( fn)n≥0 have a decomposition of type (3.1). It
follows from the sublinearity of the conditional square operator s and subadditivity of
� that

�
(
s( f )

) ≤ �
(∑

k∈Z
∑∞

m=0
∑

i μk,m,i s(ak,m,i )
)

(3.4)

≤∑k∈Z
∑∞

m=0
∑

i �
(
μk,m,i s(ak,m,i )

)
a.e.

For an arbitrary integer k0, let

∑

k∈Z

∞∑

m=0

∑

i

�
(
μk,m,i s(a

k,m,i )
) = T1 + T2,

where

T1 =
k0−1∑

k=−∞

∞∑

m=0

∑

i

�
(
μk,m,i s(a

k,m,i )
)

and

T2 =
∞∑

k=k0

∞∑

m=0

∑

i

�
(
μk,m,i s(a

k,m,i )
)
.

For 0 < q < ∞. Let 0 < θ < min{p−, q, 1}. We can choose λ such that 1 < λ <

min{1/θ, r/p+}. Using Hölder’s inequality, we obtain

T1 ≤
(

k0−1∑

k=−∞
2kσλ′

) 1
λ′
⎧
⎨

⎩

k0−1∑

k=−∞
2−kσλ

[ ∞∑

m=0

∑

i

�
(
μk,m,i s(a

k,m,i )
)
]λ
⎫
⎬

⎭

1
λ

=
(

2k0σλ′

2σλ′ − 1

) 1
λ′
⎧
⎨

⎩

k0−1∑

k=−∞
2−kσλ

[ ∞∑

m=0

∑

i

�
(
μk,m,i s(a

k,m,i )
)
]λ
⎫
⎬

⎭

1
λ

,
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where 0 < σ < 1 − 1/λ and 1/λ + 1/λ′ = 1. By the θ -triangle inequality and
Lemma 2.1, we obtain

‖χ{T1>2k0 }‖p(·) ≤ 1

2k0λ
‖T λ

1 ‖p(·) (3.5)

� 2k0λ(σ−1)

∥∥∥∥∥∥

k0−1∑

k=−∞
2−kσλ

[ ∞∑

m=0

∑

i

�
(
μk,m,i s(a

k,m,i )
)
]λ
∥∥∥∥∥∥
p(·)

� 2k0λ(σ−1)

⎧
⎪⎨

⎪⎩

k0−1∑

k=−∞
2−kσλθ

∥∥∥∥∥
∥

[ ∞∑

m=0

∑

i

�
(
μk,m,i s(a

k,m,i )
)
]λθ
∥∥∥∥∥
∥ p(·)

θ

⎫
⎪⎬

⎪⎭

1/θ

≤ 2k0λ(σ−1)

⎧
⎨

⎩

k0−1∑

k=−∞
2−kσλθ

∥∥
∥∥∥

∞∑

m=0

∑

i

�
(
μk,m,i s(a

k,m,i )
)λθ

∥∥
∥∥∥

p(·)
θ

⎫
⎬

⎭

1/θ

.

Now, we first estimate

�k,α :=
∥∥∥∥∥

∞∑

m=0

∑

i

�
(
μk,m,i s(a

k,m,i )
)αθ

∥∥∥∥∥
p(·)
θ

,

where k ∈ Z and 0 < α < min{1/θ, r/p+}. Since 0 < θ < min{p−, q, 1}, we know
that ‖ · ‖ p(·)

θ

is a norm. By the duality, there exists a nonnegative measurable function

h ∈ Lζ(·) with ‖h‖ζ(·) ≤ 1 such that

�k,α ≤ 2
∫

�

∞∑

m=0

∑

i

�
(
μk,m,i s(a

k,m,i )
)αθ

hdP,

where

1

ζ(ω)
+ θ

p(ω)
= 1 a.e. ω ∈ �.

