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Abstract
Let Hp(⋅),q be the variable Lorentz–Hardy martingale spaces. In this paper, we give a 
new atomic decomposition for these spaces via simple Lr-atoms (1 < r ≤ ∞) . Using 
this atomic decomposition, we consider the dual spaces of variable Lorentz-Hardy 
spaces Hp(⋅),q for the case 0 < p(⋅) ≤ 1 , 0 < q ≤ 1 , and 0 < p(⋅) < 2 , 1 < q < ∞ 
respectively, and prove that they are equivalent to the BMO spaces with variable 
exponent. Furthermore, we also obtain several John-Nirenberg theorems based on 
the dual results.
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1 Introduction

In this paper, we focus on the dual space of Hardy spaces in martingale setting. 
A martingale analogue of H1 − BMO duality can be found in [9]. For dyadic mar-
tingales, Herz [13] proved the dual space of Hp ( 0 < p < 1 ). In 1990, Weisz [28] 
characterized the dual space of Hp ( 0 < p ≤ 1 ) for general martingales via atomic 
decomposition. Recently, these results were extended to more general cases. Jiao 
et  al. [14] got the atomic decomposition for martingale Lorentz–Hardy spaces 
Hp,q . Later, Jiao et al. [17] extended the atomic decomposition in [14] and inves-
tigated the dual space of Hp,q . Miyamoto et  al. [24] studied the atomic decom-
position of martingale Orlicz–Hardy space HΦ and proved the dual of it. The 
weak type martingale Hardy spaces were also studied by several authors, see for 
instance [16, 31].

Recently, motivated by the development of harmonic analysis based on variable 
Lebesgue spaces (see e.g. [5] and references therein), people began to study martin-
gales associated with variable exponents. In particular, Aoyama [1] established the 
Doob maximal inequality when p(⋅) is Fn-measurable for all n ≥ 0 . Shortly later, 
Nakai and Sadasue [25] showed that Aoyama’s assumption is not necessary for the 
Doob maximal inequality. In [19] (see also [12]), with additional assumption that 
Fn is atomic �-algebra, Jiao et al. introduced a new condition on p(⋅) to ensure that 
Doob maximal operator is bounded on Lp(⋅)(Ω) . Xie et al. [33] proved several mar-
tingale inequalities in Musielak-Orlicz spaces. Jiao et al. [15] did a systematic study 
of variable martingale Lorentz-Hardy spaces Hp(⋅),q . Actually, the authors in [15] 
constructed atomic decomposition for Hardy spaces and gave applications to Fourier 
analysis.

In the present paper, we continue to study the variable martingale Lorentz-Hardy 
spaces Hp(⋅),q . Our first aim is to show the dual space of Hp(⋅),q . The main tool we 
use here is atomic decomposition of Hp(⋅),q . Recall that only ∞-atoms works for the 
atomic decomposition in [15]. As we will see, by Lemma  3.6, we can construct 
atomic decomposition via r-atoms ( r < ∞ ) in the sense of simple atoms (see Theo-
rem 3.5). The proof is given in Sect. 3. In Sect. 4, as applications of this kind of 
atomic decomposition, we establish the dual space of Hp(⋅),q.

Our second objective is to prove John-Nirenberg theorem associated with vari-
able exponent. Consider martingales with respect to a non-decreasing stochastic 
basic (Fn)n≥0 . Let T  be the set of all stopping times with respect to (Fn)n≥0 . The 
well known (classical) John–Nirenberg theorem says that if the the stochastic basis 
(Fn)n≥0 is regular, then

where ‖f‖BMOp
= ‖f‖BMOLp

 defined below. We refer the reader to [9] for the above 
fact (1). This result was generalized by Yi et al. [35]: if the stochastic basis is regular 
and E is a rearrangement invariant Banach function space (see e.g. [2]), then

where

(1)BMOp = BMO1, 1 ≤ p < ∞,

(2)BMOE = BMO1,
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In this paper, we introduce variable Lipschitz space BMOE(�(⋅)) and show that 
(Theorem 5.10)

where �(⋅) satisfies (5). This result is just (2) when �(⋅) ≡ 0 . We also have John-
Nirenberg theorem for generalized BMO martingale spaces associated with vari-
able exponent. Recall that Jiao et  al. introduced the generalized BMO martingale 
spaces BMOr,q(�) ( r, q ≥ 1 , � ≥ 0 ) and proved that BMOr,q(�) is the dual space of 
Hp,q ( 0 < p ≤ 1 and � = 1∕p − 1 ). Jiao et al. [17, Theorem 1.2] obtained that if the 
stochastic basis is regular, then

The variable exponent version of (3) is presented in Theorem  5.14. The proof is 
given in Sect. 5.

Throughout this paper, the integer set and nonnegative integer set are denoted by 
ℤ and ℕ , respectively. We denote by C a positive constant, which can vary from line 
to line. The symbol A ≲ B stands for the inequality A ≤ CB . If we write A ≈ B , then 
it mean A ≲ B ≲ A.

2  Preliminaries

2.1  Variable Lebesgue spaces Lp(⋅)

Let (Ω,F,ℙ) be a complete probability space. A measurable function p(⋅) : 
Ω → (0,∞) is called a variable exponent. For a measurable set A ⊂ Ω , we denote

and for convenience

Denote by P(Ω) the collection of all variable exponents p(⋅) such that 
0 < p− ≤ p+ < ∞. The variable Lebesgue space Lp(⋅) = Lp(⋅)(Ω) is the collection of 
all measurable functions f defined on (Ω,F,ℙ) such that for some 𝜆 > 0,

This becomes a quasi-Banach function space when it is equipped with the 
quasi-norm

‖f‖BMOE
= sup

𝜏∈T

‖(f − f 𝜏)𝜒{𝜏<∞}‖E
‖𝜒{𝜏<∞}‖E .

BMOE(�(⋅)) = BMO1(�(⋅))

(3)BMOr,q(�) = BMO1,q(�).

p−(A) ∶= ess inf
x∈A

p(x), p+(A) ∶= ess sup
x∈A

p(x)

p− ∶= p−(Ω), p+ ∶= p+(Ω).

𝜌(f∕𝜆) =
∫
Ω

(|f (x)|
𝜆

)p(x)

dℙ < ∞.



 Y. Jiao et al.53 Page 4 of 31

For any f ∈ Lp(⋅) , we have �(f ) ≤ 1 if and only if ‖f‖p(⋅) ≤ 1 ; see [6, Theorem 1.3]. In 
the sequel, we always use the symbol

Throughout the paper, the variable exponent p�(⋅) is defined pointwise by

For p(⋅) ∈ P(Ω) , it is clear that p�(x) ∈ ℝ ∪ {∞} ⧵ {0} for any x ∈ Ω . We present 
some basic properties here (see [26]): 

1. ‖f‖p(⋅) ≥ 0 ; ‖f‖p(⋅) = 0 ⇔ f ≡ 0.
2. ‖cf‖p(⋅) = �c� ⋅ ‖f‖p(⋅) for c ∈ ℂ.
3. for 0 < b ≤ p , we have 

Lemma 2.1 ( [5, Corollary 2.28]) Let p(⋅), q(⋅), r(⋅) ∈ P(Ω) satisfy

Then there exists a constant C such that for all f ∈ Lq(⋅) and g ∈ Lr(⋅) , we have 
fg ∈ Lp(⋅) and

Furthermore, we have the following reverse Minkowski inequality. It was stated 
without a proof in [34, Remark  2.4] for p+ < 1 . We give a detailed proof here.

