ORIGINAL PAPER

Dual spaces for variable martingale Lorentz–Hardy spaces

Yong Jiao1 · Ferenc Weisz2 · Lian Wu¹ · Dejian Zhou[1](http://orcid.org/0000-0002-0102-5256)

Received: 14 December 2020 / Accepted: 28 May 2021 / Published online: 16 June 2021 © Tusi Mathematical Research Group (TMRG) 2021

Abstract

Let $H_{p(\cdot),q}$ be the variable Lorentz–Hardy martingale spaces. In this paper, we give a new atomic decomposition for these spaces via simple L_r -atoms ($1 < r \leq \infty$). Using this atomic decomposition, we consider the dual spaces of variable Lorentz-Hardy spaces $H_{p(\cdot),q}$ for the case $0 < p(\cdot) \le 1$, $0 < q \le 1$, and $0 < p(\cdot) < 2$, $1 < q < \infty$ respectively, and prove that they are equivalent to the *BMO* spaces with variable exponent. Furthermore, we also obtain several John-Nirenberg theorems based on the dual results.

Keywords Variable martingales · Martingale Hardy spaces · Dualities · John– Nirenberg theorems

Mathematics Subject Classifcation Primary 60G42 · 60G46 · Secondary 42B30 · 42C10

Communicated by Fedor Sukochev.

 \boxtimes Dejian Zhou zhoudejian@csu.edu.cn

> Yong Jiao jiaoyong@csu.edu.cn

Ferenc Weisz weisz@inf.elte.hu

Lian Wu wulian@csu.edu.cn

² Department of Numerical Analysis, Eötvös L. University, Pázmány P. sétány $1/C$. 1117 Budapest, Hungary

Ferenc Weisz was supported by the Hungarian National Research, Development and Innovation Office—NKFIH, KH130426. Dejian Zhou is supported by NSFC (11801573).

¹ School of Mathematics and statistics, Central South University, Changsha 410083, China

1 Introduction

In this paper, we focus on the dual space of Hardy spaces in martingale setting. A martingale analogue of $H_1 - BMO$ duality can be found in [\[9](#page-29-0)]. For dyadic mar-tingales, Herz [[13\]](#page-30-0) proved the dual space of H_p ($0 < p < 1$). In 1990, Weisz [[28](#page-30-1)] characterized the dual space of H_p ($0 < p \le 1$) for general martingales via atomic decomposition. Recently, these results were extended to more general cases. Jiao et al. [\[14\]](#page-30-2) got the atomic decomposition for martingale Lorentz–Hardy spaces $H_{p,q}$. Later, Jiao et al. [\[17](#page-30-3)] extended the atomic decomposition in [[14](#page-30-2)] and investigated the dual space of $H_{p,q}$. Miyamoto et al. [\[24](#page-30-4)] studied the atomic decomposition of martingale Orlicz–Hardy space H_{Φ} and proved the dual of it. The weak type martingale Hardy spaces were also studied by several authors, see for instance [[16](#page-30-5), [31\]](#page-30-6).

Recently, motivated by the development of harmonic analysis based on variable Lebesgue spaces (see e.g. [\[5](#page-29-1)] and references therein), people began to study martingales associated with variable exponents. In particular, Aoyama [[1\]](#page-29-2) established the Doob maximal inequality when $p(\cdot)$ is \mathcal{F}_n -measurable for all $n \geq 0$. Shortly later, Nakai and Sadasue [[25\]](#page-30-7) showed that Aoyama's assumption is not necessary for the Doob maximal inequality. In [\[19](#page-30-8)] (see also [\[12](#page-29-3)]), with additional assumption that \mathcal{F}_n is atomic σ -algebra, Jiao et al. introduced a new condition on $p(\cdot)$ to ensure that Doob maximal operator is bounded on $L_{p(\cdot)}(Ω)$. Xie et al. [[33\]](#page-30-9) proved several martingale inequalities in Musielak-Orlicz spaces. Jiao et al. [\[15](#page-30-10)] did a systematic study of variable martingale Lorentz-Hardy spaces $H_{p(\cdot),q}$. Actually, the authors in [\[15](#page-30-10)] constructed atomic decomposition for Hardy spaces and gave applications to Fourier analysis.

In the present paper, we continue to study the variable martingale Lorentz-Hardy spaces $H_{p(\cdot),q}$. Our first aim is to show the dual space of $H_{p(\cdot),q}$. The main tool we use here is atomic decomposition of $H_{p(\cdot),q}$. Recall that only ∞-atoms works for the atomic decomposition in $[15]$ $[15]$. As we will see, by Lemma 3.6 , we can construct atomic decomposition via *r*-atoms ($r < \infty$) in the sense of simple atoms (see Theorem [3.5\)](#page-8-1). The proof is given in Sect. [3](#page-7-0). In Sect. [4,](#page-14-0) as applications of this kind of atomic decomposition, we establish the dual space of $H_{p(\cdot),q}$.

Our second objective is to prove John-Nirenberg theorem associated with variable exponent. Consider martingales with respect to a non-decreasing stochastic basic $(\mathcal{F}_n)_{n>0}$. Let T be the set of all stopping times with respect to $(\mathcal{F}_n)_{n>0}$. The well known (classical) John–Nirenberg theorem says that if the the stochastic basis $(\mathcal{F}_n)_{n>0}$ is regular, then

$$
BMO_p = BMO_1, \quad 1 \le p < \infty,
$$
\n(1)

where $||f||_{BMO_p} = ||f||_{BMO_{L_p}}$ defined below. We refer the reader to [\[9](#page-29-0)] for the above fact ([1\)](#page-1-0). This result was generalized by Yi et al. [\[35](#page-30-11)]: if the stochastic basis is regular and E is a rearrangement invariant Banach function space (see e.g. [\[2](#page-29-4)]), then

$$
BMO_E = BMO_1,\tag{2}
$$

where

$$
||f||_{BMO_E} = \sup_{\tau \in \mathcal{T}} \frac{||(f - f^\tau)\chi_{\{\tau < \infty\}}||_E}{||\chi_{\{\tau < \infty\}}||_E}.
$$

In this paper, we introduce variable Lipschitz space $BMO_F(\alpha(\cdot))$ and show that (Theorem [5.10](#page-26-0))

$$
BMO_E(\alpha(\cdot))=BMO_1(\alpha(\cdot))
$$

where $\alpha(\cdot)$ satisfies [\(5](#page-6-0)). This result is just ([2\)](#page-1-1) when $\alpha(\cdot) \equiv 0$. We also have John-Nirenberg theorem for generalized BMO martingale spaces associated with variable exponent. Recall that Jiao et al. introduced the generalized BMO martingale spaces *BMO_{r,q}*(α) (*r*, $q \ge 1$, $\alpha \ge 0$) and proved that *BMO_{r,q}*(α) is the dual space of $H_{p,q}$ (0 < *p* ≤ 1 and $\alpha = 1/p - 1$). Jiao et al. [[17,](#page-30-3) Theorem 1.2] obtained that if the stochastic basis is regular, then

$$
BMO_{r,q}(\alpha) = BMO_{1,q}(\alpha). \tag{3}
$$

The variable exponent version of (3) (3) is presented in Theorem [5.14](#page-29-5). The proof is given in Sect. [5](#page-20-0).

Throughout this paper, the integer set and nonnegative integer set are denoted by $\mathbb Z$ and $\mathbb N$, respectively. We denote by C a positive constant, which can vary from line to line. The symbol $A \leq B$ stands for the inequality $A \leq CB$. If we write $A \approx B$, then it mean *A ≲ B ≲ A*.

2 Preliminaries

2.1 Variable Lebesgue spaces $L_{p(⋅)}$

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space. A measurable function $p(\cdot)$: $\Omega \to (0, \infty)$ is called a variable exponent. For a measurable set $A \subset \Omega$, we denote

$$
p_{-}(A) := \text{ess} \inf_{x \in A} p(x), \quad p_{+}(A) := \text{ess} \sup_{x \in A} p(x)
$$

and for convenience

$$
p_- := p_-(\Omega), \quad p_+ := p_+(\Omega).
$$

Denote by $\mathcal{P}(\Omega)$ the collection of all variable exponents $p(\cdot)$ such that $0 < p_− ≤ p_+ < ∞$. The variable Lebesgue space $L_{p(·)} = L_{p(·)}(Ω)$ is the collection of all measurable functions *f* defined on $(\Omega, \mathcal{F}, \mathbb{P})$ such that for some $\lambda > 0$,

$$
\rho(f/\lambda) = \int_{\Omega} \left(\frac{|f(x)|}{\lambda} \right)^{p(x)} d\mathbb{P} < \infty.
$$

This becomes a quasi-Banach function space when it is equipped with the quasi-norm

For any $f \in L_{p(\cdot)}$, we have $\rho(f) \leq 1$ if and only if $||f||_{p(\cdot)} \leq 1$; see [[6,](#page-29-6) Theorem 1.3]. In the second we always use the symbol the sequel, we always use the symbol

$$
\underline{p} = \min\{p_-, 1\}.
$$

Throughout the paper, the variable exponent $p'(\cdot)$ is defined pointwise by

$$
\frac{1}{p(x)} + \frac{1}{p'(x)} = 1, \quad x \in \Omega.
$$

For $p(\cdot) \in \mathcal{P}(\Omega)$, it is clear that $p'(x) \in \mathbb{R} \cup \{\infty\} \setminus \{0\}$ for any $x \in \Omega$. We present some basic properties here (see [[26\]](#page-30-12)):

- 1. $||f||_{p(.)} \ge 0$; $||f||_{p(.)} = 0 \Leftrightarrow f \equiv 0$.
- 2. $||cf||_{p(\cdot)} = |c| \cdot ||f||_{p(\cdot)}$ for $c \in \mathbb{C}$.
- 3. for $0 < b \leq p$, we have

$$
||f + g||_{p(\cdot)}^b \le ||f||_{p(\cdot)}^b + ||g||_{p(\cdot)}^b.
$$
\n(4)

Lemma 2.1 ([\[5](#page-29-1), Corollary 2.28]) *Let p*(⋅), *q*(⋅),*r*(⋅) ∈ P(Ω) *satisfy*

$$
\frac{1}{p(x)} = \frac{1}{q(x)} + \frac{1}{r(x)}, \quad x \in \Omega.
$$

Then there exists a constant C such that for all $f \in L_{q(\cdot)}$ *and* $g \in L_{r(\cdot)}$ *, we have* $fg \in L_{p(\cdot)}$ and

$$
||fg||_{p(\cdot)} \leq C||f||_{q(\cdot)}||g||_{r(\cdot)}.
$$

Furthermore, we have the following reverse Minkowski inequality. It was stated without a proof in [[34,](#page-30-13) Remark 2.4] for p_{+} < 1. We give a detailed proof here.

Lemma 2.2 *Let* $p(\cdot) \in \mathcal{P}(\Omega)$ *. If* $p_+ \leq 1$ *, we have, for positive functions* $f, g \in L_{p(\cdot)}$

$$
||f||_{p(\cdot)} + ||g||_{p(\cdot)} \le ||f + g||_{p(\cdot)}.
$$

Proof Take positive functions $f, g \in L_{p(\cdot)}$. For arbitrary small positive number $\varepsilon > 0$, set $\lambda_f = ||f||_{p(\cdot)} - \varepsilon$ and $\lambda_g = ||g||_{p(\cdot)} - \varepsilon$. Note that, as mentioned before, $\rho(f) > 1$ if and only if $||f||_{p(\cdot)} > 1$. Then, by concavity, we have

$$
\int_{\Omega} \left(\frac{f(x) + g(x)}{\lambda_f + \lambda_g} \right)^{p(x)} d\mathbb{P} \ge \frac{\lambda_f}{\lambda_f + \lambda_g} \int_{\Omega} \left(\frac{f(x)}{\lambda_f} \right)^{p(x)} d\mathbb{P} + \frac{\lambda_g}{\lambda_f + \lambda_g} \int_{\Omega} \left(\frac{g(x)}{\lambda_g} \right)^{p(x)} d\mathbb{P} > 1,
$$

which implies

$$
||f + g||_{p(\cdot)} > \lambda_f + \lambda_g = ||f||_{p(\cdot)} + ||g||_g - 2\varepsilon.
$$

Taking $\varepsilon \to 0$, we get the desired result.

2.2 Variable Lorentz spaces Lp(⋅)**,^q**

In this section, we recall the definition of Lorentz spaces $L_{p(\cdot),q}(\Omega)$ with variable exponents $p(\cdot) \in \mathcal{P}(\Omega)$ and $0 < q \le \infty$ is a constant. For more information about general cases $L_{p(\cdot),q(\cdot)}(\Omega)$, we refer the reader to [[21](#page-30-14)]. Following [21] (see also [\[36](#page-30-15)]), we introduce the defnition below.

Definition 2.3 Let *p*(⋅) ∈ *P*(Ω) and $0 < q \leq ∞$. Then $L_{p(·),q}(\Omega)$ is the collection of all measurable functions *f* such that

$$
||f||_{L_{p(\cdot),q}} := \begin{cases} \left(\int_0^\infty \lambda^q ||\chi_{{\{ |f| > \lambda \}}}\|_{p(\cdot)}^q \frac{d\lambda}{\lambda}\right)^{1/q}, & q < \infty, \\ \sup_{\lambda} \lambda ||\chi_{{\{ |f| > \lambda \}}}\|_{p(\cdot)}, & q = \infty \end{cases}
$$

is fnite.