By Lemma 2.9(2), we know that ζ(·) satisfies (2.2). Due to 0 < α < 1/θ, r > 1,
Hölder’s inequality and Lemma 2.8, we get

�k,α �
∞∑

m=0

∑

i

∥
∥∥�
(
μk,m,i s(a

k,m,i )
)αθ
∥
∥∥

r
αθ

∥
∥hχIk,m,i

∥
∥

r
r−αθ

=
∞∑

m=0

∑

i

∥∥∥�
(
μk,m,i s(a

k,m,i )
)∥∥∥

αθ

r

∥∥hχIk,m,i

∥∥
r

r−αθ

�
∞∑

m=0

∑

i

�

(
μk,m,i‖s(ak,m,i )‖r

P(Ik,m,i )1/r

)αθ

P(Ik,m,i )
αθ
r
∥∥hχIk,m,i

∥∥
r

r−αθ
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=
∞∑

m=0

∑

i

�

(
μk,m,i‖s(ak,m,i )‖r

P(Ik,m,i )1/r

)αθ

P(Ik,m,i )

×
(

1

P(Ik,m,i )

∫

Ik,m,i

h
r

r−αθ dP

) r−αθ
r

≤
∞∑

m=0

∑

i

�

(
μk,m,i‖s(ak,m,i )‖r

P(Ik,m,i )1/r

)αθ ∫

�

χIk,m,i

[
M(h

r
r−αθ )

] r−αθ
r

dP

=
∫

�

∞∑

m=0

∑

i

�

(
μk,m,i‖s(ak,m,i )‖r

P(Ik,m,i )1/r

)αθ

χIk,m,i

[
M(h

r
r−αθ )

] r−αθ
r

dP

�
∥∥
∥∥∥

∞∑

m=0

∑

i

�

(
μk,m,i‖s(ak,m,i )‖r

P(Ik,m,i )1/r

)αθ

χIk,m,i

∥∥
∥∥∥

p(·)
θ

×
∥∥∥∥
[
M(h

r
r−αθ )

] r−αθ
r

∥∥∥∥
ζ(·)

.

Since α p+ < r , we have

ess inf
ω∈�

ζ(ω)
r − αθ

r
= p+

p+ − θ

r − αθ

r
> 1.

Using Lemma 2.1 and Lemma 2.9(3), we have

∥∥∥∥
[
M(h

r
r−αθ )

] r−αθ
r

∥∥∥∥
ζ(·)

=
∥∥∥M(h

r
r−αθ )

∥∥∥
r−αθ
r

ζ(·) r−αθ
r

�
∥∥∥h

r
r−αθ

∥∥∥
r−αθ
r

ζ(·) r−αθ
r

= ‖h‖ζ(·) ≤ 1.

According to Remark 3.2(iii) and the disjointness of (Ik,m,i )m,i∈N for fixed k ∈ Z, we
have

�k,α �
∥∥∥
∥∥

∞∑

m=0

∑

i

�

(
μk,m,i‖s(ak,m,i )‖r

P(Ik,m,i )1/r

)αθ

χIk,m,i

∥∥∥
∥∥

p(·)
θ

(3.6)

≤ 2(k+2)αθ

∥∥
∥∥∥

∞∑

m=0

∑

i

χIk,m,i

∥∥
∥∥∥

p(·)
θ

= 2(k+2)αθ

∥∥∥∥
∥

∞∑

m=0

∑

i

χIk,m,i

∥∥∥∥
∥

θ

p(·)
.
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For 1/λ < η < 1− σ, taking α = λ in (3.6), it follows from (3.5), (3.6) and Hölder’s
inequality that

‖χ{T1>2k0 }‖p(·) (3.7)

� 2k0λ(σ−1)

{
k0−1∑

k=−∞
2−kσλθ�k,λ

}1/θ

� 2k0λ(σ−1)

⎧
⎨

⎩

k0−1∑

k=−∞
2kλθ(1−σ)

∥∥∥∥
∥

∞∑

m=0

∑

i

χIk,m,i

∥∥∥∥
∥

θ

p(·)

⎫
⎬

⎭

1/θ

= 2k0λ(σ−1)

⎧
⎨

⎩

k0−1∑

k=−∞
2kλθ(1−σ−η)2kλθη

∥∥∥∥
∥

∞∑

m=0

∑

i

χIk,m,i

∥∥∥∥
∥

θ

p(·)

⎫
⎬

⎭

1/θ

≤ 2k0λ(σ−1)

{
k0−1∑

k=−∞
2kλθ(1−σ−η)

q
q−θ

} q−θ
qθ

×
⎧
⎨

⎩

k0−1∑

k=−∞
2kλqη

∥
∥∥∥∥

∞∑

m=0

∑

i

χIk,m,i

∥
∥∥∥∥

q

p(·)

⎫
⎬

⎭

1/q

� 2−k0λη

⎧
⎨

⎩

k0−1∑

k=−∞
2kλqη

∥
∥∥∥∥

∞∑

m=0

∑

i

χIk,m,i

∥
∥∥∥∥

q

p(·)

⎫
⎬

⎭

1/q

.