Lemma 2.2 Let p(⋅) ∈ P(Ω) . If p+ ≤ 1 , we have, for positive functions f , g ∈ Lp(⋅),

Proof Take positive functions f , g ∈ Lp(⋅) . For arbitrary small positive number 𝜀 > 0 , 
set �f = ‖f‖p(⋅) − � and �g = ‖g‖p(⋅) − � . Note that, as mentioned before, 𝜌(f ) > 1 if 
and only if ‖f‖p(⋅) > 1 . Then, by concavity, we have

‖f‖p(⋅) ∶= inf{𝜆 > 0 ∶ 𝜌(f∕𝜆) ≤ 1}.

p = min{p−, 1}.

1

p(x)
+

1

p�(x)
= 1, x ∈ Ω.

(4)‖f + g‖b
p(⋅)

≤ ‖f‖b
p(⋅)

+ ‖g‖b
p(⋅)

.

1

p(x)
=

1

q(x)
+

1

r(x)
, x ∈ Ω.

‖fg‖p(⋅) ≤ C‖f‖q(⋅)‖g‖r(⋅).

‖f‖p(⋅) + ‖g‖p(⋅) ≤ ‖f + g‖p(⋅).

�
Ω

(
f (x) + g(x)

𝜆f + 𝜆g

)p(x)

dℙ ≥
𝜆f

𝜆f + 𝜆g �Ω

(
f (x)

𝜆f

)p(x)

dℙ

+
𝜆g

𝜆f + 𝜆g �Ω

(
g(x)

𝜆g

)p(x)

dℙ > 1,
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which implies

Taking � → 0 , we get the desired result.   ◻

2.2  Variable Lorentz spaces Lp(⋅),q

In this section, we recall the definition of Lorentz spaces Lp(⋅),q(Ω) with variable expo-
nents p(⋅) ∈ P(Ω) and 0 < q ≤ ∞ is a constant. For more information about general 
cases Lp(⋅),q(⋅)(Ω) , we refer the reader to [21]. Following [21] (see also [36]), we intro-
duce the definition below.

Definition 2.3 Let p(⋅) ∈ P(Ω) and 0 < q ≤ ∞ . Then Lp(⋅),q(Ω) is the collection of 
all measurable functions f such that

is finite.

Next we introduce a closed subspace of Lp(⋅),∞.

Definition 2.4 Let p(⋅) ∈ P(Ω) . We define Lp(⋅),∞(Ω) as the set of measurable func-
tions f such that

for every sequence (An)n≥0 satisfying ℙ(An) → 0 as n → ∞.

It follows from the dominated convergence theorem for Lp(⋅),∞(Ω) (see Lemma 2.13 
in Jiao et al. [15]) that the simple functions are dense in Lp(⋅),∞(Ω).

2.3  Variable martingale Hardy spaces

In this section, we introduce some standard notations from martingale theory. We 
refer to the books [9, 23, 29] for the theory of classical martingale space. Let (Ω,F,ℙ) 
be a complete probability space. Let the subalgebras (Fn)n≥0 be increasing such that 
F = �(∪n≥0Fn) , and let �n denote the conditional expectation operator relative to Fn . 
A sequence of measurable functions f = (fn)n≥0 ⊂ L1(Ω) is called a martingale with 
respect to (Fn)n≥0 if �n(fn+1) = fn for every n ≥ 0. For a martingale f = (fn)n≥0,

‖f + g‖p(⋅) > 𝜆f + 𝜆g = ‖f‖p(⋅) + ‖g‖g − 2𝜀.

‖f‖Lp(⋅),q ∶=
��

∫
∞

0
𝜆q‖𝜒{�f �>𝜆}‖qp(⋅) d𝜆𝜆

�1∕q

, q < ∞,

sup𝜆 𝜆‖𝜒{�f �>𝜆}‖p(⋅), q = ∞

lim
n→∞

‖f�An
‖Lp(⋅),∞ = 0

dnf = fn − fn−1, n ≥ 0,
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denote the martingale difference. If in addition fn ∈ Lp(⋅) for any n ≥ 0 , then f is 
called an Lp(⋅)-martingale with respect to (Fn)n≥0 . In this case, we set

If ‖f‖p(⋅) < ∞ , f is called a bounded Lp(⋅)-martingale and it is denoted by f ∈ Lp(⋅) . 
For a martingale relative to (Ω,F,ℙ;(Fn)n≥0) , we define the maximal function, the 
square function and the conditional square function of f, respectively, as follows 
(f−1 = 0):

Denote by Λ the collection of all sequences (�n)n≥0 of non-decreasing, non-negative 
and adapted functions with �∞ = limn→∞ �n . Let p(⋅) ∈ P(Ω) and 0 < q ≤ ∞.

Similarly, the variable martingale Lorentz-Hardy spaces associated with variable 
Lorentz spaces Lp(⋅),q are defined as follows:

We define HM

p(⋅),∞
 as the space of all martingales such that M(f ) ∈ Lp(⋅),∞ . Analo-

gously, we can define HS

p(⋅),∞
 and Hs

p(⋅),∞
 , respectively.

Remark 2.5 If p(⋅) = p is a constant, then the above definitions of variable Hardy 
spaces go back to the classical definitions stated in [9] and [29].

2.4  The Doob maximal operator

We need some more notations. Recall that B ∈ Fn is called an atom, if for any A ⊂ B 
with A ∈ Fn satisfying ℙ(A) < ℙ(B) , we have ℙ(A) = 0 . In the theory of variable 
spaces, we usually use the log-Hölder continuity of p(⋅) . In the sequel of this paper, 

‖f‖p(⋅) = sup
n≥0

‖fn‖p(⋅).

Mm(f ) = sup
0≤n≤m

|fn|, M(f ) = sup
n≥0

|fn|;

Sm(f ) =

(
m∑
n=0

|dnf |2
)1∕2

, S(f ) =

(
∞∑
n=0

|dnf |2
)1∕2

;

sm(f ) =

(
m∑
n=0

�n−1|dnf |2
) 1

2

, s(f ) =

(
∞∑
n=0

�n−1|dnf |2
) 1

2

.

HM
p(⋅),q

= {f = (fn)n≥0 ∶ ‖f‖HM
p(⋅),q

= ‖M(f )‖Lp(⋅),q < ∞};

HS
p(⋅),q

= {f = (fn)n≥0 ∶ ‖f‖HS
p(⋅),q

= ‖S(f )‖Lp(⋅),q < ∞};

Hs
p(⋅),q

= {f = (fn)n≥0 ∶ ‖f‖Hs
p(⋅),q

= ‖s(f )‖Lp(⋅),q < ∞};

Qp(⋅),q = {f = (fn)n≥0 ∶ ∃(𝜆n)n≥0 ∈ Λ, s.t. Sn(f ) ≤ 𝜆n−1, 𝜆∞ ∈ Lp(⋅),q},

‖f‖Qp(⋅),q
= inf

(𝜆n)∈Λ
‖𝜆∞‖Lp(⋅),q ;

Pp(⋅),q = {f = (fn)n≥0 ∶ ∃(𝜆n)n≥0 ∈ Λ, s.t. �fn� ≤ 𝜆n−1, 𝜆∞ ∈ Lp(⋅),q},

‖f‖Pp(⋅),q
= inf

(𝜆n)∈Λ
‖𝜆∞‖Lp(⋅),q .
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we will always suppose that every �-algebra Fn is generated by countably many atoms. 
We denote by A(Fn) the set of all atoms in Fn for each n ≥ 0 . Instead of the log-Hölder 
continuity, we suppose that there exists an absolute constant Kp(⋅) ≥ 1 depending only 
on p(⋅) such that

Note that in this paper, under condition (5), we also mean that every �-algebra Fn is 
generated by countably many atoms.