Next we introduce a closed subspace of $L_{p(\cdot),\infty}$.

Definition 2.4 Let $p(\cdot) \in \mathcal{P}(\Omega)$. We define $\mathcal{L}_{p(\cdot),\infty}(\Omega)$ as the set of measurable functions *f* such that

$$
\lim_{n\to\infty}||f\chi_{A_n}||_{L_{p(\cdot),\infty}}=0
$$

for every sequence $(A_n)_{n>0}$ satisfying $\mathbb{P}(A_n) \to 0$ as $n \to \infty$.

It follows from the dominated convergence theorem for $\mathscr{L}_{p(\cdot),\infty}(\Omega)$ (see Lemma 2.13 in Jiao et al. [[15](#page-30-10)]) that the simple functions are dense in $\mathscr{L}_{p(\cdot),\infty}(\Omega)$.

2.3 Variable martingale Hardy spaces

In this section, we introduce some standard notations from martingale theory. We refer to the books [\[9,](#page-29-0) [23,](#page-30-16) [29](#page-30-17)] for the theory of classical martingale space. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space. Let the subalgebras $(\mathcal{F}_n)_{n\geq 0}$ be increasing such that $\mathcal{F} = \sigma(\cup_{n>0} \mathcal{F}_n)$, and let \mathbb{E}_n denote the conditional expectation operator relative to \mathcal{F}_n . A sequence of measurable functions $f = (f_n)_{n>0} \subset L_1(\Omega)$ is called a martingale with respect to $(\mathcal{F}_n)_{n>0}$ if $\mathbb{E}_n(f_{n+1}) = f_n$ for every $n \geq 0$. For a martingale $f = (f_n)_{n>0}$,

$$
d_n f = f_n - f_{n-1}, \quad n \ge 0,
$$

$$
||f||_{p(\cdot)} = \sup_{n \geq 0} ||f_n||_{p(\cdot)}.
$$

If $||f||_{p(\cdot)} < \infty$, *f* is called a bounded $L_{p(\cdot)}$ -martingale and it is denoted by $f \in L_{p(\cdot)}$.
For a martingale relative to $(O, \mathcal{F}, \mathbb{P}(\mathcal{F}))$ are define the maximal function, the For a martingale relative to $(\Omega, \mathcal{F}, \mathbb{P}; (\mathcal{F}_n)_{n>0})$, we define the maximal function, the square function and the conditional square function of *f*, respectively, as follows $(f_{-1} = 0)$:

$$
M_m(f) = \sup_{0 \le n \le m} |f_n|, \quad M(f) = \sup_{n \ge 0} |f_n|;
$$

$$
S_m(f) = \left(\sum_{n=0}^m |d_n f|^2\right)^{1/2}, \quad S(f) = \left(\sum_{n=0}^\infty |d_n f|^2\right)^{1/2};
$$

$$
s_m(f) = \left(\sum_{n=0}^m \mathbb{E}_{n-1} |d_n f|^2\right)^{\frac{1}{2}}, \quad s(f) = \left(\sum_{n=0}^\infty \mathbb{E}_{n-1} |d_n f|^2\right)^{\frac{1}{2}}.
$$

Denote by Λ the collection of all sequences $(\lambda_n)_{n\geq 0}$ of non-decreasing, non-negative and adapted functions with $\lambda_{\infty} = \lim_{n \to \infty} \lambda_n$. Let $p(\cdot) \in \mathcal{P}(\Omega)$ and $0 < q \leq \infty$.

Similarly, the variable martingale Lorentz-Hardy spaces associated with variable Lorentz spaces $L_{p(\cdot),q}$ are defined as follows:

$$
H_{p(\cdot),q}^{M} = \{f = (f_{n})_{n\geq 0} : ||f||_{H_{p(\cdot),q}^{M}} = ||M(f)||_{L_{p(\cdot),q}} < \infty \};
$$

\n
$$
H_{p(\cdot),q}^{S} = \{f = (f_{n})_{n\geq 0} : ||f||_{H_{p(\cdot),q}^{S}} = ||S(f)||_{L_{p(\cdot),q}} < \infty \};
$$

\n
$$
H_{p(\cdot),q}^{S} = \{f = (f_{n})_{n\geq 0} : ||f||_{H_{p(\cdot),q}^{S}} = ||s(f)||_{L_{p(\cdot),q}} < \infty \};
$$

\n
$$
Q_{p(\cdot),q} = \{f = (f_{n})_{n\geq 0} : \exists (\lambda_{n})_{n\geq 0} \in \Lambda, \text{ s.t. } S_{n}(f) \leq \lambda_{n-1}, \lambda_{\infty} \in L_{p(\cdot),q} \};
$$

\n
$$
||f||_{Q_{p(\cdot),q}} = \inf_{(\lambda_{n}) \in \Lambda} ||\lambda_{\infty}||_{L_{p(\cdot),q}};
$$

\n
$$
P_{p(\cdot),q} = \{f = (f_{n})_{n\geq 0} : \exists (\lambda_{n})_{n\geq 0} \in \Lambda, \text{ s.t. } |f_{n}| \leq \lambda_{n-1}, \lambda_{\infty} \in L_{p(\cdot),q} \};
$$

\n
$$
||f||_{P_{p(\cdot),q}} = \inf_{(\lambda_{n}) \in \Lambda} ||\lambda_{\infty}||_{L_{p(\cdot),q}}.
$$

We define $\mathcal{H}_{p(\cdot),\infty}^M$ as the space of all martingales such that $M(f) \in \mathcal{L}_{p(\cdot),\infty}$. Analogously, we can define $\mathscr{H}_{p(\cdot),\infty}^{\mathcal{S}}$ and $\mathscr{H}_{p(\cdot),\infty}^{\mathcal{S}}$, respectively.

Remark 2.5 If $p(\cdot) = p$ is a constant, then the above definitions of variable Hardy spaces go back to the classical defnitions stated in [[9\]](#page-29-0) and [\[29](#page-30-17)].

2.4 The Doob maximal operator

We need some more notations. Recall that $B \in \mathcal{F}_n$ is called an atom, if for any $A \subset B$ with $A \in \mathcal{F}_n$ satisfying $\mathbb{P}(A) < \mathbb{P}(B)$, we have $\mathbb{P}(A) = 0$. In the theory of variable spaces, we usually use the log-Hölder continuity of $p(\cdot)$. In the sequel of this paper,

we will always suppose that every σ -algebra \mathcal{F}_n is generated by countably many atoms. We denote by $A(\mathcal{F}_n)$ the set of all atoms in \mathcal{F}_n for each $n \geq 0$. Instead of the log-Hölder continuity, we suppose that there exists an absolute constant $K_{p(\cdot)} \geq 1$ depending only on $p(\cdot)$ such that

$$
\mathbb{P}(A)^{p_-(A)-p_+(A)} \le K_{p(\cdot)}, \quad \forall A \in \bigcup_n A(\mathcal{F}_n). \tag{5}
$$

Note that in this paper, under condition ([5\)](#page-6-0), we also mean that every σ -algebra \mathcal{F}_n is generated by countably many atoms.

It is clear that for $f \in L_1(\Omega)$

$$
\mathbb{E}_n(f) = \sum_{A \in A(\mathcal{F}_n)} \left(\frac{1}{\mathbb{P}(A)} \int_A f(x) d\mathbb{P} \right) \chi_A, \quad n \in \mathbb{N}.
$$

We now recall the definition of regularity. The stochastic basis $(\mathcal{F}_n)_{n>0}$ is said to be regular, if for $n \geq 0$ and $A \in \mathcal{F}_n$, there exists $B \in \mathcal{F}_{n-1}$ such that $A \subset B$ and $P(B) \leq RP(A)$, where *R* is a positive constant independent of *n*. A martingale is said to be regular if it is adapted to a regular σ -algebra sequence. This implies that there exists a constant $R > 0$ such that

$$
f_n \le R f_{n-1} \tag{6}
$$

for all non-negative martingales $(f_n)_{n>0}$ adapted to the stochastic basis $(\mathcal{F}_n)_{n>0}$. We refer the reader to $[23,$ $[23,$ Chapter 7] for more details.

The following results are taken from [[12](#page-29-3)] and [\[19](#page-30-8)].

Lemma 2.6 *Let* $p(\cdot) \in \mathcal{P}(\Omega)$ *satisfy* [\(5](#page-6-0)). *Then, for any atom B* $\in \bigcup_{n} A(\mathcal{F}_n)$,

$$
\mathbb{P}(B)^{1/p_-(B)} \approx \mathbb{P}(B)^{1/p(x)} \approx \mathbb{P}(B)^{1/p_+(B)} \approx \|\chi_B\|_{p(\cdot)}, \quad \forall x \in B.
$$

Lemma 2.7 *Let p*(⋅) ∈ $P(\Omega)$ *satisfy* [\(5](#page-6-0)) *with p*_− ≥ 1. *Then, for any atom B* ∈ ∪_{*n}A*(\mathcal{F}_n)</sub>

$$
\|\chi_B\|_{r(\cdot)} \approx \|\chi_B\|_{p(\cdot)} \|\chi_B\|_{q(\cdot)},
$$

where

,

$$
\frac{1}{r(x)} = \frac{1}{p(x)} + \frac{1}{q(x)}, \quad x \in \Omega.
$$

Theorem 2.8 *Let* $p(·) ∈ P(Ω)$ *satisfy* [\(5](#page-6-0)) *and* $1 < p_− ≤ p_+ < ∞$ *. Then, there is a positive constant Cp*(⋅) *such that*

$$
||M(f)||_{p(\cdot)} \leq C_{p(\cdot)} ||f||_{p(\cdot)}.
$$

3 Atomic decomposition via simple atoms

In this section, we consider the atomic characterizations of variable Lorentz-Hardy spaces. Recall that, without any restriction, $H^s_{p(\cdot),q}$ has atomic decomposition via $(1, p(\cdot), \infty)$ -atoms (see [\[15\]](#page-30-10)). In this section, we show that, under the assumption that the filtration $(\mathcal{F}_n)_n$ is generated by countably many atoms and *p*(⋅) satisfies ([5](#page-6-0)), then
 $H^s_{n(\cdot)}$ has atomic decomposition via simple $(1, p(\cdot), r)$ -atoms with $H_{p(\cdot),q}^s$ decomposition via simple $(1, p(\cdot), r)$ -atoms with $\max\{p_+, 1\} < r \leq \infty$. To be able the prove the duality results later, we need this new atomic decomposition. We will use it not only for $r = \infty$ but also for $r < \infty$. The results later cannot be proved with the atomic decomposition obtained in [[15](#page-30-10)]. We begin this section with the definition of the simple atoms (see [\[30\]](#page-30-18) for the classical definition).

Definition 3.1 Let $p(\cdot) \in \mathcal{P}(\Omega)$ and $1 < r \leq \infty$. A measurable function *a* is called a simple $(1, p(\cdot), r)$ -atom (briefly $(s, 1, p(\cdot), r)$ -atom) if there exist $j \in \mathbb{N}$, $I \in A(\mathcal{F}_j)$ such that

- (1) the support of *a* is contained in *I*,
- (2) $\|s(a)\|_r \le \frac{\|x_l\|_r}{\|x_l\|_{p(\cdot)}},$
- (3) $\mathbb{E}_j(a) = 0$.

If $s(a)$ in (2) is replaced by $S(a)$ (or $M(a)$), then the function *a* is called $(s, 2, p(\cdot), r)$ -atom (or $(s, 3, p(\cdot), r)$ -atom).

The result below is a simple but useful observation.

Proposition 3.2 *Let* $p(\cdot) \in \mathcal{P}(\Omega)$ *and* $1 < r \leq \infty$. If a is an $(s, i, p(\cdot), r)$ -atom $(i = 1, 2, 3)$ associated with $I \in A(\mathcal{F}_j)$ for some $j \in \mathbb{N}$, then

$$
s(a)\chi_I = s(a)
$$
, $S(a)\chi_I = S(a)$ and $M(a)\chi_I = M(a)$.

Proof Observe that $\mathbb{E}_m(a) = 0$ for $m \leq j$. Hence, for each $m \in \mathbb{N}$, $\mathbb{E}_m(a)\chi_j = \mathbb{E}_m(a)$. From this,

$$
M(a)\chi_I = \sup_{m\geq 0} \mathbb{E}_m(a)\chi_I = \sup_{m\geq 0} \mathbb{E}_m(a) = M(a).
$$

Also,

$$
s^{2}(a) = \sum_{m=0}^{\infty} \mathbb{E}_{m-1} |d_{m}a|^{2} = \sum_{m=j+1}^{\infty} \mathbb{E}_{m-1} |d_{m}a|^{2}
$$

$$
= \chi_{I} \sum_{m=j+1}^{\infty} \mathbb{E}_{m-1} |d_{m}a|^{2} = s^{2}(a)\chi_{I}.
$$

This means $s(a)\chi$ ^{*I*} = $s(a)$. In a similar way, we have

$$
S(a)\chi_I = S(a).
$$

◻

We introduce the defnition of atomic Hardy spaces.