Then, it follows from the Abel transformation and the monotonicity of �−1 that

∞∑

k0=−∞
2k0q‖χ{T1>2k0 }‖qp(·) (3.8)

�
∞∑

k0=−∞
2k0q(1−λη)

k0−1∑

k=−∞
2kλqη

∥∥
∥∥∥

∞∑

m=0

∑

i

χIk,m,i

∥∥
∥∥∥

q

p(·)

=
∞∑

k=−∞
2kλqη

∥∥∥
∥∥

∞∑

m=0

∑

i

χIk,m,i

∥∥∥
∥∥

q

p(·)

∞∑

k0=k+1

2k0q(1−λη)

�
∞∑

k=−∞
2kq
∥∥∥
∥∥

∞∑

m=0

∑

i

χIk,m,i

∥∥∥
∥∥

q

p(·)

�
∑

k∈Z

∥∥∥∥
∥

∞∑

m=0

∑

i

�

[
μk,m,i�

−1
(

1

‖χIk,m,i ‖p(·)

)]
χIk,m,i

∥∥∥∥
∥

q

p(·)
.
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Now, we estimate T2. For the above symbol θ, let 0 < β < ξ < 1. Taking α = β in
(3.6), it follows from Minkowski’s inequality and (3.6) that

‖χ{T2>2k0 }‖p(·) ≤ 1

2k0β
‖T β

2 ‖p(·) (3.9)

= 1

2k0β

{∥∥∥∥

[ ∞∑

k=k0

∞∑

m=0

∑

i

�
(
μk,m,i s(a

k,m,i )
)]βθ∥∥∥∥

p(·)
θ

}1/θ

≤ 1

2k0β

{ ∞∑

k=k0

∥
∥∥∥

∞∑

m=0

∑

i

�
(
μk,m,i s(a

k,m,i )
)βθ

∥
∥∥∥

p(·)
θ

}1/θ

= 1

2k0β

{ ∞∑

k=k0

�k,β

}1/θ
� 1

2k0β

{ ∞∑

k=k0

2(k+2)βθ
∥∥
∥

∞∑

m=0

∑

i

χIk,m,i

∥∥
∥

θ

p(·)

}1/θ

≈ 1

2k0β

{ ∞∑

k=k0

2kθ(β−ξ)2kξθ
∥∥∥

∞∑

m=0

∑

i

χIk,m,i

∥∥∥
θ

p(·)

}1/θ

≤ 1

2k0β

{ ∞∑

k=k0

2kθ(β−ξ)
q

q−θ

} q−θ
qθ
{ ∞∑

k=k0

2kqξ
∥∥∥

∞∑

m=0

∑

i

χIk,m,i

∥∥∥
q

p(·)

}1/q

� 1

2k0ξ

{ ∞∑

k=k0

2kqξ
∥
∥∥

∞∑

m=0

∑

i

χIk,m,i

∥
∥∥
q

p(·)

}1/q
.

By the Abel transformation and the monotonicity of �−1, we have

∞∑

k0=−∞
2k0q‖χ{T2>2k0 }‖qp(·) (3.10)

�
∞∑

k0=−∞
2k0q(1−ξ)

∞∑

k=k0

2kqξ
∥∥∥

∞∑

m=0

∑

i

χIk,m,i

∥∥∥
q

p(·)

=
∞∑

k=−∞
2kqξ

∥
∥∥

∞∑

m=0

∑

i

χIk,m,i

∥
∥∥
q

p(·)

k∑

k0=−∞
2k0q(1−ξ)

�
∞∑

k=−∞
2kq
∥
∥∥

∞∑

m=0

∑

i

χIk,m,i

∥
∥∥
q

p(·)

�
∑

k∈Z

∥∥∥
∥

∞∑

m=0

∑

i

�

[
μk,m,i�

−1
( 1

‖χIk,m,i ‖p(·)

)]
χIk,m,i

∥∥∥
∥

q

p(·)
.