It is clear that for f ∈ L1(Ω)

We now recall the definition of regularity. The stochastic basis (Fn)n≥0 is said to 
be regular, if for n ≥ 0 and A ∈ Fn , there exists B ∈ Fn−1 such that A ⊂ B and 
P(B) ≤ RP(A) , where R is a positive constant independent of n. A martingale is said 
to be regular if it is adapted to a regular �-algebra sequence. This implies that there 
exists a constant R > 0 such that

for all non-negative martingales (fn)n≥0 adapted to the stochastic basis (Fn)n≥0 . We 
refer the reader to [23, Chapter 7] for more details.

The following results are taken from [12] and [19].

Lemma 2.6 Let p(⋅) ∈ P(Ω) satisfy (5). Then, for any atom B ∈ ∪nA(Fn),

Lemma 2.7 Let p(⋅) ∈ P(Ω) satisfy (5) with p− ≥ 1 . Then, for any atom B ∈ ∪nA(Fn)

,

where

Theorem 2.8 Let p(⋅) ∈ P(Ω) satisfy (5) and 1 < p− ≤ p+ < ∞ . Then, there is a pos-
itive constant Cp(⋅) such that

(5)ℙ(A)p−(A)−p+(A) ≤ Kp(⋅), ∀A ∈
⋃
n

A(Fn).

𝔼n(f ) =
∑

A∈A(Fn)

(
1

ℙ(A) ∫A

f (x)dℙ

)
�A, n ∈ ℕ.

(6)fn ≤ Rfn−1

ℙ(B)1∕p−(B) ≈ ℙ(B)1∕p(x) ≈ ℙ(B)1∕p+(B) ≈ ‖�B‖p(⋅), ∀x ∈ B.

‖�B‖r(⋅) ≈ ‖�B‖p(⋅)‖�B‖q(⋅),

1

r(x)
=

1

p(x)
+

1

q(x)
, x ∈ Ω.

‖M(f )‖p(⋅) ≤ Cp(⋅)‖f‖p(⋅).
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3  Atomic decomposition via simple atoms

In this section, we consider the atomic characterizations of variable Lorentz-Hardy 
spaces. Recall that, without any restriction, Hs

p(⋅),q
 has atomic decomposition via 

(1, p(⋅),∞)-atoms (see [15]). In this section, we show that, under the assumption that 
the filtration (Fn)n is generated by countably many atoms and p(⋅) satisfies (5), then 
Hs

p(⋅),q
 has atomic decomposition via simple (1, p(⋅), r)-atoms with 

max{p+, 1} < r ≤ ∞ . To be able the prove the duality results later, we need this new 
atomic decomposition. We will use it not only for r = ∞ but also for r < ∞ . The results 
later cannot be proved with the atomic decomposition obtained in [15]. We begin this 
section with the definition of the simple atoms (see [30] for the classical definition).

Definition 3.1 Let p(⋅) ∈ P(Ω) and 1 < r ≤ ∞ . A measurable function a is called 
a simple (1, p(⋅), r)-atom (briefly (s, 1, p(⋅), r)-atom) if there exist j ∈ ℕ , I ∈ A(Fj) 
such that 

(1) the support of a is contained in I,
(2) ‖s(a)‖r ≤ ‖�I‖r

‖�I‖p(⋅) ,
(3) �j(a) = 0.

If s(a) in (2) is replaced by S(a) (or M(a)), then the function a is called (s, 2, p(⋅), r)
-atom (or (s, 3, p(⋅), r)-atom).

The result below is a simple but useful observation.

Proposition 3.2 Let p(⋅) ∈ P(Ω) and 1 < r ≤ ∞ . If a is an (s, i, p(⋅), r)-atom 
(i = 1, 2, 3) associated with I ∈ A(Fj) for some j ∈ ℕ , then

Proof Observe that �m(a) = 0 for m ≤ j . Hence, for each m ∈ ℕ , �m(a)�I = �m(a) . 
From this,

Also,

This means s(a)�I = s(a). In a similar way, we have

  ◻

s(a)�I = s(a), S(a)�I = S(a) and M(a)�I = M(a).

M(a)�I = sup
m≥0

�m(a)�I = sup
m≥0

�m(a) = M(a).

s2(a) =

∞∑
m=0

�m−1|dma|2 =
∞∑

m=j+1

�m−1|dma|2

= �I

∞∑
m=j+1

�m−1|dma|2 = s2(a)�I .

S(a)�I = S(a).
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We introduce the definition of atomic Hardy spaces.

Definition 3.3 Let p(⋅) ∈ P(Ω) , 0 < q ≤ ∞ and 1 < r ≤ ∞ . Assume that d = 1, 2 or 3. 
The atomic Hardy space Hsat,d,r

p(⋅),q
 is defined as the space of all martingales f = (fn)n≥0 

such that

where (ak,j,i)k∈ℤ,j,i∈ℕ is a sequence of (s, d, p(⋅), r)-atoms associated with 
(Ik,j,i)k,j,i ⊂ A(Fj) , which are disjoint for fixed k, and �k,j,i = 3 ⋅ 2k‖�Ik,j,i

‖p(⋅) . For 
f ∈ H

sat,d,r

p(⋅),q
 , define

where the infimum is taken over all the decompositions of the form (7).

Remark 3.4 From the above definition, since �k,j,i = 3 ⋅ 2k‖�Ik,j,i
‖p(⋅) , we have

where the infimum is the same as above.

We state the main result of this section. The atomic decomposition via simple 
(1, p(⋅), r)-atoms ( r < ∞ ) are much more complicated than the atomic decomposi-
tion via (1, p(⋅),∞)-atoms proved in [15, Theorem 3.9].

Theorem 3.5 Let p(⋅) ∈ P(Ω) satisfy (5) and max{p+, 1} < r ≤ ∞ . Then

with equivalent quasi-norms.

Before going further, we show the next lemma. Let T ∶ X → Y  be a sublinear 
operator, where X is a martingale space and Y is a function space.

Lemma 3.6 Let p(⋅) ∈ P(Ω) satisfy (5) and max{p+, 1} < r < ∞ . Take 0 < 𝜀 < p 
and L ∈ (1,

r

p+
∧

1

�
) . If for a sublinear operator T and all (s, d, p(⋅), r)-atoms ak,j,i 

(d = 1, 2, 3),

(7)fn =
∑
k∈ℤ

n−1∑
j=0

∑
i

�k,j,ia
k,j,i
n

a.e. , n ∈ ℕ,

‖f‖Hsat,d,r

p(⋅),q

= inf

⎛⎜⎜⎝
�
k∈ℤ

������

∞�
j=0

�
i

�k,j,i�Ik,j,i

‖�Ik,j,i
‖p(⋅)

������

q

p(⋅)

⎞⎟⎟⎠

1∕q

,

‖f‖Hsat,d,r

p(⋅),q

≈ inf

⎛⎜⎜⎝
�
k∈ℤ

2kq
������

∞�
j=0

�
i

�Ik,j,i

������

q

p(⋅)

⎞⎟⎟⎠

1∕q

,

Hs
p(⋅),q

= H
sat,1,r

p(⋅),q
, 0 < q ≤ ∞
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then

Proof According to the duality (Lp(⋅)

�

)∗ = L
(
p(⋅)

�
)�
 (see e.g. [5, Theorem 2.80]), we can 

choose a positive function g ∈ L
(
p(⋅)

�
)�
 with ‖g‖L

(
p(⋅)
� )�

≤ 1 such that

Applying Hölder’s inequality (here, note that L𝜀 < 1 < r ), we obtain that

The “ ≲ ” above is due to the definition of the operator T. Since L < r

p+
 , we deduce 

that

Noting that 𝜀 < p , hence ((p(⋅)∕𝜀)�)+ < ∞. Using the maximal inequality (Theo-
rem 2.8), we have

which completes the proof.   ◻

Now we are in a position to prove the main result of this section.