Definition 3.3 Let $p(\cdot) \in \mathcal{P}(\Omega)$, $0 < q \le \infty$ and $1 < r \le \infty$. Assume that $d = 1, 2$ or 3. The atomic Hardy space $H_{p(\cdot),q}^{\text{sat,d,r}}$ is defined as the space of all martingales $f = (f_n)_{n \ge 0}$ such that

$$
f_n = \sum_{k \in \mathbb{Z}} \sum_{j=0}^{n-1} \sum_i \mu_{k,j,i} a_n^{k,j,i} \quad \text{a.e.}, \quad n \in \mathbb{N}, \tag{7}
$$

where $(a_{k,j,i})_{k \in \mathbb{Z}, j,i \in \mathbb{N}}$ is a sequence of $(s, d, p(\cdot), r)$ -atoms associated with $(I_{k,j,i})_{k,j,i} \subset A(\mathcal{F}_j)$, which are disjoint for fixed k, and $\mu_{k,j,i} = 3 \cdot 2^k || \chi_{I_{k,j,i}} ||_{p(\cdot)}$. For *f* ∈ *H*^{sat,d,r}, define

$$
||f||_{H_{p(\cdot),q}^{\text{sat,d,r}}} = \inf \left(\sum_{k \in \mathbb{Z}} \left\| \sum_{j=0}^{\infty} \sum_{i} \frac{\mu_{k,j,i} \chi_{I_{k,j,i}}}{\|\chi_{I_{k,j,i}}\|_{p(\cdot)}} \right\|_{p(\cdot)}^{q} \right)^{1/q},
$$

where the infimum is taken over all the decompositions of the form (7) (7) .

Remark 3.4 From the above definition, since $\mu_{k,j,i} = 3 \cdot 2^k ||\chi_{I_{k,j,i}}||_{p(\cdot)}$, we have

$$
\|f\|_{H_{p(\cdot),q}^{\text{sat,d,r}}} \approx \inf \left(\sum_{k \in \mathbb{Z}} 2^{kq} \left\| \sum_{j=0}^{\infty} \sum_{i} \chi_{I_{k,j,i}} \right\|_{p(\cdot)}^{q} \right)^{1/q},
$$

where the infmum is the same as above.

We state the main result of this section. The atomic decomposition via simple $(1, p(\cdot), r)$ -atoms $(r < \infty)$ are much more complicated than the atomic decomposition via $(1, p(\cdot), \infty)$ -atoms proved in [[15,](#page-30-10) Theorem 3.9].

Theorem 3.5 *Let* $p(\cdot) \in \mathcal{P}(\Omega)$ *satisfy* [\(5](#page-6-0)) *and* max $\{p_+, 1\} < r \leq \infty$ *. Then*

$$
H^s_{p(\cdot),q} = H^{\text{sat},1,r}_{p(\cdot),q}, \quad 0 < q \le \infty
$$

with equivalent quasi-*norms*.

Before going further, we show the next lemma. Let $T : X \to Y$ be a sublinear operator, where *X* is a martingale space and *Y* is a function space.

Lemma 3.6 *Let* $p(\cdot) \in \mathcal{P}(\Omega)$ *satisfy* ([5\)](#page-6-0) *and* $\max\{p_+, 1\} < r < \infty$ *. Take* $0 < \varepsilon < p$ *and <i>L* ∈ $(1, \frac{r}{p_+} \wedge \frac{1}{\varepsilon})$ *. If for a sublinear operator T and all* $(s, d, p(·), r)$ *-atoms* $a^{k\overline{j, i}}$ $(d = 1, 2, 3)$,

$$
||T(a^{k,j,i})||_r \lesssim \frac{||\chi_{I_{k,j,i}}||_r}{||\chi_{I_{k,j,i}}||_{p(\cdot)}},
$$

then

$$
Z := \left\| \sum_{j=0}^{\infty} \sum_{i} \left[\| \chi_{I_{k,j,i}} \|_{p(\cdot)} T(a^{k,j,i}) \chi_{I_{k,j,i}} \right]^{L\epsilon} \right\|_{p(\cdot)/\epsilon} \lesssim \left\| \sum_{j=0}^{\infty} \sum_{i} \chi_{I_{k,j,i}} \right\|_{p(\cdot)/\epsilon}
$$

Proof According to the duality $(L_{\underline{p(\cdot)}})^* = L_{(\underline{p(\cdot)})'}$ (see e.g. [5, Theorem 2.80]), we can choose a positive function $g \in L_{(\frac{p(\cdot)}{e})}$ with $||g||_{L_{(\frac{p(\cdot)}{e})}} \le 1$ such that

$$
Z = \int_{\Omega} \sum_{j=0}^{\infty} \sum_{i} \left[|| \chi_{I_{k,j,i}} ||_{p(\cdot)} T(a^{k,j,i}) \chi_{I_{k,j,i}} \right]^{L\varepsilon} g d\mathbb{P}.
$$

Applying Hölder's inequality (here, note that $L\varepsilon < 1 < r$), we obtain that

$$
Z \leq \sum_{j=0}^{\infty} \sum_{i} \|\chi_{I_{k,j,i}}\|_{p(\cdot)}^{L\epsilon} \|\mathcal{T}(a^{k,j,i})^{L\epsilon}\|_{\frac{r}{L\epsilon}} \|\chi_{I_{k,j,i}} g\|_{(\frac{r}{L\epsilon})'}
$$

$$
\lesssim \sum_{j=0}^{\infty} \sum_{i} \|\chi_{I_{k,j,i}}\|_{r}^{L\epsilon} \left(\int_{I_{k,j,i}} g^{(\frac{r}{L\epsilon})'}\right)^{1/(\frac{r}{L\epsilon})'}
$$

$$
= \sum_{j=0}^{\infty} \sum_{i} \int_{\Omega} \chi_{I_{k,j,i}} d\mathbb{P}\left(\frac{1}{\mathbb{P}(I_{k,j,i})} \int_{I_{k,j,i}} g^{(\frac{r}{L\epsilon})'}\right)^{1/(\frac{r}{L\epsilon})'}
$$

$$
\leq \sum_{j=0}^{\infty} \sum_{i} \int_{\Omega} \chi_{I_{k,j,i}} [M(g^{(\frac{r}{L\epsilon})'})]^{1/(\frac{r}{L\epsilon})'} d\mathbb{P}
$$

$$
\leq \left\|\sum_{j=0}^{\infty} \sum_{i} \chi_{I_{k,j,i}}\right\|_{p(\cdot)\epsilon} \|\left[M(g^{(\frac{r}{L\epsilon})'})\right]^{1/(\frac{r}{L\epsilon})'} \|\left(p(\cdot)\epsilon\right)'.
$$

The " \lesssim " above is due to the definition of the operator T. Since $L < \frac{r}{p_+}$, we deduce that

$$
\left(\frac{r}{L\varepsilon}\right)' < \left(p(\cdot)/\varepsilon\right)'.
$$

Noting that $\varepsilon < p$, hence $((p(\cdot)/\varepsilon)')_{+} < \infty$. Using the maximal inequality (Theorem 2.8), we have

$$
\| [M(g^{(\frac{r}{L\epsilon})'})]^{1/(\frac{r}{L\epsilon})'} \|_{(p(\cdot)/\epsilon)'} \lesssim \|g\|_{(p(\cdot)/\epsilon)'} \le 1,
$$

which completes the proof.

Now we are in a position to prove the main result of this section.

 \Box

Proof of Theorem 3.5 Let us consider the following stopping times for all $k \in \mathbb{Z}$,

$$
\tau_k = \inf\{n \in \mathbb{N} : s_{n+1}(f) > 2^k\}.
$$

The sequence of these stopping times is obviously non-decreasing. For each stopping time τ , denote $f_n^{\tau} = f_{n \wedge \tau}$, where $n \wedge \tau = \min(n, \tau)$. Hence

$$
f_n = \sum_{k \in \mathbb{Z}} (f_n^{\tau_{k+1}} - f_n^{\tau_k}).
$$

Note that, for fixed *k*, *j*, there exist disjoint atoms $(I_{k,j,i})_i \subset \mathcal{F}_j$ such that

$$
\bigcup_i I_{k,j,i} = \{\tau_k = j\} \in \mathcal{F}_j.
$$

Then, it is easy to see that

$$
f_n = \sum_{k \in \mathbb{Z}} \sum_{j=0}^{n-1} \sum_i \chi_{I_{k,j,i}} (f_n^{\tau_{k+1}} - f_n^{\tau_k}).
$$

Let

$$
\mu_k = 3 \cdot 2^k \left\| \chi_{I_{k,j,i}} \right\|_{p(\cdot)}
$$
 and $a_n^k = \chi_{I_{k,j,i}} \frac{f_n^{\tau_{k+1}} - f_n^{\tau_k}}{\mu_k}$.

Observe that

$$
f_n^{\tau_{k+1}} = \sum_{m=0}^{n-1} f_m \chi_{\{\tau_{k+1} = m\}} + f_n \chi_{\{\tau_{k+1} \ge n\}}
$$

=
$$
\sum_{m=0}^{n-1} f_m (\chi_{\{\tau_{k+1} \ge m\}} - \chi_{\{\tau_{k+1} \ge m+1\}}) + f_n \chi_{\{\tau_{k+1} \ge n\}}
$$

=
$$
\sum_{m=0}^{n} (f_m - f_{m-1}) \chi_{\{\tau_{k+1} \ge m\}} = \sum_{m=0}^{n} d_m f \chi_{\{\tau_{k+1} \ge m\}}.
$$

Then we conclude that

$$
\chi_{I_{k,j,i}}(f_n^{\tau_{k+1}} - f_n^{\tau_k}) = \chi_{I_{k,j,i}} \sum_{m=0}^n d_m f \chi_{\{\tau_{k+1} \ge m > \tau_k\}} \n= \chi_{I_{k,j,i}} \sum_{m=j+1}^n d_m f \chi_{\{\tau_{k+1} \ge m > \tau_k\}},
$$

where the last estimate is due to $I_{k,i,i} \subset \{\tau_k = j\}$. Consequently,

$$
\mathbb{E}_j(a_n^{k,j,i}) = 0, \qquad \int_{I_{k,j,i}} a_n^{k,j,i} = 0
$$

and, for fixed *k*, *j*, *i*, $(a_n^{k,j,i})_{n\geq 0}$ is a martingale. By the definition of τ_k , we obtain that

$$
s((a_n^{k,j,i})_n) \le \frac{1}{\|\chi_{I_{k,j,i}}\|_{p(\cdot)}}.
$$

Thus $(a_n^{k,j,i})_n$ is an *L*₂-bounded martingale and so there exists $a^{k,j,i} \in L_2$ such that

$$
\mathbb{E}_n(a^{k,j,i}) = a_n^{k,j,i} \text{ and } s(a^{k,j,i}) \le \frac{1}{\|\chi_{I_{k,j,i}}\|_{p(\cdot)}}.
$$

We conclude that $a^{k,j,i}$ is a $(s, 1, p(\cdot), \infty)$ -atom according to the above estimates. Note that for any fixed $k \in \mathbb{Z}$,

$$
\sum_{j=0}^{\infty}\sum_{i}\chi_{I_{k,j,i}}=\chi_{\{\tau_k<\infty\}}.
$$

Hence,

$$
f_n = \sum_{k \in \mathbb{Z}} \sum_{j=0}^{n-1} \sum_i \mu_{k,j,i} a_n^{k,j,i} \quad \text{a.e.}, \quad n \in \mathbb{N}.
$$

Since every $(s, 1, p(\cdot), \infty)$ -atom is a $(s, 1, p(\cdot), r)$ -atom, it follows that

$$
\|f\|_{H^{\mathrm{sat, l, r}}_{p(\cdot), q}} \leq \|f\|_{H^{\mathrm{sat, l, \infty}}_{p(\cdot), q}} \lesssim \|f\|_{H^s_{p(\cdot), q}},
$$

where the second inequality is from Theorem 3.9 in [[15\]](#page-30-10).