Combining (3.4), (3.8) and (3.10), we conclude that

∥∥�(s( f ))
∥∥q
p(·),q ≈

∑

k0∈Z
2(k0+1)q

∥∥χ{�(s( f ))>2k0+1}
∥∥q
p(·)
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≤
∑

k0∈Z
2(k0+1)q

∥∥χ{T1+T2>2k0+1}
∥∥q
p(·)

�
∑

k0∈Z
2(k0+1)q

(∥∥χ{T1>2k0 }
∥∥q
p(·) + ∥∥χ{T2>2k0 }

∥∥q
p(·)
)

�
∑

k0∈Z
2k0q

∥∥χ{T1>2k0 }
∥∥q
p(·) +

∑

k0∈Z
2k0q

∥∥χ{T2>2k0 }
∥∥q
p(·)

�
∑

k∈Z

∥∥∥∥

∞∑

m=0

∑

i

�

[
μk,m,i�

−1
( 1

‖χIk,m,i ‖p(·)

)]
χIk,m,i

∥∥∥∥

q

p(·)
.

Taking over all the admissible representations of (3.1) for f , we obtain the desired
result.

For q = ∞. On one hand, since 0 < σ < 1 − 1
λ
, it follows from (3.7) that

2k0‖χ{T1>2k0 }‖p(·) (3.11)

� 2k0(λσ−λ+1)
{ k0−1∑

k=−∞
2kλθ(1−σ)

∥∥
∥

∞∑

m=0

∑

i

χIk,m,i

∥∥
∥

θ

p(·)

}1/θ

= 2k0(λσ−λ+1)
{ k0−1∑

k=−∞
2kθ(λ−λσ−1)2kθ

∥
∥∥

∞∑

m=0

∑

i

χIk,m,i

∥
∥∥

θ

p(·)

}1/θ

≤ 2k0(λσ−λ+1)
{ k0−1∑

k=−∞
2kθ(λ−λσ−1)

}1/θ
sup
k∈Z

2k
∥
∥∥

∞∑

m=0

∑

i

χIk,m,i

∥
∥∥
p(·)

� sup
k∈Z

2k
∥∥
∥

∞∑

m=0

∑

i

χIk,m,i

∥∥
∥
p(·).

On the other hand, since 0 < β < 1, it follows from (3.9) that

2k0‖χ{T2>2k0 }‖p(·) (3.12)

� 2k0(1−β)

{ ∞∑

k=k0

2(k+2)βθ
∥∥∥

∞∑

m=0

∑

i

χIk,m,i

∥∥∥
θ

p(·)

}1/θ

� 2k0(1−β)

{ ∞∑

k=k0

2kθ(β−1)2kθ
∥
∥∥

∞∑

m=0

∑

i

χIk,m,i

∥
∥∥

θ

p(·)

}1/θ

≤ 2k0(1−β)

{ ∞∑

k=k0

2kθ(β−1)
}1/θ

sup
k∈Z

2k
∥∥∥

∞∑

m=0

∑

i

χIk,m,i

∥∥∥
p(·)

� sup
k∈Z

2k
∥∥∥

∞∑

m=0

∑

i

χIk,m,i

∥∥∥
p(·).
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By (3.11), (3.12) and the monotonicity of �−1, we obtain

∥
∥�(s( f ))

∥
∥
p(·),∞ ≈ sup

k0∈Z
2k0+1

∥
∥χ{�(s( f ))>2k0+1}

∥
∥
p(·)

� sup
k0∈Z

2k0
∥∥χ{T1>2k0 }

∥∥
p(·) + sup

k0∈Z
2k0
∥∥χ{T2>2k0 }

∥∥
p(·)

� sup
k∈Z

2k
∥∥∥

∞∑

m=0

∑

i

χIk,m,i

∥∥∥
p(·)

� sup
k∈Z

∥
∥∥∥

∞∑

m=0

∑

i

�

[
μk,m,i�

−1
( 1

‖χIk,m,i ‖p(·)

)]
χIk,m,i

∥
∥∥∥
p(·)

.

Taking over all the admissible representations of (3.1) for f , we obtain the desired
result. This completes the proof of the theorem. ��

Obviously, we can obtain that the converse part of Theorem 3.3 also holds for∥∥�
(
M( f )

)∥∥
p(·),q and

∥∥�
(
S( f )

)∥∥
p(·),q as follows.

Theorem 3.4 Let p(·) ∈ P satisfy (2.2), � ∈ G be a concave function, 0 < q ≤ ∞
and max{p+, 1} < r ≤ ∞. If the martingale f = ( fn)n≥0 has a decom-
position of type (3.1) with (ak,m,i , Ik,m,i , μk,m,i )k∈Z,m,i∈N ⊂ AM (�, p(·), q, r)(
resp. AS(�, p(·), q, r)

)
, then for 0 < q < ∞,

∥
∥�
(
M( f )

)∥∥
p(·),q

� inf

⎧
⎨

⎩

∑

k∈Z

∥∥∥∥
∥

∞∑

m=0

∑

i

�

[
μk,m,i�

−1
(

1

‖χIk,m,i ‖p(·)

)]
χIk,m,i

∥∥∥∥
∥

q

p(·)

⎫
⎬

⎭

1/q

(
resp.