‖T(ak,j,i)‖r ≲
‖𝜒Ik,j,i

‖r
‖𝜒Ik,j,i

‖p(⋅) ,

Z ∶=

������

∞�
j=0

�
i

�
‖𝜒Ik,j,i

‖p(⋅)T(ak,j,i)𝜒Ik,j,i

�L𝜀������p(⋅)∕𝜀
≲

������

∞�
j=0

�
i

𝜒Ik,j,i

������p(⋅)∕𝜀
.

Z =
∫
Ω

∞�
j=0

�
i

�
‖�Ik,j,i

‖p(⋅)T(ak,j,i)�Ik,j,i

�L�
gdℙ.

Z ≤

∞�
j=0

�
i

‖𝜒Ik,j,i
‖L𝜀
p(⋅)

‖T(ak,j,i)L𝜀‖ r

L𝜀
‖𝜒Ik,j,i

g‖( r

L𝜀
)�

≲

∞�
j=0

�
i

‖𝜒Ik,j,i
‖L𝜀
r

�
�Ik,j,i

g
(

r

L𝜀
)�

�1∕(
r

L𝜀
)�

=

∞�
j=0

�
i
�
Ω

𝜒Ik,j,i
dℙ

�
1

ℙ(Ik,j,i) �Ik,j,i

g
(

r

L𝜀
)�

�1∕(
r

L𝜀
)�

≤

∞�
j=0

�
i
�
Ω

𝜒Ik,j,i
[M(g

(
r

L𝜀
)�
)]
1∕(

r

L𝜀
)�
dℙ

≤

������

∞�
j=0

�
i

𝜒Ik,j,i

������p(⋅)∕𝜀
‖[M(g

(
r

L𝜀
)�
)]
1∕(

r

L𝜀
)�‖(p(⋅)∕𝜀)� .

(
r

L𝜀

)�

< (p(⋅)∕𝜀)�.

‖[M(g
(

r

L𝜀
)�
)]
1∕(

r

L𝜀
)�‖(p(⋅)∕𝜀)� ≲ ‖g‖(p(⋅)∕𝜀)� ≤ 1,
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Proof of Theorem 3.5 Let us consider the following stopping times for all k ∈ ℤ,

The sequence of these stopping times is obviously non-decreasing. For each stop-
ping time � , denote f �

n
= fn∧� , where n ∧ � = min(n, �) . Hence

Note that, for fixed k, j,  there exist disjoint atoms (Ik,j,i)i ⊂ Fj such that

Then, it is easy to see that

Let

Observe that

Then we conclude that

where the last estimate is due to Ik,j,i ⊂ {𝜏k = j} . Consequently,

𝜏k = inf{n ∈ ℕ ∶ sn+1(f ) > 2k}.

fn =
∑
k∈ℤ

(f
�k+1
n − f �k

n
).

⋃
i

Ik,j,i = {�k = j} ∈ Fj.

fn =
∑
k∈ℤ

n−1∑
j=0

∑
i

�Ik,j,i
(f

�k+1
n − f �k

n
).

�k = 3 ⋅ 2k
‖‖‖�Ik,j,i

‖‖‖p(⋅) and ak
n
= �Ik,j,i

f
�k+1
n − f

�k
n

�k

.

f
�k+1
n =

n−1∑
m=0

fm�{�k+1=m}
+ fn�{�k+1≥n}

=

n−1∑
m=0

fm(�{�k+1≥m}
− �{�k+1≥m+1}

) + fn�{�k+1≥n}

=

n∑
m=0

(fm − fm−1)�{�k+1≥m}
=

n∑
m=0

dmf�{�k+1≥m}
.

𝜒Ik,j,i
(f

𝜏k+1
n − f 𝜏k

n
) = 𝜒Ik,j,i

n∑
m=0

dmf𝜒{𝜏k+1≥m>𝜏k}

= 𝜒Ik,j,i

n∑
m=j+1

dmf𝜒{𝜏k+1≥m>𝜏k}
,

�j(a
k,j,i
n

) = 0,
∫Ik,j,i

ak,j,i
n

= 0
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and, for fixed k, j, i, (ak,j,in )n≥0 is a martingale. By the definition of �k , we obtain that

Thus (ak,j,in )n is an L2-bounded martingale and so there exists ak,j,i ∈ L2 such that

We conclude that ak,j,i is a (s, 1, p(⋅),∞)-atom according to the above estimates. Note 
that for any fixed k ∈ ℤ,

Hence,

Since every (s, 1, p(⋅),∞)-atom is a (s, 1, p(⋅), r)-atom, it follows that

where the second inequality is from Theorem 3.9 in [15].
Now we prove the converse part of the theorem. Assume that f has the decompo-

sition 7. For the case r = ∞ , the result can be referred to Theorem 3.9 in [15]. We 
focus on the cases r < ∞, q < ∞ and r < ∞, q = ∞. For any k0 ∈ ℤ , set

where

We note that F2 can be handled in the same way as in [15, Theorem 3.9], we can 
prove similarly that

Case 1: In this step suppose that r < ∞ and q < ∞ . Firstly, we need to estimate 
‖s(F1)‖Lp(⋅),q . Assume that 0 < 𝜀 < p . We choose L ∈ (1,

1

�
) such that L < r∕p+ . By 

Hölder’s inequality for 1
L
+

1

L�
= 1 , we have

s((ak,j,i
n

)n) ≤
1

‖�Ik,j,i
‖p(⋅) .

�n(a
k,j,i) = ak,j,i

n
and s(ak,j,i) ≤

1

‖�Ik,j,i
‖p(⋅) .

∞∑
j=0

∑
i

𝜒Ik,j,i
= 𝜒{𝜏k<∞}.

fn =
∑
k∈ℤ

n−1∑
j=0

∑
i

�k,j,ia
k,j,i
n

a.e. , n ∈ ℕ.

‖f‖Hsat,1,r

p(⋅),q

≤ ‖f‖Hsat,1,∞

p(⋅),q

≲ ‖f‖Hs
p(⋅),q

,

f =
∑
k∈ℤ

∞∑
j=0

∑
i

�k,j,ia
k,j,i = F1 + F2,

F1 =

k0−1∑
k=−∞

∞∑
j=0

∑
i

�k,j,ia
k,j,i, F2 = f − F1.