Now we prove the converse part of the theorem. Assume that *f* has the decompo-sition [7](#page-8-2). For the case $r = \infty$, the result can be referred to Theorem 3.9 in [\[15](#page-30-10)]. We focus on the cases $r < \infty$, $q < \infty$ and $r < \infty$, $q = \infty$. For any $k_0 \in \mathbb{Z}$, set

$$
f = \sum_{k \in \mathbb{Z}} \sum_{j=0}^{\infty} \sum_{i} \mu_{k,j,i} a^{k,j,i} = F_1 + F_2,
$$

where

$$
F_1 = \sum_{k=-\infty}^{k_0-1} \sum_{j=0}^{\infty} \sum_{i} \mu_{k,j,i} a^{k,j,i}, \quad F_2 = f - F_1.
$$

We note that F_2 can be handled in the same way as in [\[15](#page-30-10), Theorem 3.9], we can prove similarly that

$$
\|F_2\|_{H^s_{p(\cdot),q}}=\|s(F_2)\|_{L_{p(\cdot),q}}\lesssim \|f\|_{H^{\mathrm{sat,lr}}_{p(\cdot),q}},\qquad r<\infty, 0
$$

Case 1: In this step suppose that $r < \infty$ and $q < \infty$. Firstly, we need to estimate $||s(F_1)||_{L_{p(\cdot),q}}$. Assume that 0 < ε < *p*. We choose *L* ∈ (1, $\frac{1}{ε}$) such that *L* < *r*/*p*₊. By Hölder's inequality for $\frac{1}{L} + \frac{1}{L'} = 1$, we have

$$
s(F_1) \leq \sum_{k=-\infty}^{k_0-1} \sum_{j=0}^{\infty} \sum_i \mu_{k,j,i} s(a^{k,j,i}) \chi_{I_{k,j,i}}
$$

$$
\leq \left(\sum_{k=-\infty}^{k_0-1} 2^{k\ell L'}\right)^{1/L'} \left\{ \sum_{k=-\infty}^{k_0-1} 2^{-k\ell L} \left[\sum_{j=0}^{\infty} \sum_i \mu_{k,j,i} s(a^{k,j,i}) \chi_{I_{k,j,i}}\right]^L \right\}^{1/L}
$$

$$
= \left(\frac{2^{k_0 \ell L'}}{2^{\ell L'} - 1}\right)^{1/L'} \left\{ \sum_{k=-\infty}^{k_0-1} 2^{-k\ell L} \left[\sum_{j=0}^{\infty} \sum_i \mu_{k,j,i} s(a^{k,j,i}) \chi_{I_{k,j,i}}\right]^L \right\}^{1/L},
$$

where ℓ is a constant such that $0 < \ell < 1 - 1/L$. Then, by (4), we have that

$$
\begin{split} &\|\chi_{\{s(F_1) > 2^{k_0}\}}\|_{p(\cdot)} \leq \left\|\frac{s(F_1)^L}{2^{k_0 L}}\right\|_{p(\cdot)}\\ &\lesssim 2^{k_0L(\ell-1)} \left\|\sum_{k=-\infty}^{k_0-1} 2^{-k\ell L} \left[\sum_{j=0}^{\infty} \sum_i \mu_{k,j,i} s(a^{k,j,i}) \chi_{I_{k,j,i}} \right]^L \right\|_{p(\cdot)}\\ &\lesssim 2^{k_0L(\ell-1)} \left\|\sum_{k=-\infty}^{k_0-1} 2^{(1-\ell)kL\epsilon} \sum_{j=0}^{\infty} \sum_i \left[\|\chi_{I_{k,j,i}}\|_{p(\cdot)} s(a^{k,j,i}) \chi_{I_{k,j,i}}\right]^L \right\|_{\frac{p(\cdot)}{\epsilon}}^{\frac{1}{\epsilon}}\\ &\lesssim 2^{k_0L(\ell-1)} \left\{\sum_{k=-\infty}^{k_0-1} 2^{(1-\ell)kL\epsilon} \left\|\sum_{j=0}^{\infty} \sum_i \left[\|\chi_{I_{k,j,i}}\|_{p(\cdot)} s(a^{k,j,i}) \chi_{I_{k,j,i}}\right]^L \epsilon \right\|_{\frac{p(\cdot)}{\epsilon}}^{\frac{1}{\epsilon}}\right\}^{\frac{1}{\epsilon}} \end{split}
$$

It follows from Lemma 3.6 that

$$
\| \chi_{\{s(F_1) > 2^{k_0}\}} \|_{p(\cdot)} \lesssim 2^{k_0 L(\ell-1)} \left\{ \sum_{k=-\infty}^{k_0 - 1} 2^{(1-\ell)kL\varepsilon} \left\| \sum_{j=0}^{\infty} \sum_{i} \chi_{I_{k,j,i}} \right\|_{p(\cdot)} \right\}^{\frac{1}{\varepsilon}} = 2^{k_0 L(\ell-1)} \left\{ \sum_{k=-\infty}^{k_0 - 1} 2^{(1-\ell)kL\varepsilon} \left\| \sum_{j=0}^{\infty} \sum_{i} \chi_{I_{k,j,i}} \right\|_{p(\cdot)}^{\varepsilon} \right\}^{\frac{1}{\varepsilon}},
$$
\n
$$
(8)
$$

where the first "=" is because that $I_{k,j,i}$ are disjoint for fixed k. To continue the estimation, we set

$$
\delta = \frac{(1-\ell)L+1}{2} > 1.
$$

So we get $(1 - \ell)L - \delta > 0$. Using again Hölder's inequality for $\frac{q-\epsilon}{q} + \frac{\epsilon}{q} = 1$, we obtain

$$
\| \chi_{\{s(F_1) > 2^{k_0}\}} \|_{p(\cdot)} \le 2^{k_0 L(\ell-1)} \left(\sum_{k=-\infty}^{k_0 - 1} 2^{k((1-\ell)L - \delta)\varepsilon \frac{q}{q - \varepsilon}} \right)^{\frac{q - \varepsilon}{\varepsilon q}} \times \left(\sum_{k=-\infty}^{k_0 - 1} 2^{k \delta q} \left\| \sum_{j=0}^{\infty} \sum_i \chi_{I_{k,j,i}} \right\|_{p(\cdot)}^q \right)^{1/q} \lesssim 2^{-k_0 \delta} \left(\sum_{k=-\infty}^{k_0 - 1} 2^{k \delta q} \left\| \sum_{j=0}^{\infty} \sum_i \chi_{I_{k,j,i}} \right\|_{p(\cdot)}^q \right)^{1/q}.
$$
\n(9)

Consequently,

$$
\sum_{k_0 = -\infty}^{\infty} 2^{k_0 q} \| \chi_{\{s(F_1) > 2^{k_0}\}} \|_{p(\cdot)}^q \lesssim \sum_{k_0 = -\infty}^{\infty} 2^{k_0 (1 - \delta) q} \sum_{k = -\infty}^{k_0 - 1} 2^{k \delta q} \left\| \sum_{j=0}^{\infty} \sum_i \chi_{I_{k,j,i}} \right\|_{p(\cdot)}^q
$$

$$
= \sum_{k = -\infty}^{\infty} 2^{k \delta q} \left\| \sum_{j=0}^{\infty} \sum_i \chi_{I_{k,j,i}} \right\|_{p(\cdot)}^q \sum_{k_0 = k+1}^{\infty} 2^{k_0 (1 - \delta) q}
$$

$$
= \frac{2^{(1 - \delta) q}}{1 - 2^{(1 - \delta) q}} \sum_{k = -\infty}^{\infty} 2^{k q} \left\| \sum_{j=0}^{\infty} \sum_i \chi_{I_{k,j,i}} \right\|_{p(\cdot)}^q,
$$

where the last "=" is because $1 - \delta < 0$. This implies that

$$
\|F_1\|_{H^s_{p(\cdot),q}}=\|s(F_1)\|_{L_{p(\cdot),q}}\lesssim \|f\|_{H^{\mathrm{sat,1,r}}_{p(\cdot),q}}.
$$

Case 2: Suppose that $r < \infty$ and $q = \infty$. Using Lemma 3.6 and (8), we conclude

$$
\begin{aligned} &\|\chi_{\{s(F_1) > 2^{k_0}\}}\|_{p(\cdot)}\\ &\lesssim 2^{k_0L(\ell-1)} \left(\sum_{k=-\infty}^{k_0-1} 2^{-k\ell L\varepsilon} 2^{kL\varepsilon} 2^{-k\varepsilon} 2^{k\varepsilon} \left\|\sum_{j=0}^\infty \sum_i \chi_{I_{k,j,i}}\right\|_{p(\cdot)}^{\varepsilon} \right)^{1/\varepsilon}\\ &\leq \left(\sup_{k\in\mathbb{Z}} 2^k \left\|\sum_{j=0}^\infty \sum_i \chi_{I_{k,j,i}}\right\|_{p(\cdot)}\right) 2^{k_0L(\ell-1)} \left(\sum_{k=-\infty}^{k_0-1} 2^{k\varepsilon(L(1-\ell)-1)}\right)^{1/\varepsilon}\\ &\lesssim 2^{-k_0} \|f\|_{H^{sat,1,r}_{p(\cdot),\infty}}, \end{aligned}
$$

where the last inequality is because of $(1 - \ell)L - 1 > 0$. Consequently,

$$
\|F_1\|_{H^s_{p(\cdot),\infty}}=\|s(F_1)\|_{L_{p(\cdot),\infty}}\lesssim \|f\|_{H^{\text{sat,l,r}}_{p(\cdot),\infty}}.
$$

 \mathbb{B} Birkhäuser

We present the following result without proof because it is similar to the one of Theorem [3.5.](#page-8-1) Note that for the $(s, d, p(\cdot), \infty)$ -atomic characterizations, we do not need to assume that $p(\cdot)$ satisfies [\(5](#page-6-0)).

Theorem 3.7 *Let* $p(\cdot) \in \mathcal{P}(\Omega)$ *and* $0 < q \leq \infty$ *. Then*

$$
Q_{p(\cdot),q} = H_{p(\cdot),q}^{\text{sat,2},\infty}, \quad P_{p(\cdot),q} = H_{p(\cdot),q}^{\text{sat,3},\infty}
$$

with equivalent quasi-*norms*.

If $\{\mathcal{F}_n\}_{n>0}$ is regular, then three kinds of simple atoms are equivalent. Then, we can get the following corollary by $[15,$ Theorem 4.11], Theorem [3.5](#page-8-1) and Theorem [3.7.](#page-14-1)

Corollary 3.8 *Let* $p(\cdot) \in \mathcal{P}(\Omega)$ *satisfy* [\(5](#page-6-0)), $0 < q \leq \infty$ *and let* $\max\{p_+, 1\} < r \leq \infty$. If ${F_n}_{n>0}$ is regular, then

$$
H_{p(\cdot),q}^{s} = H_{p(\cdot),q}^{S} = H_{p(\cdot),q}^{M} = Q_{p(\cdot),q} = P_{p(\cdot),q} = H_{p(\cdot),q}^{\text{sat},d,r}, \quad d = 1,2,3
$$

with equivalent quasi-*norms*.

4 The dual spaces of Lorentz–Hardy spaces

In this section, we study the dual spaces of Lorentz–Hardy spaces $H_{p(\cdot),q}$. We consider the problem according to the range of *q*.

4.1 The dual of $H_{p(.), q}$ **, 0 <** $q \le 1$

Definition 4.1 Let $\alpha(\cdot) + 1 \in \mathcal{P}(\Omega)$ and $1 < r < \infty$. Define *BMO_r*($\alpha(\cdot)$) as the space of functions $f \in L_r$ for which

$$
||f||_{BMO_r(\alpha(\cdot))} = \sup_{n \ge 0} \sup_{I \in A(\mathcal{F}_n)} ||\chi_I||_{\frac{1}{\alpha(\cdot)+1}}^{-1} ||\chi_I||_{r/(r-1)} ||(f - f_n)\chi_I||_r
$$

is finite. For $r = 1$, we define $BMO_{1}(\alpha(\cdot))$ with the norm

$$
||f||_{BMO_1(\alpha(\cdot))} = \sup_{n \geq 0} \sup_{I \in A(\mathcal{F}_n)} ||\chi_I||_{\frac{1}{\alpha(\cdot)+1}}^{-1} ||(f - f_n)\chi_I||_1.
$$

Remark 4.2 If $\alpha(\cdot) = 0$, then this definition goes back to classical martingale *BMO* space. If $\alpha(\cdot) = \alpha_0 > 0$ is a constant, then this definition becomes the classical martingale Lipschitz space. We refer the reader to [\[29](#page-30-17)] for details.

Proposition 4.3 *Let* $p(\cdot) \in \mathcal{P}(\Omega)$ *with* $0 < p_+ \leq 1$, $0 < q \leq 1$ *and* $1 < r \leq \infty$ *. Let* $f = (f_n)_{n \geq 0} \in H_{p(\cdot),q}^{\text{sat},d,r}$, $d = 1, 2, 3$. Then f has a decomposition as in [\(7](#page-8-2)), and *moreover*,

$$
\sum_{k\in\mathbb{Z}}\sum_{j=0}^\infty\,\sum_i\,\mu_{k,j,i}\lesssim \|f\|_{H^{\mathrm{sat},d,r}_{p(\cdot),q}},
$$

where $\mu_{k,j,i} = 3 \cdot 2^k || \chi_{I_{k,j,i}} ||_{p(\cdot)}$ and $(I_{k,j,i})_{k,i} \subset A(\mathcal{F}_j)$ are as in Definition [3.3](#page-8-3).