∥∥�
(
S( f )

)∥∥
p(·),q

� inf

⎧
⎨

⎩

∑

k∈Z

∥∥∥
∥∥

∞∑

m=0

∑

i

�

[
μk,m,i�

−1
(

1

‖χIk,m,i ‖p(·)

)]
χIk,m,i

∥∥∥
∥∥

q

p(·)

⎫
⎬

⎭

1/q )
,

(with the usual modification for q = ∞), where the infimum is taken over all the
preceding decompositions of f of the form (3.1).

We now establish the ∞-atom decompositions for �( f ) in Dp(·),q and Qp(·),q .

Theorem 3.5 Let p(·) ∈ P satisfy (2.2),� ∈ G be a concave function and 0 < q ≤ ∞.

If the martingale f = ( fn)n≥0 satisfies ‖�( f )‖Dp(·),q < ∞, then there exists a

sequence of triples (ak,m,i , Ik,m,i , μk,m,i )k∈Z,m,i∈N ⊂ AM (�, p(·), q,∞) such that
for each n ≥ 0, (3.1) holds and

⎧
⎨

⎩

∑

k∈Z

∥
∥∥∥∥

∞∑

m=0

∑

i

�

[
μk,m,i�

−1
(

1

‖χIk,m,i ‖p(·)

)]
χIk,m,i

∥
∥∥∥∥

q

p(·)

⎫
⎬

⎭

1/q

(3.13)
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� ‖�( f )‖Dp(·),q , (0 < q < ∞),

(with the usual modification for q = ∞).

Conversely, if the martingale f = ( fn)n≥0 has a decomposition of type (3.1), then
for 0 < q < ∞,

‖�( f )‖Dp(·),q

� inf

⎧
⎨

⎩

∑

k∈Z

∥∥
∥∥∥

∞∑

m=0

∑

i

�

[
μk,m,i�

−1
(

1

‖χIk,m,i ‖p(·)

)]
χIk,m,i

∥∥
∥∥∥

q

p(·)

⎫
⎬

⎭

1/q

,

(with the usual modification for q = ∞), where the infimum is taken over all the
preceding decompositions of f of the form (3.1).

Proof The proof follows the ideas in Theorem 3.3, so we omit some details. For
0 < q < ∞. Suppose that f = ( fn)n≥0 satisfies ‖�( f )‖Dp(·),q < ∞. We define
stopping times as follows

τk = inf
{
n ∈ N : λn > �−1(2k)

}
, inf ∅ = ∞,

where (λn)n≥0 is a sequence of nondecreasing, nonnegative and adapted functions
such that | fn| ≤ λn−1 and �(λ∞) ∈ L p(·),q .

Let (ak,m,i )k∈Z,m,i∈N and (μk,m,i )k∈Z,m,i∈N be defined as in the proof of the Theo-
rem 3.3. Obviously, ak,m,i is a simple (�, p(·),∞)M -atom for fixed k ∈ Z,m, i ∈ N.

Now we present (ak,m,i , Ik,m,i , μk,m,i )k∈Z,m,i∈N ⊂ AM (�, p(·), q,∞). Since {τk <

∞} = {�(λ∞) > 2k}, then we have
∑

k∈Z

∥∥
∥∥

∞∑

m=0

∑

i

�

[
μk,m,i�

−1
( 1

‖χIk,m,i ‖p(·)

)]
χIk,m,i

∥∥
∥∥

q

p(·)

≤
∑

k∈Z
2(k+2)q‖χ{τk<∞}‖qp(·) =

∑

k∈Z
2(k+2)q‖χ{�(λ∞)>2k }‖qp(·)

� ‖�(λ∞)‖qp(·),q .

Taking the infimum over (λn)n≥0 ∈ 	[Dp(·),q,�]( f ), we obtain the desired result.
For the converse part, let

λn =
∑

k∈Z

n∑

m=0

∑

i

μk,m,i‖M(ak,m,i )‖∞χIk,m,i .