‖F2‖Hs
p(⋅),q

= ‖s(F2)‖Lp(⋅),q ≲ ‖f‖Hsat,1,r

p(⋅),q

, r < ∞, 0 < q ≤ ∞.
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where � is a constant such that 0 < � < 1 − 1∕L. Then, by (4), we have that

It follows from Lemma 3.6 that

where the first “ = ” is because that Ik,j,i are disjoint for fixed k. To continue the esti-
mation, we set

s(F1) ≤

k0−1�
k=−∞

∞�
j=0

�
i

�k,j,is(a
k,j,i)�Ik,j,i

≤

� k0−1�
k=−∞

2k�L
�
�1∕L�

⎧
⎪⎨⎪⎩

k0−1�
k=−∞

2−k�L

�
∞�
j=0

�
i

�k,j,is(a
k,j,i)�Ik,j,i

�L⎫⎪⎬⎪⎭

1∕L

=

�
2k0�L

�

2�L
�
− 1

�1∕L�
⎧
⎪⎨⎪⎩

k0−1�
k=−∞

2−k�L

�
∞�
j=0

�
i

�k,j,is(a
k,j,i)�Ik,j,i

�L⎫⎪⎬⎪⎭

1∕L

,

‖𝜒{s(F1)>2
k0}‖p(⋅) ≤ ���

s(F1)
L

2k0L
���p(⋅)

≲ 2k0L(𝓁−1)
������

k0−1�
k=−∞

2−k𝓁L

�
∞�
j=0

�
i

𝜇k,j,is(a
k,j,i)𝜒Ik,j,i

�L������p(⋅)

≲ 2k0L(𝓁−1)
������

k0−1�
k=−∞

2(1−𝓁)kL𝜀
∞�
j=0

�
i

�
‖𝜒Ik,j,i

‖p(⋅)s(ak,j,i)𝜒Ik,j,i

�L𝜀������

1

𝜀

p(⋅)

𝜀

≲ 2k0L(𝓁−1)

⎧
⎪⎨⎪⎩

k0−1�
k=−∞

2(1−𝓁)kL𝜀
������

∞�
j=0

�
i

�
‖𝜒Ik,j,i

‖p(⋅)s(ak,j,i)𝜒Ik,j,i

�L𝜀������ p(⋅)

𝜀

⎫
⎪⎬⎪⎭

1

𝜀

.

(8)

‖𝜒{s(F1)>2
k0}‖p(⋅) ≲ 2k0L(𝓁−1)

⎧⎪⎨⎪⎩

k0−1�
k=−∞

2(1−𝓁)kL𝜀
������

∞�
j=0

�
i

𝜒Ik,j,i

������ p(⋅)

𝜀

⎫⎪⎬⎪⎭

1

𝜀

= 2k0L(𝓁−1)

⎧
⎪⎨⎪⎩

k0−1�
k=−∞

2(1−𝓁)kL𝜀
������

∞�
j=0

�
i

𝜒Ik,j,i

������

𝜀

p(⋅)

⎫
⎪⎬⎪⎭

1

𝜀

,

𝛿 =
(1 − �)L + 1

2
> 1.
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So we get (1 − �)L − 𝛿 > 0 . Using again Hölder’s inequality for q−�
q

+
�

q
= 1 , we 

obtain

Consequently,

where the last “=” is because 1 − 𝛿 < 0. This implies that

Case 2: Suppose that r < ∞ and q = ∞ . Using Lemma 3.6 and (8), we conclude

where the last inequality is because of (1 − �)L − 1 > 0 . Consequently,

(9)

‖𝜒{s(F1)>2
k0}‖p(⋅) ≤ 2k0L(𝓁−1)

�
k0−1�
k=−∞

2
k((1−𝓁)L−𝛿)𝜀

q

q−𝜀

� q−𝜀

𝜀q

×

⎛
⎜⎜⎝

k0−1�
k=−∞

2k𝛿q
������

∞�
j=0

�
i

𝜒Ik,j,i

������

q

p(⋅)

⎞
⎟⎟⎠

1∕q

≲ 2−k0𝛿
⎛
⎜⎜⎝

k0−1�
k=−∞

2k𝛿q
������

∞�
j=0

�
i

𝜒Ik,j,i

������

q

p(⋅)

⎞
⎟⎟⎠

1∕q

.

∞�
k0=−∞

2k0q‖𝜒{s(F1)>2
k0}‖qp(⋅) ≲

∞�
k0=−∞

2k0(1−𝛿)q
k0−1�
k=−∞

2k𝛿q
������

∞�
j=0

�
i

𝜒Ik,j,i

������

q

p(⋅)

=

∞�
k=−∞

2k𝛿q
������

∞�
j=0

�
i

𝜒Ik,j,i

������

q

p(⋅)

∞�
k0=k+1

2k0(1−𝛿)q

=
2(1−𝛿)q

1 − 2(1−𝛿)q

∞�
k=−∞

2kq
������

∞�
j=0

�
i

𝜒Ik,j,i

������

q

p(⋅)

,

‖F1‖Hs
p(⋅),q

= ‖s(F1)‖Lp(⋅),q ≲ ‖f‖Hsat,1,r

p(⋅),q

.

‖𝜒{s(F1)>2
k0}‖p(⋅)

≲ 2k0L(𝓁−1)
⎛⎜⎜⎝

k0−1�
k=−∞

2−k𝓁L𝜀2kL𝜀2−k𝜀2k𝜀
������

∞�
j=0

�
i

𝜒Ik,j,i

������

𝜀

p(⋅)

⎞⎟⎟⎠

1∕𝜀

≤

⎛⎜⎜⎝
sup
k∈ℤ

2k
������

∞�
j=0

�
i

𝜒Ik,j,i

������p(⋅)

⎞⎟⎟⎠
2k0L(𝓁−1)

�
k0−1�
k=−∞

2k𝜀(L(1−𝓁)−1)

�1∕𝜀

≲ 2−k0‖f‖Hsat,1,r

p(⋅),∞

,

‖F1‖Hs
p(⋅),∞

= ‖s(F1)‖Lp(⋅),∞ ≲ ‖f‖Hsat,1,r

p(⋅),∞

.
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The proof is complete.   ◻

We present the following result without proof because it is similar to the one of 
Theorem  3.5. Note that for the (s, d, p(⋅),∞)-atomic characterizations, we do not 
need to assume that p(⋅) satisfies (5).

Theorem 3.7 Let p(⋅) ∈ P(Ω) and 0 < q ≤ ∞ . Then

with equivalent quasi-norms.

If {Fn}n≥0 is regular, then three kinds of simple atoms are equivalent. Then, we can 
get the following corollary by [15, Theorem 4.11], Theorem 3.5 and Theorem 3.7.

Corollary 3.8 Let p(⋅) ∈ P(Ω) satisfy (5), 0 < q ≤ ∞ and let max{p+, 1} < r ≤ ∞ . If 
{Fn}n≥0 is regular, then

with equivalent quasi-norms.

4  The dual spaces of Lorentz–Hardy spaces

In this section, we study the dual spaces of Lorentz–Hardy spaces Hp(⋅),q . We con-
sider the problem according to the range of q.

4.1  The dual of Hp(⋅),q , 0 < q ≤ 1

Definition 4.1 Let �(⋅) + 1 ∈ P(Ω) and 1 < r < ∞ . Define BMOr(�(⋅)) as the space 
of functions f ∈ Lr for which

is finite. For r = 1 , we define BMO1(�(⋅)) with the norm

Remark 4.2 If �(⋅) = 0 , then this definition goes back to classical martingale BMO 
space. If 𝛼(⋅) = 𝛼0 > 0 is a constant, then this definition becomes the classical mar-
tingale Lipschitz space. We refer the reader to [29] for details.