Proof By Lemma [2.2,](#page-3-1) we have

$$
\sum_{k \in \mathbb{Z}} \sum_{j=0}^{\infty} \sum_{i} \mu_{k,j,i} \lesssim \sum_{k \in \mathbb{Z}} 2^{k} \sum_{j=0}^{\infty} \sum_{i} \| \chi_{I_{k,j,i}} \|_{p(\cdot)} \le \sum_{k \in \mathbb{Z}} 2^{k} \| \sum_{j=0}^{\infty} \sum_{i} \chi_{I_{k,j,i}} \|_{p(\cdot)}
$$

$$
\lesssim \| f \|_{H^{\text{sat},d,r}_{p(\cdot),1}} \le \| f \|_{H^{\text{sat},d,r}_{p(\cdot),q}}.
$$

◻

Theorem 4.4 *Let* $p(\cdot) \in \mathcal{P}(\Omega)$ *satisfy* [\(5](#page-6-0)), $0 < p_+ \leq 1$ *and* $0 < q \leq 1$ *. Then*

$$
\left(H_{p(\cdot),q}^s\right)^* = BMO_2(\alpha(\cdot)), \quad \alpha(\cdot) = 1/p(\cdot) - 1.
$$

Proof Let φ ∈ *BMO*₂(α (·)) ⊂ *L*₂. Define

$$
l_{\varphi}(f) = \mathbb{E}(f\varphi), \quad \forall f \in L_2.
$$

We claim that l_{φ} is a bounded linear functional on $H_{p(\cdot),q}^s$. Note that L_2 can be embedded continuously in $H_{p(\cdot),q}^s$, namely,

$$
||f||_{H^s_{p(\cdot),q}} = ||s(f)||_{L_{p(\cdot),q}} \lesssim ||s(f)||_2, \quad \forall f \in L_2
$$

because of [[21,](#page-30-14) Theorem 3.3(i, iv)] and $0 < p_+ \le 1$. It follows from Theorem [3.5](#page-8-1) that for each $f \in L_2$

$$
f = \sum_{k \in \mathbb{Z}} \sum_{j=0}^{\infty} \sum_{i} \mu_{k,j,i} a^{k,j,i}
$$

and the convergence holds also in the L_2 -norm, where $a^{k,j,i}$ is an $(s, 1, p(\cdot), \infty)$ -atom and $\mu_{k,j,i} = 3 \cdot 2^k ||\chi_{I_{k,j,i}}||_{p(\cdot)}$. Hence

$$
l_{\varphi}(f) = \mathbb{E}(f\varphi) = \sum_{k \in \mathbb{Z}} \sum_{j=0}^{\infty} \sum_{i} \mu_{k,j,i} \mathbb{E}(a^{k,j,i}\varphi).
$$

By the defnition of an atom, then

$$
\mathbb{E}(a^{k,j,i}\varphi) = \mathbb{E}((a^{k,j,i} - \mathbb{E}_j(a^{k,j,i}))\varphi) = \mathbb{E}(a^{k,j,i}(\varphi - \varphi_j)),
$$

where $\varphi_j = \mathbb{E}_j(\varphi)$. Thus, using Hölder's inequality we conclude that

$$
|l_{\varphi}(f)| \leq \sum_{k \in \mathbb{Z}} \sum_{j=0}^{\infty} \sum_{i} \mu_{k,j,i} \left| \int_{\Omega} a^{k,j,i} (\varphi - \varphi_{j}) d\mathbb{P} \right|
$$

$$
\leq \sum_{k \in \mathbb{Z}} \sum_{j=0}^{\infty} \sum_{i} \mu_{k,j,i} \|a^{k,j,i}\|_{2} \|(\varphi - \varphi_{j}) \chi_{I_{k,j,i}}\|_{2}
$$

$$
\leq \sum_{k \in \mathbb{Z}} \sum_{j=0}^{\infty} \sum_{i} \mu_{k,j,i} \frac{\mathbb{P}(I_{k,j,i})^{\frac{1}{2}}}{\left\| \chi_{I_{k,j,i}} \right\|_{p(\cdot)}} \|(\varphi - \varphi_{j}) \chi_{I_{k,j,i}}\|_{2}
$$

$$
\lesssim \sum_{k \in \mathbb{Z}} \sum_{j=0}^{\infty} \sum_{i} \mu_{k,j,i} \|\varphi\|_{BMO_{2}(\alpha(\cdot))}.
$$

Since $0 < q \le 1$, we obtain from Proposition [4.3](#page-15-0) and Theorem [3.5](#page-8-1) that

$$
|l_{\varphi}(f)| \lesssim \|f\|_{H^{sat,1,\infty}_{p(\cdot),q}} \|\varphi\|_{BMO_{2}(\alpha(\cdot))} \lesssim \|f\|_{H^{s}_{p(\cdot),q}} \|\varphi\|_{BMO_{2}(\alpha(\cdot))}.
$$

By Remark 3.12 of [[15\]](#page-30-10), we know that L_2 is dense in $H_{p(\cdot),q}^s$. Consequently, l_{φ} can be uniquely extended to a linear functional on $H_{p(\cdot),q}^{s}$.

Conversely, let *l* be an arbitrary bounded linear functional on $H_{p(\cdot),q}^s$. We will show that there exists $\varphi \in BMO_2(\alpha(\cdot))$ such that $l = l_\varphi$ and

$$
\|\varphi\|_{BMO_2(\alpha(\cdot))} \lesssim \|l\|.
$$

Indeed, since L_2 can be embedded continuously to $H_{p(\cdot),q}^s$, there exists $\varphi \in L_2$ such that

$$
l(f) = \mathbb{E}(f\varphi), \quad \forall f \in L_2.
$$

For $I \in A(\mathcal{F}_j)$, we set

$$
g = \frac{(\varphi - \varphi_j)\chi_I}{\|(\varphi - \varphi_j)\chi_I\|_2 \| \chi_I\|_{\frac{1}{\alpha(\gamma+1)}} \| \chi_I\|_2^{-1}}.
$$

Then the function *g* is a $(s, 1, p(\cdot), 2)$ -atom. It follows from Theorem [3.5](#page-8-1) that $g \in H^{s}_{p(\cdot),q}$ and

$$
\|g\|_{H^s_{p(\cdot),q}} \lesssim \|g\|_{H^{\mathrm{sat,1,2}}_{p(\cdot),q}} \lesssim 1.
$$

Finally, we obtain

$$
||l|| \ge l(g) = \mathbb{E}\big(g(\varphi - \varphi_j)\big) = ||\chi_l||_{\frac{1}{\alpha(\cdot)+1}}^{-1} ||\chi_l||_2 ||(\varphi - \varphi_j)\chi_l||_2
$$

and $\|\varphi\|_{BMO_{2}(\alpha(\cdot))} \lesssim \|l\|.$

B Birkhäuser

4.2 The dual of $H_{p(\cdot),q}$, 1 < $q < \infty$

Strongly motivated by [[17,](#page-30-3) [18](#page-30-19)] and [[32\]](#page-30-20), in the present paper, we introduce the following generalized martingale spaces associated with variable exponents.

Definition 4.5 Let $1 \le r < \infty, 0 < q \le \infty$ and $\alpha(\cdot) + 1 \in \mathcal{P}(\Omega)$. The generalized martingale space $BMO_{r,q}(\alpha(\cdot))$ is defined by

$$
BMO_{r,q}(\alpha(\cdot))=\Big\{f\in L_r:\|f\|_{BMO_{r,q}(\alpha)}<\infty\Big\},\,
$$

where

$$
||f||_{BMO_{r,q}(\alpha(\cdot))} = \sup \frac{\sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{N}} \sum_{i} 2^{k} \mathbb{P}(I_{k,j,i})^{1-\frac{1}{r}} ||(f - f_{j}) \chi_{I_{k,j,i}}||_{r}}{\left(\sum_{k \in \mathbb{Z}} 2^{kq} || \sum_{j \in \mathbb{N}} \sum_{i} \chi_{I_{k,j,i}} ||_{\frac{q}{\alpha(\cdot)+1}}^{q}\right)^{1/q}}
$$

and the supremum is taken over all sequence of atoms $\{I_{k,j,i}\}_{k \in \mathbb{Z}, j \in \mathbb{N}, i}$ such that that $I_{k,j,i}$ are disjoint if *k* is fixed, $I_{k,j,i}$ belong to \mathcal{F}_j and

$$
\left\{2^k \middle\| \sum_{j \in \mathbb{N}} \sum_i \chi_{I_{k,j}} \middle\| \prod_{\substack{\perp \\ a(\cdot) + 1}} \right\|_k \in \mathcal{E}_q.
$$

BMO_{r} $\alpha(\cdot)$ can be similarly defined.

First of all, $BMO_r(\alpha(\cdot))$ and $BMO_{r,q}(\alpha(\cdot))$ have the following connection.

Proposition 4.6 *Let* $1 \leq r < \infty, 0 < q \leq \infty, \alpha(\cdot) \geq 0$ *and* $\alpha(\cdot) + 1 \in \mathcal{P}(\Omega)$ *. Then*

$$
\|f\|_{BMO_r(\alpha(\cdot))}\leq \|f\|_{BMO_{r,q}(\alpha(\cdot))}.
$$

If in addition $0 < q \leq 1$ *, then BMO_r*($\alpha(\cdot)$) ~ *BMO_r*_{*a*}($\alpha(\cdot)$).

Proof If we take the supremum in the definition of $BMO_{r,q}(\alpha(\cdot))$ only for one atom, then we get back the $BMO_r(\alpha(\cdot))$ -norm, so the first inequality is shown. On the other hand, if $0 < q \leq 1$, then

$$
\|f\|_{BMO_{r,q}(\alpha(\cdot))} \le \sup \frac{\sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{N}} \sum_{i} 2^{k} \| \chi_{I_{k,j,i}} \|_{\frac{1}{\alpha(\cdot)+1}} \| f \|_{BMO_{r,q}(\alpha(\cdot))}}{\left(\sum_{k \in \mathbb{Z}} 2^{kq} \| \sum_{j \in \mathbb{N}} \sum_{i} \chi_{I_{k,j,i}} \|_{\frac{1}{\alpha(\cdot)+1}}^q \right)^{1/q}}
$$

$$
\le \sup \frac{\sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{N}} \sum_{i} 2^{k} \| \chi_{I_{k,j,i}} \|_{\frac{1}{\alpha(\cdot)+1}} \| f \|_{BMO_{r,q}(\alpha(\cdot))}}{\sum_{k \in \mathbb{Z}} 2^{k} \| \sum_{j \in \mathbb{N}} \sum_{i} \chi_{I_{k,j,i}} \|_{\frac{1}{\alpha(\cdot)+1}}}
$$

$$
\le \|f\|_{BMO_{r,q}(\alpha(\cdot))},
$$

because of Lemma [2.2.](#page-3-1) \Box

Theorem 4.7 *Let* $p(\cdot) \in \mathcal{P}(\Omega)$ *satisfy* [\(5](#page-6-0)), $0 < p_+ < 2$ *and* $1 < q < \infty$ *. Then we have*

$$
\left(H_{p(\cdot),q}^s\right)^* = BMO_{2,q}(\alpha(\cdot)), \quad \alpha(\cdot) = \frac{1}{p(\cdot)} - 1,
$$

with equivalent norms.

Proof Let φ ∈ *BMO*_{2,*q*}(α (⋅)) ⊂ *L*₂. We define the functional as

$$
l_{\varphi}(f) = \mathbb{E}(fg), \quad \forall f \in L_2.
$$

Using Theorem [3.5](#page-8-1) and similar argument used in Theorem [4.4,](#page-15-1) we have

$$
\begin{aligned} |l_\varphi(f)|&\leq \sum_{k\in\mathbb{Z}}\sum_{j=0}^\infty\,\sum_i\,\mu_{k,j,i}\left|\int_\Omega a^{k,j,i}(\varphi-\varphi_j)d\mathbb{P}\right|\\ &\lesssim \sum_{k\in\mathbb{Z}}\sum_{j=0}^\infty\,\sum_i 2^k\mathbb{P}(I_{k,j,i})^{\frac{1}{2}}\|(\varphi-\varphi_j)\chi_{I_{k,j,i}}\|_2.\end{aligned}
$$

It follows from the definition of $\|\cdot\|_{BMO_{2a}(\alpha(\cdot))}$ and Theorem [3.5](#page-8-1) that

$$
\begin{aligned} |l_\varphi(f)|\lesssim & \left(\sum_{k\in\mathbb{Z}}2^{kq}\left\|\sum_{j\in\mathbb{N}}\sum_i\chi_{I_{k,i}}\right\|_{p(\cdot)}^q\right)^{1/q}\|g\|_{BMO_{2,q}(\alpha(\cdot))}\\ \lesssim & \quad \|f\|_{H^s_{p(\cdot)q}}\|g\|_{BMO_{2,q}(\alpha(\cdot))}. \end{aligned}
$$

Since L_2 is dense in $H_{p(\cdot),q}^s$ (see [[15,](#page-30-10) Remark 3.12]), the functional l_g can be uniquely extended to a continuous functional on $H_{p(\cdot),q}^s$.

Conversely, let $l \in (H_{p(\cdot),q}^s)^*$. Since $L_2 \subset H_{p(\cdot),q}^s$, there exists $\varphi \in L_2$ such that $l(f) = \mathbb{E}(f\varphi)$ $\forall f \in L_2$.