Clearly, (λn)n≥0 is a nondecreasing, nonnegative and adapted sequence with | fn| ≤
λn−1. For an arbitrary k0, set

J1 =
k0−1∑

k=−∞

∞∑

m=0

∑

i

�
(
μk,m,i‖M(ak,m,i )‖∞

)
χIk,m,i
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and

J2 =
∞∑

k=k0

∞∑

m=0

∑

i

�
(
μk,m,i‖M(ak,m,i )‖∞

)
χIk,m,i .

By replacing T1 (resp. T2) in the proof of Theorem 3.3 with J1 (resp. J2), we get

‖�( f )‖qDp(·),q ≤ ‖�(λ∞)‖qp(·),q � ‖J1‖qp(·),q + ‖J2‖qp(·),q

�
∑

k∈Z

∥∥∥∥

∞∑

m=0

∑

i

�

[
μk,m,i�

−1
( 1

‖χIk,m,i ‖p(·)

)]
χIk,m,i

∥∥∥∥

q

p(·)
.

Taking over all the admissible representations of (3.1) for f , we obtain the desired
result. The proof of the case q = ∞ is analogous. This completes the proof of the
theorem. ��

Similar to the method of the proof above, we can present the atomic decomposition
for �( f ) under the functional of ‖ · ‖Qp(·),q .

Theorem 3.6 Let p(·) ∈ P satisfy (2.2),� ∈ G be a concave function and 0 < q ≤ ∞.

If the martingale f = ( fn)n≥0 satisfies ‖�( f )‖Qp(·),q < ∞, then there exists a

sequence of triples (ak,m,i , Ik,m,i , μk,m,i )k∈Z,m,i∈N ⊂ AS(�, p(·), q,∞) such that
for each n ≥ 0, (3.1) holds and

⎧
⎨

⎩

∑

k∈Z

∥∥∥∥∥

∞∑

m=0

∑

i

�

[
μk,m,i�

−1
(

1

‖χIk,m,i ‖p(·)

)]
χIk,m,i

∥∥∥∥∥

q

p(·)

⎫
⎬

⎭

1/q

� ‖�( f )‖Qp(·),q , (0 < q < ∞),

(with the usual modification for q = ∞).

Conversely, if the martingale f = ( fn)n≥0 has a decomposition of type (3.1), then
for 0 < q < ∞,

‖�( f )‖Qp(·),q

� inf

⎧
⎨

⎩

∑

k∈Z

∥∥∥∥∥

∞∑

m=0

∑

i

�

[
μk,m,i�

−1
(

1

‖χIk,m,i ‖p(·)

)]
χIk,m,i

∥∥∥∥∥

q

p(·)

⎫
⎬

⎭

1/q

,

(with the usual modification for q = ∞), where the infimum is taken over all the
preceding decompositions of f of the form (3.1).
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4 8-momentmartingale inequalities

In this section, using the atomic decompositions we presented above, we deduce some
fundamental �-moment martingale inequalities on variable Lorentz spaces. We need
the following lemma.

Lemma 4.1 (See [14, 34]) Let h be a martingale. Then

‖M(h)‖2 ≤ 2‖S(h)‖2 = 2‖s(h)‖2 ≤ 2‖M(h)‖2;
‖s(h)‖r ≤

√
r

2

∥∥M(h)
∥∥
r , (r ≥ 2);

‖s(h)‖r ≤
√
r

2

∥∥S(h)
∥∥
r , (r ≥ 2).

Moreover, if the stochastic basis {Fn}n≥0 is regular, then

‖M(h)‖r ≈ ‖S(h)‖r ≈ ‖s(h)‖r , (0 < r < ∞). (4.1)

Theorem 4.2 Let p(·) ∈ P satisfy (2.2) and � ∈ G be a concave function. Then

(1) For 0 < p+ < 2 and 0 < q ≤ ∞,

∥∥�(M( f ))
∥∥
p(·),q �

∥∥�(s( f ))
∥∥
p(·),q ,

∥∥�(S( f ))
∥∥
p(·),q �

∥∥�(s( f ))
∥∥
p(·),q .

(2) For 0 < q ≤ ∞,

∥∥�(s( f ))
∥∥
p(·),q �

∥∥�( f )
∥∥Dp(·),q ,

∥∥�(s( f ))
∥∥
p(·),q �

∥∥�( f )
∥∥Qp(·),q .

(3) For 0 < p+ < 2 and 0 < q ≤ ∞,

∥∥�( f )
∥∥Qp(·),q �

∥∥�( f )
∥∥Dp(·),q �

∥∥�( f )
∥∥Qp(·),q .