Qp(⋅),q = H
sat,2,∞

p(⋅),q
, Pp(⋅),q = H

sat,3,∞

p(⋅),q

Hs
p(⋅),q

= HS
p(⋅),q

= HM
p(⋅),q

= Qp(⋅),q = Pp(⋅),q = H
sat,d,r

p(⋅),q
, d = 1, 2, 3

‖f‖BMOr(�(⋅))
= sup

n≥0

sup
I∈A(Fn)

���I
��−11

�(⋅)+1

���I
��r∕(r−1)‖(f − fn)�I‖r

‖f‖BMO1(�(⋅))
= sup

n≥0

sup
I∈A(Fn)

���I
��−11

�(⋅)+1

‖(f − fn)�I‖1.
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Proposition 4.3 Let p(⋅) ∈ P(Ω) with 0 < p+ ≤ 1 , 0 < q ≤ 1 and 1 < r ≤ ∞ . Let 
f = (fn)n≥0 ∈ H

sat,d,r

p(⋅),q
 , d = 1, 2, 3 . Then f has a decomposition as in (7), and 

moreover,

where �k,j,i = 3 ⋅ 2k‖�Ik,j,i
‖p(⋅) and (Ik,j,i)k,i ⊂ A(Fj) are as in Definition 3.3.

Proof By Lemma 2.2, we have

  ◻

Theorem 4.4 Let p(⋅) ∈ P(Ω) satisfy (5), 0 < p+ ≤ 1 and 0 < q ≤ 1 . Then

Proof Let 𝜑 ∈ BMO2(𝛼(⋅)) ⊂ L2 . Define

We claim that l� is a bounded linear functional on Hs
p(⋅),q

 . Note that L2 can be embed-
ded continuously in Hs

p(⋅),q
 , namely,

because of [21, Theorem  3.3(i, iv)] and 0 < p+ ≤ 1 . It follows from Theorem  3.5 
that for each f ∈ L2

and the convergence holds also in the L2-norm, where ak,j,i is an (s, 1, p(⋅),∞)-atom 
and �k,j,i = 3 ⋅ 2k‖�Ik,j,i

‖p(⋅) . Hence

By the definition of an atom, then

�
k∈ℤ

∞�
j=0

�
i

𝜇k,j,i ≲ ‖f‖Hsat,d,r

p(⋅),q

,

�
k∈ℤ

∞�
j=0

�
i

𝜇k,j,i ≲
�
k∈ℤ

2k
∞�
j=0

�
i

‖𝜒Ik,j,i
‖p(⋅) ≤

�
k∈ℤ

2k‖
∞�
j=0

�
i

𝜒Ik,j,i
‖p(⋅)

≲ ‖f‖Hsat,d,r

p(⋅),1

≤ ‖f‖Hsat,d,r

p(⋅),q

.

(
Hs

p(⋅),q

)∗

= BMO2(�(⋅)), �(⋅) = 1∕p(⋅) − 1.

l�(f ) = �(f�), ∀f ∈ L2.

‖f‖Hs
p(⋅),q

= ‖s(f )‖Lp(⋅),q ≲ ‖s(f )‖2, ∀f ∈ L2

f =
∑
k∈ℤ

∞∑
j=0

∑
i

�k,j,ia
k,j,i

l�(f ) = 𝔼(f�) =
∑
k∈ℤ

∞∑
j=0

∑
i

�k,j,i𝔼(a
k,j,i�).

�(ak,j,i�) = �((ak,j,i − �j(a
k,j,i))�) = �(ak,j,i(� − �j)),
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where �j = �j(�) . Thus, using Hölder’s inequality we conclude that

Since 0 < q ≤ 1 , we obtain from Proposition 4.3 and Theorem 3.5 that

By Remark 3.12 of [15], we know that L2 is dense in Hs
p(⋅),q

 . Consequently, l� can be 
uniquely extended to a linear functional on Hs

p(⋅),q
.

Conversely, let l be an arbitrary bounded linear functional on Hs
p(⋅),q

 . We will 
show that there exists � ∈ BMO2(�(⋅)) such that l = l� and

Indeed, since L2 can be embedded continuously to Hs
p(⋅),q

 , there exists � ∈ L2 such 
that

For I ∈ A(Fj) , we set

Then the function g is a (s, 1, p(⋅), 2)-atom. It follows from Theorem  3.5 that 
g ∈ Hs

p(⋅),q
 and

Finally, we obtain

and ‖𝜑‖BMO2(𝛼(⋅))
≲ ‖l‖ .   ◻

�l𝜑(f )� ≤
�
k∈ℤ

∞�
j=0

�
i

𝜇k,j,i

�����Ω

ak,j,i(𝜑 − 𝜑j)dℙ
����

≤

�
k∈ℤ

∞�
j=0

�
i

𝜇k,j,i‖ak,j,i‖2‖(𝜑 − 𝜑j)𝜒Ik,j,i
‖2

≤

�
k∈ℤ

∞�
j=0

�
i

𝜇k,j,i

ℙ(Ik,j,i)
1

2

���𝜒Ik,j,i

���p(⋅)
‖(𝜑 − 𝜑j)𝜒Ik,j,i

‖2

≲
�
k∈ℤ

∞�
j=0

�
i

𝜇k,j,i‖𝜑‖BMO2(𝛼(⋅))
.

�l𝜑(f )� ≲ ‖f‖Hsat,1,∞

p(⋅),q

‖𝜑‖BMO2(𝛼(⋅))
≲ ‖f‖Hs

p(⋅),q
‖𝜑‖BMO2(𝛼(⋅))

.

‖𝜑‖BMO2(𝛼(⋅))
≲ ‖l‖.

l(f ) = �(f�), ∀f ∈ L2.

g =
(� − �j)�I

‖(� − �j)�I‖2���I
�� 1

�(⋅)+1

���I
��−12

.

‖g‖Hs
p(⋅),q

≲ ‖g‖Hsat,1,2

p(⋅),q

≲ 1.

‖l‖ ≳ l(g) = �
�
g(𝜑 − 𝜑j)

�
= ��𝜒I

��−11
𝛼(⋅)+1

��𝜒I
��2‖(𝜑 − 𝜑j)𝜒I‖2



 Y. Jiao et al.53 Page 18 of 31

4.2  The dual of Hp(⋅),q , 1 < q < ∞

Strongly motivated by [17, 18] and [32], in the present paper, we introduce the fol-
lowing generalized martingale spaces associated with variable exponents.

Definition 4.5 Let 1 ≤ r < ∞, 0 < q ≤ ∞ and �(⋅) + 1 ∈ P(Ω) . The generalized 
martingale space BMOr,q(�(⋅)) is defined by

where

and the supremum is taken over all sequence of atoms {Ik,j,i}k∈ℤ,j∈ℕ,i such that that 
Ik,j,i are disjoint if k is fixed, Ik,j,i belong to Fj and

BMOr,∞(�(⋅)) can be similarly defined.

First of all, BMOr(�(⋅)) and BMOr,q(�(⋅)) have the following connection.

Proposition 4.6 Let 1 ≤ r < ∞, 0 < q ≤ ∞ , �(⋅) ≥ 0 and �(⋅) + 1 ∈ P(Ω) . Then

If in addition 0 < q ≤ 1 , then BMOr(�(⋅)) ∼ BMOr,q(�(⋅)).