Let $\{I_{k,j,i}\}_{k \in \mathbb{Z}, j \in \mathbb{N}, i}$ be an arbitrary sequence of atoms such that $I_{k,j,i}$ are disjoint if *k* is fixed, $I_{k,j,i}$ belong to \mathcal{F}_j and

$$
\left\{2^k \middle\| \sum_{j \in \mathbb{N}} \sum_i \chi_{I_{k,j}} \right\|_{\frac{1}{a(\cdot)+1}} \right\}_k \in \mathcal{C}_q.
$$

We set

$$
h_{k,j,i} = \frac{(\varphi - \varphi_j) \chi_{I_{k,j,i}} || \chi_{I_{k,j,i}} ||_2}{\|(\varphi - \varphi_j) \chi_{I_{k,j,i}} ||_2 || \chi_{I_{k,j,i}} ||_{p(\cdot)}}.
$$

It is obvious that $h_{k,j,i}$ is a $(s, 1, p(\cdot), 2)$ -atom. By Theorem [3.5,](#page-8-1) we find that

$$
f = \sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{N}} \sum_{i} 2^{k} \| \chi_{I_{k,j,i}} \|_{p(\cdot)} h_{k,j,i} \in H^{s}_{p(\cdot),q},
$$

and

$$
||f||_{H_{p(\cdot),q}^s} \lesssim \left(\sum_{k\in\mathbb{Z}} 2^{kq} \left\|\sum_{j\in\mathbb{N}} \sum_{i} \chi_{I_{k,j,i}}\right\|_{p(\cdot)}^q\right)^{\frac{1}{q}}.
$$
 (10)

Now we have the following estimate:

$$
\sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{N}} \sum_{i} 2^{k} \mathbb{P}(I_{k,j,i})^{\frac{1}{2}} \| (\varphi - \varphi_{j}) \chi_{I_{k,j,i}} \|_{2}
$$
\n
$$
= \sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{N}} \sum_{i} 2^{k} \| \chi_{I_{k,j,i}} \|_{p(\cdot)} \mathbb{E}(h_{k,j,i}(\varphi - \varphi_{j}))
$$
\n
$$
= \sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{N}} \sum_{i} 2^{k} \| \chi_{I_{k,j,i}} \|_{p(\cdot)} \mathbb{E}(h_{k,j,i} \varphi)
$$
\n
$$
= \mathbb{E}(f \varphi) = l(f) \leq \| f \|_{H_{p(\cdot),q}^{s}} \| l \|.
$$

Thus, applying ([10\)](#page-19-0) and the definition of $\|\cdot\|_{BMO_{2a}(\alpha(\cdot))}$ we obtain

$$
\|\varphi\|_{BMO_{2,q}(\alpha(\cdot))}\lesssim \|l\|.
$$

The proof is complete. \Box

4.3 The case $q = \infty$

This case is different from the case $q < \infty$ due to the well known fact that L_p is not dense in $L_{p,\infty}$ ($0 < p < \infty$). We refer to [[31](#page-30-6), p. 143] or [\[11](#page-29-7), Remark 1.4.14] for this fact. In order to describe the duality, we defne

$$
\mathscr{H}_{p(\cdot),\infty} = \{ f = (f_n)_{n \ge 0} : s(f) \in \mathscr{L}_{p(\cdot),\infty} \}.
$$

It is not hard to check that $\mathcal{H}_{p(\cdot),\infty}^{\delta}$ is a closed subspace of $H_{p(\cdot),\infty}^s$. Similarly, we can define $\mathcal{H}_{p(\cdot),\infty}^M$ and $\mathcal{H}_{p(\cdot),\infty}^S$ which are closed subspaces of $H_{p(\cdot),\infty}^M$ and $H_{p(\cdot),\infty}^S$, respectively.

According to [[15](#page-30-10), Remark 3.12], we know that L_2 is dense in $\mathcal{H}_{p(\cdot),\infty}^{\phi}$. On the lines of the proof of Theorem [4.7,](#page-18-0) we can get the result below by using Theorem [3.5.](#page-8-1) We omit the proof.

Theorem 4.8 *Let* $p(\cdot) \in \mathcal{P}(\Omega)$ *satisfy condition* ([5\)](#page-6-0) *and* $0 < p_+ < 2$ *. Then*

$$
\left(\mathcal{H}_{p(\cdot),\infty}^{\delta}\right)^{*}=BMO_{2,\infty}(\alpha(\cdot)), \quad \alpha(\cdot)=\frac{1}{p(\cdot)}-1
$$

with equivalent norms.

Remark 4.9 The dual space of weak Hardy space was first studied in harmonic analysis, see [\[8](#page-29-8)]. In martingale setting, we refer the reader to [\[31](#page-30-6)].

Besides Proposition [4.3,](#page-15-0) one of the key points of the proofs of Theorems [4.4](#page-15-1), [4.7](#page-18-0) and [4.8](#page-20-1) is the fact that L_2 can be embedded continuously in $H^s_{p(\cdot),q}$. So we cannot expect to characterize the dual spaces in a similar way for a wider range of p_{+} . It is an unknown question, how we can characterize the duals for other p_{+} .

5 John–Nirenberg theorems

In this section, we investigate John–Nirenberg theorems. We divide this section into two subsections.

5.1 Atomic decomposition for *E***‑atoms**

In this subsection, we give the atomic decomposition for $H_{p(\cdot),q}$ by using $(s, 1, p(\cdot), E)$ -atoms, where *E* is a rearrangement invariant Banach function space. Let $E(\Omega)$ be a rearrangement invariant Banach function space over $(\Omega, \mathcal{F}, \mathbb{P})$. We refer to [\[2,](#page-29-4) Chapters 1 and 2] for the defnitions of Banach function spaces and rearrangement invariant Banach function spaces. In this section, we always suppose that the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is non-atomic.

Let *E* be a rearrangement invariant Banach function space over Ω . According to the Luxemburg representation theorem (see for instance [\[2](#page-29-4), Page 62]), there exists a rearrangement invariant \hat{E} over (0, 1) equipped with the norm $\|\cdot\|_{\hat{E}}$ such that

$$
||f||_E = ||\mu(\cdot, f)||_{\widehat{E}}, \quad \forall f \in E,
$$
\n(11)

where $\mu(\cdot, f)$ is the non-increasing rearrangement function of f defined by

$$
\mu(t, f) = \inf_{s>0} \{ s : \mathbb{P}(|f| > s) \le t \}, \quad t > 0.
$$

We call $(\widehat{E}, \|\cdot\|_{\widehat{E}})$ the Luxemburg representation space of $(E, \|\cdot\|_{E})$.

We need the Boyd indices of *E* introduced by Boyd [[3\]](#page-29-9). Define the dilation operator D_s ($0 < s < \infty$) acting on the space of measurable functions on (0, 1) by *D*_{*f*}(*t*) = *f*(*t*/*s*), if $0 < t < \min(1, s)$; $D_s f(t) = 0$, if $s < t < 1$. Let $(\hat{E}, || \cdot ||_{\hat{F}})$ be the the Luxemburg representation space of *E*. The upper Boyd index and the lower Boyd index of *E* are respectively defned by

$$
q_E := \inf_{s>1} \frac{\log s}{\log \|D_s\|}
$$

and

$$
p_E := \sup_{0 < s < 1} \frac{\log s}{\log \|D_s\|},
$$

where $||D_x||$ is the operator norm on \hat{E} . Note that for any rearrangement invariant Banach function space *E*,

$$
1\leq p_E\leq q_E\leq \infty.
$$

The associate space
$$
E'
$$
 of E is defined by

$$
E' = \{f : ||f||_{E'} < \infty, \}
$$

where

$$
||f||_{E'} = \sup_{g \in E, ||g||_E \le 1} \int_{\Omega} |fg| \, d\mathbb{P}.
$$

A rearrangement invariant Banach function *E* has a Fatou norm if and only if *E* embeds isometrically into its second Köthe dual $E'' = (E')'$. We shall need the following duality for Boyd indices (see [\[22](#page-30-21), Theorem II.4.11]). If *E* is a rearrangement invariant Banach function space with Fatou norm, then

$$
\frac{1}{p_E} + \frac{1}{q_{E'}} = 1, \quad \frac{1}{p_{E'}} + \frac{1}{q_E} = 1.
$$
 (12)

Note that the spaces L_p ($1 \le p \le \infty$) are rearrangement invariant Banach function spaces with Fatou norms.

We also need some basic lemmas which can be found in [\[2](#page-29-4)].

Lemma 5.1 *Let E be a Banach function space with associated space* E' *. If* $f \in E$ $and g \in E'$, then fg is integrable and

$$
\left| \int_{\Omega} fgd\mathbb{P} \right| \leq \|f\|_{E} \|g\|_{E'}.
$$

Note that we assume that $(\Omega, \mathcal{F}, \mathbb{P})$ is non-atomic in this section. The following result is referred to Theorems 5.2 and 2.7 in [[2,](#page-29-4) Chapter 2].

Lemma 5.2 *Let E be a rearrangement invariant space*, *and E*′ *be its associated space. Then, for all set* $B \in \mathcal{F}$ *, we have*

$$
\|\chi_B\|_1 = \|\chi_B\|_E \|\chi_B\|_{E'}.
$$

The following Doob maximal inequality in rearrangement invariant Banach function space was studied in [\[27](#page-30-22)]. Here we give a simple proof.

Lemma 5.3 *If* $1 < p_F \le q_F \le \infty$ *, then*

$$
||M(f)||_E \le C||f||_E.
$$

Proof As proved in [\[23](#page-30-16), Theorem 3.6.3] that

$$
\mu(t, M(f)) \le \frac{1}{t} \int_0^t \mu(s, f) ds.
$$

It follows from $1 < p_E \le q_E \le \infty$ and Theorem 5.15 in [\[2](#page-29-4), Chapter 3] that,

$$
\|\frac{1}{t}\int_0^t\mu(s,f)ds\|_{\widehat{E}}\leq C_E\|\mu(\cdot,f)\|_{\widehat{E}},
$$

where \hat{E} is as in ([11\)](#page-20-2). By (11), we have

$$
||M(f)||_E = ||\mu(\cdot, Mf)||_{\hat{E}} \le ||\frac{1}{t} \int_0^t \mu(s, f) ds||_{\hat{E}} \le C_E ||f||_E.
$$

We introduce the definition of $(s, 1, p(\cdot), E)$ -atoms.

Definition 5.4 Let $p(\cdot) \in \mathcal{P}(\Omega)$, and let $(E, \|\cdot\|_E)$ be a rearrangement invariant Banach function space. Replacing (2) in Defnition [3.1](#page-7-1) by

$$
||s(a)||_E \le \frac{||\chi_I||_E}{||\chi_I||_{p(\cdot)}},
$$

we get the definition of $(s, 1, p(\cdot), E)$ -atoms.

The following lemma plays a similar role as Lemma [3.6.](#page-8-0)

Lemma 5.5 *Let* $p(·) ∈ P(Ω)$ *satisfy* ([5\)](#page-6-0), $p_+ < 1$ *and E be a rearrangement invariant Banach function space. Take* $0 < \varepsilon < \underline{p}$ *and* $L \in (1, \frac{1}{p_+} \wedge \frac{1}{\varepsilon})$. If $a^{kj,i}$ is a $(s, 1, p(\cdot), E)$ *atom for every k, j, i associated with* $I_{k,j,i} \in A(\mathcal{F}_j)$, then we have

$$
Z := \left\| \sum_{j=0}^{\infty} \sum_{i} \left[\| \chi_{I_{k,j,i}} \|_{p(\cdot)} s(a^{k,j,i}) \chi_{I_{k,j,i}} \right]^{L_{\epsilon}} \right\|_{p(\cdot)/\epsilon} \lesssim \left\| \sum_{j=0}^{\infty} \sum_{i} \chi_{I_{k,j,i}} \right\|_{p(\cdot)/\epsilon}
$$

Proof According to the duality $(L_{\frac{p(\cdot)}{\epsilon}})^* = L_{(\frac{p(\cdot)}{\epsilon})'}$ (see e.g. [[5,](#page-29-1) Theorem 2.80]), we hoose a positive function $g \in L_{(\frac{p(\cdot)}{\epsilon})'}$, with $||g||_{(\frac{p(\cdot)}{\epsilon})'} \leq 1$ such that

$$
Z = \int_{\Omega} \sum_{j=0}^{\infty} \sum_{i} \left[||\chi_{I_{k,j,i}}||_{p(\cdot)} s(a^{k,j,i}) \chi_{I_{k,j,i}} \right]^{L\varepsilon} g d\mathbb{P}.
$$

.

Note that the support of $s(a^{k,j,i})$ is $I_{k,j,i}$ (see Proposition [3.2\)](#page-7-2). Then, applying Lemmas [5.1](#page-21-0) and [5.2](#page-21-1), we have

$$
||s(a^{k,j,i})||_1 = ||s(a^{k,j,i})\chi_{I_{k,j,i}}||_1 \leq ||s(a^{k,j,i})||_E ||\chi_{I_{k,j,i}}||_E
$$

$$
\leq \frac{||\chi_{I_{k,j,i}}||_E}{||\chi_{I_{k,j,i}}||_{p(\cdot)}} ||\chi_{I_{k,j,i}}||_E = \frac{||\chi_{I_{k,j,i}}||_1}{||\chi_{I_{k,j,i}}||_{p(\cdot)}}.
$$

Hence, by Hölder's inequality, we obtain

$$
\begin{split} Z &\leq \sum_{j=0}^{\infty}\sum_{i}\|\chi_{I_{k,j,i}}\|_{p(\cdot)}^{L\epsilon}\|s(a^{k,j,i})^{L\epsilon}\|_{\frac{1}{L\epsilon}}\|\chi_{I_{k,j,i}}g\|_{(\frac{1}{L\epsilon})^{\prime}}\\ &=\sum_{j=0}^{\infty}\sum_{i}\|\chi_{I_{k,j,i}}\|_{p(\cdot)}^{L\epsilon}\|s(a^{k,j,i})\|_{1}^{L\epsilon}\|\chi_{I_{k,j,i}}g\|_{(\frac{1}{L\epsilon})^{\prime}}\\ &\leq \sum_{j=0}^{\infty}\sum_{i}\|\chi_{I_{k,j,i}}\|_{1}^{L\epsilon}\left(\int_{I_{k,j,i}}g^{(\frac{1}{L\epsilon})^{\prime}}\right)^{1/(\frac{1}{L\epsilon})^{\prime}}. \end{split}
$$

Thus, we fnd

$$
Z = \sum_{j=0}^{\infty} \sum_{i} \int_{\Omega} \chi_{I_{k,j,i}} d\mathbb{P} \left(\frac{1}{\mathbb{P}(I_{k,j,i})} \int_{I_{k,j,i}} g^{(\frac{1}{L\epsilon})'} \right)^{1/(\frac{1}{L\epsilon})'}
$$

\n
$$
\leq \sum_{j=0}^{\infty} \sum_{i} \int_{\Omega} \chi_{I_{k,j,i}} [M(g^{(\frac{1}{L\epsilon})'})]^{1/(\frac{1}{L\epsilon})'} d\mathbb{P}
$$

\n
$$
\leq \left\| \sum_{j=0}^{\infty} \sum_{i} \chi_{I_{k,j,i}} \right\|_{p(\cdot)/\epsilon} ||[M(g^{(\frac{1}{L\epsilon})'})]^{1/(\frac{1}{L\epsilon})'} ||_{(p(\cdot)/\epsilon)}
$$

\n
$$
\leq \left\| \sum_{j=0}^{\infty} \sum_{i} \chi_{I_{k,j,i}} \right\|_{p(\cdot)/\epsilon} ||g||_{(p(\cdot)/\epsilon)} \leq \left\| \sum_{j=0}^{\infty} \sum_{i} \chi_{I_{k,j,i}} \right\|_{p(\cdot)/\epsilon},
$$

which completes the proof. \Box

Applying the above lemma, we improve Theorem [3.5](#page-8-1) to the result below. The proof is omitted.