Proof (1) Let 0 < p+ < 2 and 0 < q ≤ ∞. Suppose that f = ( fn)n≥0 is a
martingale with

∥∥�
(
s( f )

)∥∥
p(·),q < ∞. By Theorem 3.3, there exists a sequence

of triples (ak,m,i , Ik,m,i , μk,m,i )k∈Z,m,i∈N ⊂ As(�, p(·), q, 2) such that (3.1) and
(3.2) hold. Using Lemma 4.1, we have

∥
∥∥M
(1
2
ak,m,i

)∥∥∥
2

≤ ∥∥s(ak,m,i )
∥
∥
2 ≤ P(Ik,m,i )

1/2�−1
( 1

‖χIk,m,i ‖p(·)

)
.

Hence, 1
2a

k,m,i is a simple (�, p(·), 2)M -atom and

(1
2
ak,m,i , Ik,m,i , μk,m,i

)

k∈Z,m,i∈N ⊂ AM (�, p(·), q, 2).
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Moreover, applying (3.1), (3.2), Lemma 2.7 and Theorem 3.4, we obtain that for
each n ≥ 0,

1

2
fn =

∑

k∈Z

n−1∑

m=0

∑

i

μk,m,iEn

(1
2
ak,m,i

)
a.e.,

and

∥∥�(M( f ))
∥∥
p(·),q ≤ 2

∥∥∥�
(
M
(1
2
f
))∥∥∥

p(·),q

�
{
∑

k∈Z

∥
∥∥∥

∞∑

m=0

∑

i

�

[
μk,m,i�

−1
( 1

‖χIk,m,i ‖p(·)

)]
χIk,m,i

∥
∥∥∥

q

p(·)

}1/q

� ‖�(s( f ))‖p(·),q , (0 < q < ∞),

(with the usual modification for q = ∞). The second inequality of (1) can be
proved analogously.

(2) Let max{p+, 2} < r < ∞, 0 < q ≤ ∞ and martingale f = ( fn)n≥0 satisfy
‖�( f )‖Dp(·),q < ∞. According to Theorem 3.5, there exists a sequence of triples

(ak,m,i , Ik,m,i , μk,m,i )k∈Z,m,i∈N ⊂ AM (�, p(·), q,∞) such that for each n ≥ 0,
(3.1) and (3.13) hold. For fixed k ∈ Z,m, i ∈ N, we get

√
2

r
‖s(ak,m,i )‖r ≤ ∥∥M(ak,m,i )

∥∥
r ≤ ‖χIk,m,i ‖r

∥∥M(ak,m,i )
∥∥∞

≤ P(Ik,m,i )
1/r�−1

( 1

‖χIk,m,i ‖p(·)

)
.

By Lemma 4.1 and ak,m,i being a simple (�, p(·),∞)M -atom. So
√

2
r a

k,m,i is a
simple (�, p(·), r)s-atom and

(√
2

r
ak,m,i , Ik,m,i , μk,m,i

)

k∈Z,m,i∈N
⊂ As(�, p(·), q, r).

It follows from (3.1), (3.2), (3.13) and Lemma 2.7 that for each n ≥ 0,

√
2

r
fn =

∑

k∈Z

n−1∑

m=0

∑

i

μk,m,iEn

(√
2

r
ak,m,i

)

a.e.,

and

∥∥�(s( f ))
∥∥
p(·),q ≤

√
r

2

∥∥∥∥∥
�

(

s

(√
2

r
f

))∥∥∥∥∥
p(·),q
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�

⎧
⎨

⎩

∑

k∈Z

∥
∥∥∥∥

∞∑

m=0

∑

i

�

[
μk,m,i�

−1
(

1

‖χIk,m,i ‖p(·)

)]
χIk,m,i

∥
∥∥∥∥

q

p(·)

⎫
⎬

⎭

1/q

�
∥
∥�( f )

∥
∥Dp(·),q , (0 < q < ∞),

(with the usual modification for q = ∞). The second inequality of (2) can be
proved analogously.

(3) Let 0 < p+ < 2, 0 < q ≤ ∞ and f = ( fn)n≥0 be a martingale with
‖�( f )‖Qp(·),q < ∞. For any ε > 0, there exists (λn)n≥0 ∈ 	[Qp(·),q,�]( f )
such that ‖�(λ∞)‖p(·),q ≤ ‖�( f )‖Qp(·),q + ε. Then, there has

| fn| = | fn − fn−1 + fn−1| ≤ | fn − fn−1| + Mn−1( f )

≤ Sn( f ) + Mn−1( f ) ≤ λn−1 + Mn−1( f ).