Proof If we take the supremum in the definition of BMOr,q(�(⋅)) only for one atom, then we get 
back the BMOr(�(⋅))-norm, so the first inequality is shown. On the other hand, if 0 < q ≤ 1 , then

BMOr,q(𝛼(⋅)) =
�
f ∈ Lr ∶ ‖f‖BMOr,q(𝛼)

< ∞

�
,

‖f‖BMOr,q(�(⋅))
= sup

∑
k∈ℤ

∑
j∈ℕ

∑
i 2

k
ℙ(Ik,j,i)

1−
1

r ‖(f − fj)�Ik,j,i
‖r

�∑
k∈ℤ 2kq‖∑j∈ℕ

∑
i �Ik,j,i

‖q
1

�(⋅)+1

�1∕q

⎧⎪⎨⎪⎩
2k
������
�
j∈ℕ

�
i

�Ik,j,i

������ 1

�(⋅)+1

⎫⎪⎬⎪⎭k

∈ 𝓁q.

‖f‖BMOr(�(⋅))
≤ ‖f‖BMOr,q(�(⋅))

.

‖f‖BMOr,q(�(⋅))
≤ sup

∑
k∈ℤ

∑
j∈ℕ

∑
i 2

k‖�Ik,j,i
‖ 1

�(⋅)+1

‖f‖BMOr,q(�(⋅))

�∑
k∈ℤ 2kq‖∑j∈ℕ

∑
i �Ik,j,i

‖q
1

�(⋅)+1

�1∕q

≤ sup

∑
k∈ℤ

∑
j∈ℕ

∑
i 2

k‖�Ik,j,i
‖ 1

�(⋅)+1

‖f‖BMOr,q(�(⋅))∑
k∈ℤ 2k‖∑j∈ℕ

∑
i �Ik,j,i

‖ 1

�(⋅)+1

≤ ‖f‖BMOr,q(�(⋅))
,
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because of Lemma 2.2.   ◻

Theorem 4.7 Let p(⋅) ∈ P(Ω) satisfy (5), 0 < p+ < 2 and 1 < q < ∞ . Then we have

with equivalent norms.

Proof Let 𝜑 ∈ BMO2,q(𝛼(⋅)) ⊂ L2 . We define the functional as

Using Theorem 3.5 and similar argument used in Theorem 4.4, we have

It follows from the definition of ‖ ⋅ ‖BMO2,q(�(⋅))
 and Theorem 3.5 that

Since L2 is dense in Hs
p(⋅),q

 (see [15, Remark  3.12]), the functional lg can be uniquely 
extended to a continuous functional on Hs

p(⋅),q
.

Conversely, let l ∈ (Hs
p(⋅),q

)∗ . Since L2 ⊂ Hs
p(⋅),q

 , there exists � ∈ L2 such that

Let {Ik,j,i}k∈ℤ,j∈ℕ,i be an arbitrary sequence of atoms such that Ik,j,i are disjoint if k is 
fixed, Ik,j,i belong to Fj and

We set

(
Hs

p(⋅),q

)∗

= BMO2,q(�(⋅)), �(⋅) =
1

p(⋅)
− 1,

l�(f ) = �(fg), ∀f ∈ L2.

�l𝜑(f )� ≤
�
k∈ℤ

∞�
j=0

�
i

𝜇k,j,i

�����Ω

ak,j,i(𝜑 − 𝜑j)dℙ
����

≲
�
k∈ℤ

∞�
j=0

�
i

2kℙ(Ik,j,i)
1

2 ‖(𝜑 − 𝜑j)𝜒Ik,j,i
‖2.

�l𝜑(f )� ≲
⎛⎜⎜⎝
�
k∈ℤ

2kq
������
�
j∈ℕ

�
i

𝜒Ik,j,i

������

q

p(⋅)

⎞⎟⎟⎠

1∕q

‖g‖BMO2,q(𝛼(⋅))

≲ ‖f‖Hs
p(⋅),q

‖g‖BMO2,q(𝛼(⋅))
.

l(f ) = �(f�) ∀f ∈ L2.

⎧⎪⎨⎪⎩
2k
������
�
j∈ℕ

�
i

�Ik,j,i

������ 1

�(⋅)+1

⎫⎪⎬⎪⎭k

∈ 𝓁q.

hk,j,i =
(� − �j)�Ik,j,i

‖�Ik,j,i
‖2

‖(� − �j)�Ik,j,i
‖2‖�Ik,j,i

‖p(⋅) .
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It is obvious that hk,j,i is a (s, 1, p(⋅), 2)-atom. By Theorem 3.5, we find that

and

Now we have the following estimate:

Thus, applying (10) and the definition of ‖ ⋅ ‖BMO2,q(�(⋅))
 we obtain

The proof is complete.   ◻

4.3  The case q = ∞

This case is different from the case q < ∞ due to the well known fact that Lp is not 
dense in Lp,∞ ( 0 < p < ∞ ). We refer to [31, p. 143] or [11, Remark  1.4.14] for this 
fact. In order to describe the duality, we define

It is not hard to check that Hs

p(⋅),∞
 is a closed subspace of Hs

p(⋅),∞
 . Similarly, we can 

define HM

p(⋅),∞
 and HS

p(⋅),∞
 which are closed subspaces of HM

p(⋅),∞
 and HS

p(⋅),∞
 , 

respectively.
According to [15, Remark 3.12], we know that L2 is dense in Hs

p(⋅),∞
 . On the lines of 

the proof of Theorem 4.7, we can get the result below by using Theorem 3.5. We omit 
the proof.

f =
�
k∈ℤ

�
j∈ℕ

�
i

2k‖�Ik,j,i
‖p(⋅)hk,j,i ∈ Hs

p(⋅),q
,

(10)‖f‖Hs
p(⋅),q

≲
⎛
⎜⎜⎝
�
k∈ℤ

2kq
������
�
j∈ℕ

�
i

𝜒Ik,j,i

������

q

p(⋅)

⎞
⎟⎟⎠

1

q

.

�
k∈ℤ

�
j∈ℕ

�
i

2kℙ(Ik,j,i)
1

2 ‖(� − �j)�Ik,j,i
‖2

=
�
k∈ℤ

�
j∈ℕ

�
i

2k‖�Ik,j,i
‖p(⋅)𝔼(hk,j,i(� − �j))

=
�
k∈ℤ

�
j∈ℕ

�
i

2k‖�Ik,j,i
‖p(⋅)𝔼(hk,j,i�)

= 𝔼(f�) = l(f ) ≤ ‖f‖Hs
p(⋅),q

‖l‖.

‖𝜑‖BMO2,q(𝛼(⋅))
≲ ‖l‖.

H
s

p(⋅),∞
= {f = (fn)n≥0 ∶ s(f ) ∈ Lp(⋅),∞}.
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Theorem 4.8 Let p(⋅) ∈ P(Ω) satisfy condition (5) and 0 < p+ < 2 . Then

with equivalent norms.

Remark 4.9 The dual space of weak Hardy space was first studied in harmonic anal-
ysis, see [8]. In martingale setting, we refer the reader to [31].

Besides Proposition 4.3, one of the key points of the proofs of Theorems 4.4, 4.7 
and 4.8 is the fact that L2 can be embedded continuously in Hs

p(⋅),q
 . So we cannot expect 

to characterize the dual spaces in a similar way for a wider range of p+ . It is an 
unknown question, how we can characterize the duals for other p+.

5  John–Nirenberg theorems

In this section, we investigate John–Nirenberg theorems. We divide this section into 
two subsections.