Theorem 5.6 *Let* $p(\cdot) \in \mathcal{P}(\Omega)$ *satisfy* ([5\)](#page-6-0) *with* $0 < p_+ < 1, 0 < q \le \infty$ *, and let E be a rearrangement invariant Banach function space*. *Then*

$$
H^s_{p(\cdot),q} = H^{\text{sat},1,E}_{p(\cdot),q}
$$

with equivalent quasi-*norms*.

Remark 5.7 Let $(\mathcal{F}_n)_{n\geq 0}$ be regular. According to Corollary [3.8](#page-14-2), $H_{p(\cdot),q}^s = H_{p(\cdot),q}^M$. We also can prove $(s, 1, p(\cdot), E)$ -atomic decomposition for $H_{p(\cdot),q}^M$ when $p(\cdot) \in \mathcal{P}(\Omega)$ satis-fying condition [\(5](#page-6-0)) and p_{+} < 1.

We refer the reader to [\[10](#page-29-10), Theorem 4.10] for the fact that $H_1(\mathbb{R}^n)$ does not have such atomic decomposition when $E = L_1$ in classical harmonic analysis.

5.2 BMO_{F} $(\alpha \cdot \cdot)$ spaces with variable exponent

We first present the definition of $BMO_E(\alpha(\cdot))$.

Definition 5.8 Let $\alpha(\cdot) + 1 \in \mathcal{P}(\Omega)$ and *E* be a Banach function space with associate space *E'*. Define $BMO_E(\alpha(\cdot))$ as the space of functions $f \in E$ for which

$$
||f||_{BMO_E(\alpha(\cdot))} = \sup_{n \ge 0} \sup_{I \in A(\mathcal{F}_n)} ||\chi_I||_{\frac{1}{\alpha(\cdot)+1}}^{-1} ||\chi_I||_{E'} ||(f - f_n)\chi_I||_E
$$

is fnite.

Lemma 5.9 *Let* $p(·) ∈ P(Ω)$ *satisfy* ([5\)](#page-6-0), 0 < p_+ < 1 *and* 0 < $q ≤ 1$ *. Let E be a rearrangement invariant space with Fatou norm such that* $1 \leq p_E \leq q_E < \infty$. If $\{\mathcal{F}_n\}_{n>0}$ *is regular*, *then*

$$
(H_{p(\cdot),q}^M)^* = BMO_E(\alpha(\cdot)), \quad \alpha(\cdot) = \frac{1}{p(\cdot)} - 1
$$

with equivalent norms.

Proof Let $\varphi \in BMO_F(\alpha(\cdot))$. It follows from Lemma [5.1](#page-21-0) that

$$
\|\varphi\|_{BMO_1(\alpha(\cdot))}\le \|\varphi\|_{BMO_E(\alpha(\cdot))}.
$$

Then $\varphi \in BMO_{1}(\alpha(\cdot)) \subset L_{1}$. Define the functional as

$$
l_{\varphi}(f) = \mathbb{E}(f\varphi), \quad \forall f \in L_{\infty}.
$$

Similar to the proof of Theorem [4.4](#page-15-1), one can easily apply Corollary [3.8](#page-14-2) and [4.3](#page-15-0) to get

$$
|l_{\varphi}(f)| \lesssim \|\varphi\|_{BMO_1(\alpha(\cdot))} \|f\|_{H^M_{p(\cdot),q}}.
$$

On the other hand, since L_{∞} is dense in $H_{p(\cdot),q}^M$, l_{φ} can be uniquely extended to a continuous functional on $H_{p(\cdot),q}^M$.

Conversely, let $l \in (H_{p(\cdot),q}^M)^*$. Since $L_2 \subset H_{p(\cdot),q}^M$, there exists $\varphi \in L_2$ such that

$$
l(f) = \mathbb{E}(f\varphi), \qquad f \in L_2.
$$

We still need to show $\varphi \in BMO_E(\alpha(\cdot))$. It follows from Theorem [4.4](#page-15-1) that $\|\varphi\|_{BMO_{2}(\alpha(\cdot))}$ ≤ ||*l*||. Hence, to show $\varphi \in BMO_{E}(\alpha(\cdot))$, it suffices to prove $\|\varphi\|_{BMO_E(\alpha(\cdot))} \lesssim \|\varphi\|_{BMO_{2}(\alpha(\cdot))}.$

By duality, for each *n* and $I \in A(\mathcal{F})$, there exists $h \in E'$ with $||h||_{E'} \le 1$ such that

$$
\|(\varphi-\varphi_n)\chi_l\|_E\leq 2\|\int_I(\varphi-\varphi_n)hd\mathbb{P}|.
$$

Defne

$$
a = \frac{\|\chi_I\|_{E'}(h - h_n)\chi_I}{2c_0 \|\chi_I\|_{p(\cdot)}}, \quad \alpha(\cdot) = \frac{1}{p(\cdot)} - 1,
$$

where c_0 is the constant in the Doob maximal inequality given in Lemma [5.3.](#page-22-0) According to [\(12](#page-21-2)), it is obvious that $1 < p_{E'} \le q_{E'} \le \infty$. Then, by Lemma [5.3,](#page-22-0) we have

$$
||M(a)||_{E'} \le c_0 ||a||_{E'} \le \frac{||\chi_I||_{E'}}{||\chi_I||_{p(\cdot)}}.
$$

So *a* is an $(s, 3, p(\cdot), E')$ -atom. Thus, by Theorems [5.6](#page-23-0) and Corollary [3.8](#page-14-2),

$$
(h - h_n)\chi_I = \frac{2c_0 ||\chi_I||_{p(\cdot)}}{||\chi_I||_{E'}} a \in H_{p(\cdot),q}^M
$$

with

$$
||(h-h_n)\chi_I||_{H^M_{p(\cdot),q}} \leq \frac{2c_0||\chi_I||_{p(\cdot)}}{||\chi_I||_{E'}}.
$$

Since $(\mathcal{F}_n)_{n>0}$ is regular, we have

$$
\frac{\| \chi_I \|_{E'} \| (\varphi - \varphi_n) \chi_I \|_E}{\| \chi_I \|_{\frac{1}{\alpha(\cdot)+1}}} \leq \frac{2 \| \chi_I \|_{E'} \| \int_I (\varphi - \varphi_n) h d\mathbb{P} \|}{\| \chi_I \|_{\frac{1}{\alpha(\cdot)+1}}} \\ = \frac{2 \| \chi_I \|_{E'} \| \int_I \varphi(h-h_n) d\mathbb{P} \|}{\| \chi_I \|_{\frac{1}{\alpha(\cdot)+1}}} \\ \leq \frac{2 \| \chi_I \|_{E'} \| \varphi \|_{BMO_2(\alpha(\cdot))} \| (h-h_n) \chi_I \|_{H^M_{p(\cdot),q}}}{\| \chi_I \|_{\frac{1}{\alpha(\cdot)+1}}} \\ \leq 2 c_0 \| \varphi \|_{BMO_2(\alpha(\cdot))},
$$

where the second "≤" is due to $(H_{p(\cdot),q}^M)^* = (H_{p(\cdot),q}^s)^* = BMO_2(\alpha(\cdot))$ (by Corollary [3.8\)](#page-14-2). Consequently, we obtain

$$
\|f\|_{BMO_E(\alpha(\cdot))} \lesssim \|f\|_{BMO_2(\alpha(\cdot))},
$$

which completes the proof. \Box

As a consequence of the above result, we have the following John–Nirenberg inequality.

Theorem 5.10 *Let* $\alpha(\cdot) + 1 \in \mathcal{P}(\Omega)$ *satisfy* [\(5](#page-6-0)) *and* $0 < \alpha_{-} \leq \alpha_{+} < \infty$ *. Let E be a rearrangement invariant Banach function space with Fatou norm such that* $1 \leq p_E \leq q_E < \infty$. If $(\mathcal{F}_n)_{n>0}$ is regular, then

$$
BMO_E(\alpha(\cdot)) = BMO_1(\alpha(\cdot))
$$

with equivalent norms.

5.3 BMO_{E*a***}** $(\alpha(\cdot))$ spaces with variable exponent</sub>

Definition 5.11 Let *E* be a rearrangement invariant Banach function space, and let $0 < q \leq \infty$ and $\alpha(\cdot) + 1 \in \mathcal{P}(\Omega)$. The generalized martingale space *BMO_{E a}*($\alpha(\cdot)$) is defned by

$$
BMO_{E,q}(\alpha(\cdot)) = \left\{ f \in E : ||f||_{BMO_{E,q}(\alpha)} < \infty \right\},\
$$

where

$$
||f||_{BMO_{E,q}(\alpha(\cdot))} = \sup \frac{\sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{N}} \sum_{i} 2^{k} ||\chi_{I_{k,j,i}}||_{E'} ||(f - f_{j}) \chi_{I_{k,j,i}}||_{E}}{\left(\sum_{k \in \mathbb{Z}} 2^{kq} ||\sum_{j \in \mathbb{N}} \sum_{i} \chi_{I_{k,j,i}}||_{\frac{q}{\alpha(\cdot)+1}}^{q}\right)^{1/q}}
$$

and the supremum is taken over all sequence of atoms $\{I_{k,j,i}\}_{k \in \mathbb{Z}, j \in \mathbb{N}, i}$ such that that $I_{k,j,i}$ are disjoint if *k* is fixed, $I_{k,j,i}$ belong to \mathcal{F}_j and

$$
\left\{2^k \middle\| \sum_{j \in \mathbb{N}} \sum_i \chi_{I_{k,j}} \middle\| \frac{1}{a^{(1)+1}} \right\}_k \in \mathcal{C}_q.
$$

*BMO*_r α (α (·)) can be similarly defined.

Similarly to Proposition [4.6,](#page-17-0) we can show the following result.

Proposition 5.12 *Let E be a rearrangement invariant Banach function space*, $0 < q \le \infty$, $\alpha(\cdot) \ge 0$ and $\alpha(\cdot) + 1 \in \mathcal{P}(\Omega)$. Then

$$
\|f\|_{BMO_E(\alpha(\cdot))}\leq \|f\|_{BMO_{E,q}(\alpha(\cdot))}.
$$

If in addition $0 < q \leq 1$ *, then* $BMO_E(\alpha(\cdot)) \sim BMO_{E,q}(\alpha(\cdot))$ *.*

We establish the following lemma.

Lemma 5.13 *Let* $p(\cdot) \in \mathcal{P}(\Omega)$ *satisfy* [\(5](#page-6-0)), $0 < p_+ < 1$ *and* $1 < q < \infty$ *. Let E be a rearrangement Banach function space with Fatou norm such that* $1 \leq p_F \leq q_F < \infty$. *If* { \mathcal{F}_n }_{n≥0} *is regular, then*

$$
(H_{p(\cdot),q}^M)^* = BMO_{E,q}(\alpha(\cdot)), \quad \alpha(\cdot) = \frac{1}{p(\cdot)} - 1,
$$

with equivalent norms.