Applying (1) and (2), we have

∥∥�
(
λ∞ + M( f )

)∥∥
p(·),q ≤ ∥∥�(λ∞) + �

(
M( f )

)∥∥
p(·),q (4.2)

� ‖�(λ∞)‖p(·),q + ∥∥�(M( f )
)∥∥

p(·),q
� ‖�( f )‖Qp(·),q + ε + ∥∥�(s( f ))∥∥p(·),q
� ‖�( f )‖Qp(·),q + ε.

Hence,
(
λn + Mn( f )

)
n≥0 ∈ 	[Dp(·),q,�]( f ). From the definition of ‖ · ‖Dp(·),q

and (4.2), we have

‖�( f )‖Dp(·),q � ‖�( f )‖Qp(·),q + ε.

Taking ε −→ 0, we obtain the right inequality in (3).
We consider the rest part of (3) in the following. Let f = ( fn)n≥0 be a martingale

with ‖�( f )‖Dp(·),q < ∞. For any η > 0, there exists (γn)n≥0 ∈ 	[Dp(·),q,�]( f )
such that ‖�(γ∞)‖p(·),q ≤ ‖�( f )‖Dp(·),q + η. Then, this yields

Sn( f ) ≤ Sn−1( f ) + | fn − fn−1| ≤ Sn−1( f ) + 2Mn( f )

≤ Sn−1( f ) + 2γn−1.

Combining (1) and (2), we get

∥∥�
(
S( f ) + 2γ∞

)∥∥
p(·),q ≤ ∥∥�(S( f )

)+ �
(
2γ∞

)∥∥
p(·),q (4.3)

�
∥∥�
(
S( f )

)∥∥
p(·),q + ∥∥�(2γ∞)

∥∥
p(·),q

≤ ∥∥�(S( f )
)∥∥

p(·),q + 2
∥∥�(γ∞)

∥∥
p(·),q

�
∥∥�
(
s( f )

)∥∥
p(·),q + ‖�( f )‖Dp(·),q + η

� ‖�( f )‖Dp(·),q + η.
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This means
(
Sn( f )+ 2γn

)
n≥0 ∈ 	[Qp(·),q,�]( f ). By the definition of ‖ · ‖Qp(·),q and

(4.3), we have

‖�( f )‖Qp(·),q � ‖�( f )‖Dp(·),q + η.

Taking η −→ 0, we obtain the left inequality in (3). We conclude that

‖�( f )‖Dp(·),q � ‖�( f )‖Qp(·),q � ‖�( f )‖Dp(·),q .

��
Remark 4.3 Let p(·) ≡ p. Then, we obtain all the results in Peng and Li [40]. More-
over, if p(·) ≡ 1 = q, then we obtain all the results in Jiao and Yu [24].

Remark 4.4 Let�(t) = t .Then, we obtain some results in [21].Moreover, if�(t) = t
and p(·) ≡ p, then we obtain many results in the classical martingale space theory as
in [17, 44].

Furthermore, if the stochastic basis is regular, similarly to proof of Theorem 3.5 in
[21], the other part of Theorem 3.4 also holds, then we can easily get the following
further conclusion via (4.1) and the proof process of Theorems 4.2.

Theorem 4.5 Let p(·) ∈ P satisfy (2.2),� ∈ G be a concave function and 0 < q ≤ ∞.

If the stochastic basis {Fn}n≥0 is regular, then

∥∥�(M( f ))
∥∥
p(·),q ≈ ∥∥�(S( f ))

∥∥
p(·),q ≈ ∥∥�(s( f ))

∥∥
p(·),q

≈ ∥∥�( f )
∥∥Qp(·),q ≈ ∥∥�( f )

∥∥Dp(·),q .

If the stochastic basis {Fn}n≥0 is regular, let �(t) = t, then we obtain from The-
orem 4.5 that the five variable martingale Lorentz–Hardy spaces are equivalent, see
also Corollary 3.8 in [22].

Corollary 4.6 Let p(·) ∈ P satisfy (2.2) and 0 < q ≤ ∞. If the stochastic basis
{Fn}n≥0 is regular, then

HM
p(·),q = HS

p(·),q = Hs
p(·),q = Qp(·),q = Dp(·),q

with equivalent quasi-norms.
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