Proof It follows from Lemma [5.1](#page-21-0) that $||g||_{BMO_{L_a}(\alpha(\cdot))} \le ||g||_{BMO_{E_a}(\alpha(\cdot))}$ for every *g* ∈ *BMO*_{E*,q*}(α (⋅)). Let φ ∈ *BMO*_{E,*q*}(α (⋅)). Then φ ∈ *BMO*_{1,*q*}(α (⋅)) ⊂ *L*₁ We define the functional as

$$
l_\varphi(f)=\mathbb{E}(f\varphi),\quad \forall f\in L_\infty.
$$

It follows from the inclusion $L_{\infty} \subset H_{p(\cdot),q}^M$ and Corollary [3.8](#page-14-2) that

$$
f = \sum_{k \in \mathbb{Z}} \sum_{j=0}^{\infty} \sum_{i} \mu_{k,j,i} a^{k,j,i} \quad \forall f \in L_{\infty}
$$

with $\mu_{k,j,i} = 3 \cdot 2^k || \chi_{I_{i,j,i}} ||_{p(\cdot)}$ and $a^{k,j,i}$'s are $(s, 3, p(\cdot), \infty)$ -atoms associated with $(I_{k,j,i})_{k,i} \subset A(\mathcal{F}_j)$. By the Definition [3.1](#page-7-1)(3), $\mathbb{E}(a^{k,j,i}\varphi) = \mathbb{E}(a^{k,j,i}(\varphi - \varphi_j))$ always holds for every *k*, *j*, *i*, where $\varphi_j = \mathbb{E}_j(\varphi)$. Thus, we find that

$$
|l_{\varphi}(f)| \leq \sum_{k \in \mathbb{Z}} \sum_{j=0}^{\infty} \sum_{i} \mu_{k,j,i} \left| \int_{\Omega} a^{k,j,i} (\varphi - \varphi_{j}) d\mathbb{P} \right|
$$

$$
\leq \sum_{k \in \mathbb{Z}} \sum_{j=0}^{\infty} \sum_{i} \mu_{k,j,i} \|a^{k,j,i}\|_{\infty} \|(\varphi - \varphi_{j}) \chi_{I_{k,j,i}}\|_{1}
$$

$$
\lesssim \sum_{k \in \mathbb{Z}} \sum_{j=0}^{\infty} \sum_{i} 2^{k} \|(\varphi - \varphi_{j}) \chi_{I_{k,j,i}}\|_{1}.
$$

It follows from the definition of $\|\cdot\|_{BMO_{1,a}(\alpha(\cdot))}$ and Corollary [3.8](#page-14-2) that

$$
\begin{aligned} |l_\varphi(f)|\lesssim & \left(\sum_{k\in\mathbb{Z}}2^{kq}\left\|\sum_{j\in\mathbb{N}}\sum_i\chi_{I_{k,j_i}}\right\|_{p(\cdot)}^q\right)^{1/q}\|\varphi\|_{BMO_{1,q}(\alpha(\cdot))}\\ \lesssim & \|f\|_{H^M_{p(\cdot),q}}\|\varphi\|_{BMO_{E,q}(\alpha(\cdot))}. \end{aligned}
$$

Since L_{∞} is dense in $H_{p(\cdot),q}^M$ (see [\[15](#page-30-10), Remark 3.12]), the functional l_g can be uniquely extended to a continuous functional on $H_{p(\cdot),q}^M$.

Conversely, suppose that $l \in (H_{p(\cdot),q}^M)^*$. Since $L_2 \subset H_{p(\cdot),q}^M$, there exists $\varphi \in L_2 \subset L_1$ such that

$$
l(f) = \mathbb{E}(f\varphi), \qquad f \in L_2.
$$

B Birkhäuser

We still need to show $\varphi \in BMO_{E,q}(\alpha(\cdot))$. According to Theorem [4.7,](#page-18-0) $\|\varphi\|_{BMO_{2,a}(\alpha(\cdot))}$ ≤ ||l||. Hence, it is sufficient to show $\|\varphi\|_{BMO_{E,a}(\alpha(\cdot))}$ ≤ $\|\varphi\|_{BMO_{2,a}(\alpha(\cdot))}$.

Let $\{I_{k,j,i}\}_{k\in\mathbb{Z}, j\in\mathbb{N}, i}$ be an arbitrary atom sequence such that that $I_{k,j,i}$ are disjoint if *k* is fixed, $I_{k,j,i}$ belong to \mathcal{F}_j if k, j are fixed, and

$$
\left\{2^k \middle\| \sum_{j \in \mathbb{N}} \sum_i \chi_{I_{k,j,i}} \right\|_{p(\cdot)} \right\}_k \in \mathscr{C}_q.
$$

We shall estimate the following term

$$
A := \sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{N}} \sum_{i} 2^{k} \| \chi_{I_{k,j,i}} \|_{E'} \| (g - g_j) \chi_{I_{k,j,i}} \|_{E}.
$$

By duality, for every k , j , i , we can find $h^{k,j,i} \in E'$ such that

$$
\begin{aligned} \|(g - g_j)\chi_{I_{k,j,i}}\|_E &\le 2 \int (g - g_j)\chi_{I_{k,j,i}} h^{k,j,i} d\mathbb{P} \\ &= 2 \int (h^{k,j,i} - \mathbb{E}_j(h^{k,j,i}))\chi_{I_{k,j,i}} g d\mathbb{P} \end{aligned}
$$

Similar to the proof of Theorem [5.10](#page-26-0), define

$$
a^{k,j,i} = \frac{\| \chi_{I_{k,j,i}} \|_{E'} (h^{k,j,i} - \mathbb{E}_j(h^{k,j,i})) \chi_{I_{k,j,i}}}{2c_0 \| \chi_{I_{k,j,i}} \|_{p(\cdot)}}, \quad \alpha(\cdot) = \frac{1}{p(\cdot)} - 1,
$$

where c_0 is the constant in the Doob maximal inequality in Lemma [5.3.](#page-22-0) Then each $a^{k,j,i}$ is an $(s, 3, p(\cdot), E)$ -atom. By Corollary [3.8,](#page-14-2) we find that

$$
f = \sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{N}} \sum_{i} 2^{k} \| \chi_{I_{k,j,i}} \|_{p(\cdot)} a^{k,j,i} \in H^{M}_{p(\cdot),q}
$$

and

$$
\|f\|_{H^M_{p(\cdot),q}} \lesssim \left(\sum_{k\in\mathbb{Z}} 2^{kq} \left\|\sum_{j\in\mathbb{N}} \sum_i \chi_{I_{k,j,i}}\right\|_{p(\cdot)}^q\right)^{\frac{1}{q}}.
$$

Thus, combining the above argument and Theorem [4.7](#page-18-0), we have

$$
A := \sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{N}} \sum_{i} 2^{k} \| \chi_{I_{k,j,i}} \|_{E'} \| (g - g_j) \chi_{I_{k,j,i}} \|_{E}
$$

\n
$$
\leq 2 \sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{N}} \sum_{i} 2^{k} \| \chi_{I_{k,j,i}} \|_{E'} \int (h^{k,j,i} - \mathbb{E}_j(h^{k,j,i})) \chi_{I_{k,j,i}} g d\mathbb{P}
$$

\n
$$
\lesssim \|g\|_{BMO_{2,q}(\alpha(\cdot))} \|f\|_{H^{M}_{p(\cdot),q}},
$$

which implies that

$$
\|\varphi\|_{BMO_{E,q}(\alpha(\cdot))} \lesssim \|\varphi\|_{BMO_{2,q}(\alpha(\cdot))}
$$

The proof is complete. \Box

Similar to Lemma [5.13](#page-27-0), one also can prove that

$$
(\mathscr{H}_{p(\cdot),\infty}^M)^* = BMO_{E,\infty}(\alpha(\cdot)).
$$

Then the following John-Nirenberg theorem is an immediate consequence of the combination of Lemma [5.13.](#page-27-0)

Theorem 5.14 *Let* $\alpha(\cdot) + 1 \in \mathcal{P}(\Omega)$ *satisfy* ([5\)](#page-6-0), $1 < q \le \infty$ *and* $0 < \alpha_{-} \le \alpha_{+} < \infty$ *. Let E* be a rearrangement invariant space with Fatou norm such that $1 \leq p_E \leq q_E < \infty$. *If* ${f_n}_{n>0}$ *is regular, then*

$$
BMO_{E,q}(\alpha(\cdot)) = BMO_{2,q}(\alpha(\cdot))
$$

with equivalent norms.

Acknowledgements The authors would like to thank the anonymous reviewers for helpful suggestions.

References

- 1. Aoyama, H.: Lebesgue spaces with variable exponent on a probability space. Hiroshima Math. J. **39**(2), 207–216 (2009)
- 2. Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics. Academic Press, Inc., Boston (1988)
- 3. Boyd, D.: Indices of function spaces and their relationship to interpolation. Can. J. Math. **21**, 1245– 1254 (1969)
- 4. Cruz-Uribe, D., Fiorenza, A.: Approximate identities in variable *Lp* spaces. Math. Nachr. **280**(3), 256–270 (2007)
- 5. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Heidelberg (2013)
- 6. Fan, X., Zhao, D.: On the spaces *Lp*(*x*) (Ω) and *Wm*,*p*(*x*) (Ω). J. Math. Anal. Appl. **263**(2), 424–446 (2001)
- 7. Feferman, C.: Characterizations of bounded mean oscillation. Bull. Amer. Math. Soc. **77**, 587–588 (1971)
- 8. Feferman, R., Soria, F.: The space weak *H*¹ . Stud. Math. **85**(1), 1–16 (1986)
- 9. Garsia A.: Martingale inequalities: Seminar Notes on Recent Progress. Mathematics Lecture Notes Series. W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam (1973)
- 10. Garca-Cuerva J, Rubio de Francia J.: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, vol. 116. Notas de Matemctica [Mathematical Notes], 104. North-Holland Publishing Co., Amsterdam (1985)
- 11. Grafakos, L..: Classical Fourier Analysis. Graduate Texts in Mathematics, 2nd edn. Springer, New York (2008)
- 12. Hao, Z., Jiao, Y.: Fractional integral on martingale Hardy spaces with variable exponents. Fract. Calc. Appl. Anal. **18**(5), 1128–1145 (2015)

- 13. Herz C.: H_n -spaces of martingales, $0 < p \le 1$. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 28 (1973/74), 189–205
- 14. Jiao, Y., Peng, L., Liu, P.: Atomic decompositions of Lorentz martingale spaces and applications. J. Funct. Spaces Appl. **7**(2), 153–166 (2009)
- 15. Jiao, Y., Weisz, F., Wu, L., Zhou, D.: Variable martingale Hardy spaces and their applications in Fourier analysis, Dissertationes Math. **550**, 67 (2020)
- 16. Jiao, Y., Wu, L., Peng, L.: Weak Orlicz-Hardy martingale spaces. Internat. J. Math., **26**(8), 1550062, 26 p (2015)
- 17. Jiao, Y., Wu, L., Yang, A., Yi, R.: The predual and John–Nirenberg inequalities on generalized BMO martingale space. Trans. Am. Math. Soc. **369**(1), 537–553 (2017)
- 18. Jiao, Y., Xie, G., Zhou, D.: Dual spaces and John–Nirenberg inequalities of martingale Hardy-Lorentz–Karamata spaces. Q. J. Math. **66**(2), 605–623 (2015)
- 19. Jiao, Y., Zhou, D., Hao, Z., Chen, W.: Martingale Hardy spaces with variable exponents. Banach J. Math. Anal. **10**(4), 750–770 (2016)
- 20. John, F., Nirenberg, L.: On functions of bounded mean oscillation. Comm. Pure Appl. Math. **14**, 415–426 (1961)
- 21. Kempka, H., Vybíral, J.: Lorentz spaces with variable exponents. Math. Nachr. **287**(8–9), 938–954 (2014)
- 22. Krein, S., Petunin, Y., Semenov, E.: Interpolation of linear operators. Translated from the Russian by J. Szucs. Translations of Mathematical Monographs, vol. 54. American Mathematical Society, Providence, R.I. (1982)
- 23. Long, R.: Martingale Spaces and Inequalities. Peking University Press, Friedr. Vieweg & Sohn, Beijing, Braunschweig (1993)
- 24. Miyamoto, T., Nakai, E., Sadasue, G.: Martingale Orlicz–Hardy spaces. Math. Nachr. **285**(5–6), 670–686 (2012)
- 25. Nakai, E., Sadasue, G.: Maximal function on generalized martingale Lebesgue spaces with variable exponent. Stat. Probab. Lett. **83**(10), 2168–2171 (2013)
- 26. Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. **262**(9), 3665–3748 (2012)
- 27. Novikov, I.: Martingale inequalities in rearrangement invariant function spaces. Function spacespp, pp. 120–127. (Pozna, 1989)
- 28. Weisz, F.: Martingale Hardy spaces for $0 < p \le 1$. Probab. Theory Related Fields 84(3), 361–376 (1990)
- 29. Weisz, F.: Martingale Hardy Spaces and Their Applications in Fourier Analysis. Lecture Notes in Mathematics. Springer-Verlag, Berlin (1994)
- 30. Weisz, F.: Summability of Multi-Dimensional Fourier Series and Hardy Spaces. Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht (2002)
- 31. Weisz, F.: Weak martingale Hardy spaces. Probab. Math. Stat. **18**, 133–148 (1998)
- 32. Weisz, F.: Dual spaces of multi-parameter martingale Hardy spaces. Q. J. Math. **67**, 137–145 (2016)
- 33. Xie, G., Weisz, F., Yang, D., Jiao, Y.: New martingale inequalities and applications to Fourier analysis. Nonlinear Anal. **182**, 143–192 (2019)
- 34. Yan, X., Yang, D., Yuan, W., Zhuo, C.: Variable weak Hardy spaces and their applications. J. Funct. Anal. **271**(10), 2822–2887 (2016)
- 35. Yi, R., Wu, L., Jiao, Y.: New John-Nirenberg inequalities for martingales. Stat. Probab. Lett. **86**, 68–73 (2014)
- 36. Zuo, Y., Saibi, K., Jiao, Y.: Variable Hardy–Lorentz spaces associated to operators satisfying Davies–Gafney estimates. Banach J. Math. Anal. **13**(4), 769–797 (2019)