5.1  Atomic decomposition for E‑atoms

In this subsection, we give the atomic decomposition for Hp(⋅),q by using (s, 1, p(⋅),E)
-atoms, where E is a rearrangement invariant Banach function space. Let E(Ω) be a 
rearrangement invariant Banach function space over (Ω,F,ℙ) . We refer to [2, Chap-
ters 1 and 2] for the definitions of Banach function spaces and rearrangement invariant 
Banach function spaces. In this section, we always suppose that the probability space 
(Ω,F,ℙ) is non-atomic.

Let E be a rearrangement invariant Banach function space over Ω . According to the 
Luxemburg representation theorem (see for instance [2, Page 62]), there exists a rear-
rangement invariant Ê over (0, 1) equipped with the norm ‖ ⋅ ‖

Ê
 such that

where �(⋅, f ) is the non-increasing rearrangement function of f defined by

We call (Ê, ‖ ⋅ ‖
Ê
) the Luxemburg representation space of (E, ‖ ⋅ ‖E).

We need the Boyd indices of E introduced by Boyd [3]. Define the dilation 
operator Ds ( 0 < s < ∞ ) acting on the space of measurable functions on (0, 1) by 
Dsf (t) = f (t∕s) , if 0 < t < min(1, s) ; Dsf (t) = 0 , if s < t < 1 . Let (Ê, ‖ ⋅ ‖

Ê
) be the 

the Luxemburg representation space of E. The upper Boyd index and the lower 
Boyd index of E are respectively defined by

(
H

s

p(⋅),∞

)∗

= BMO2,∞(�(⋅)), �(⋅) =
1

p(⋅)
− 1

(11)‖f‖E = ‖�(⋅, f )‖
Ê
, ∀f ∈ E,

𝜇(t, f ) = inf
s>0

{s ∶ ℙ(|f | > s) ≤ t}, t > 0.
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 and

where ‖Ds‖ is the operator norm on Ê . Note that for any rearrangement invariant 
Banach function space E,

The associate space E′ of E is defined by

where

A rearrangement invariant Banach function E has a Fatou norm if and only if E 
embeds isometrically into its second Köthe dual E�� = (E�)� . We shall need the fol-
lowing duality for Boyd indices (see [22, Theorem II.4.11]). If E is a rearrangement 
invariant Banach function space with Fatou norm, then

Note that the spaces Lp (1 ≤ p ≤ ∞) are rearrangement invariant Banach function 
spaces with Fatou norms.

We also need some basic lemmas which can be found in [2].

Lemma 5.1 Let E be a Banach function space with associated space E′ . If f ∈ E 
and g ∈ E� , then fg is integrable and

Note that we assume that (Ω,F,ℙ) is non-atomic in this section. The following 
result is referred to Theorems 5.2 and 2.7 in [2, Chapter 2].

Lemma 5.2 Let E be a rearrangement invariant space, and E′ be its associated 
space. Then, for all set B ∈ F  , we have

The following Doob maximal inequality in rearrangement invariant Banach func-
tion space was studied in [27]. Here we give a simple proof.

qE ∶= inf
s>1

log s

log ‖Ds‖

pE ∶= sup
0<s<1

log s

log ‖Ds‖ ,

1 ≤ pE ≤ qE ≤ ∞.

E� = {f ∶ ‖f‖E� < ∞, }

‖f‖E� = sup
g∈E,‖g‖E≤1�Ω

�fg� dℙ.

(12)
1

pE
+

1

qE�

= 1,
1

pE�

+
1

qE
= 1.

�����Ω

fgdℙ
���� ≤ ‖f‖E‖g‖E� .

‖�B‖1 = ‖�B‖E‖�B‖E� .
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Lemma 5.3 If 1 < pE ≤ qE ≤ ∞ , then

Proof As proved in [23, Theorem 3.6.3] that

It follows from 1 < pE ≤ qE ≤ ∞ and Theorem 5.15 in [2, Chapter 3] that,

 where Ê is as in (11). By (11), we have

  ◻

We introduce the definition of (s, 1, p(⋅),E)-atoms.

Definition 5.4 Let p(⋅) ∈ P(Ω) , and let (E, ‖ ⋅ ‖E) be a rearrangement invariant 
Banach function space. Replacing (2) in Definition 3.1 by

we get the definition of (s, 1, p(⋅),E)-atoms.

The following lemma plays a similar role as Lemma 3.6.

Lemma 5.5 Let p(⋅) ∈ P(Ω) satisfy (5), p+ < 1 and E be a rearrangement invariant 
Banach function space. Take 0 < 𝜀 < p and L ∈ (1,

1

p+
∧

1

�
) . If ak,j,i is a (s, 1, p(⋅),E)-

atom for every k, j, i associated with Ik,j,i ∈ A(Fj) , then we have

Proof According to the duality (Lp(⋅)

�

)∗ = L
(
p(⋅)

�
)�
 (see e.g. [5, Theorem  2.80]), we 

hoose a positive function g ∈ L
(
p(⋅)

�
)�
 with ‖g‖

(
p(⋅)

�
)�
≤ 1 such that

‖M(f )‖E ≤ C‖f‖E.

�(t,M(f )) ≤
1

t �

t

0

�(s, f )ds.

‖1
t �

t

0

�(s, f )ds‖
Ê
≤ CE‖�(⋅, f )‖Ê,

‖M(f )‖E = ‖�(⋅,Mf )‖
Ê
≤ ‖1

t �

t

0

�(s, f )ds‖
Ê
≤ CE‖f‖E.

‖s(a)‖E ≤
‖�I‖E
‖�I‖p(⋅) ,

Z ∶=

������

∞�
j=0

�
i

�
‖𝜒Ik,j,i

‖p(⋅)s(ak,j,i)𝜒Ik,j,i

�L𝜀������p(⋅)∕𝜀
≲

������

∞�
j=0

�
i

𝜒Ik,j,i

������p(⋅)∕𝜀
.

Z =
∫
Ω

∞�
j=0

�
i

�
‖�Ik,j,i

‖p(⋅)s(ak,j,i)�Ik,j,i

�L�
gdℙ.
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Note that the support of s(ak,j,i) is Ik,j,i (see Proposition 3.2). Then, applying Lem-
mas 5.1 and 5.2, we have

 Hence, by Hölder’s inequality, we obtain

Thus, we find

which completes the proof.   ◻

Applying the above lemma, we improve Theorem 3.5 to the result below. The 
proof is omitted.

Theorem 5.6 Let p(⋅) ∈ P(Ω) satisfy (5) with 0 < p+ < 1 , 0 < q ≤ ∞ , and let E be a 
rearrangement invariant Banach function space. Then

with equivalent quasi-norms.

‖s(ak,j,i)‖1 = ‖s(ak,j,i)�Ik,j,i
‖1 ≤ ‖s(ak,j,i)‖E‖�Ik,j,i

‖E�

≤

‖�Ik,j,i
‖E

‖�Ik,j,i
‖p(⋅) ‖�Ik,j,i

‖E� =
‖�Ik,j,i

‖1
‖�Ik,j,i

‖p(⋅) .

Z ≤

∞�
j=0

�
i

‖�Ik,j,i
‖L�
p(⋅)

‖s(ak,j,i)L�‖ 1

L�

‖�Ik,j,i
g‖

(
1

L�
)�

=

∞�
j=0

�
i

‖�Ik,j,i
‖L�
p(⋅)

‖s(ak,j,i)‖L�
1
‖�Ik,j,i

g‖
(
1

L�
)�

≤

∞�
j=0

�
i

‖�Ik,j,i
‖L�
1

�
�Ik,j,i

g
(
1

L�
)�

�1∕(
1

L�
)�

.

Z =

∞�
j=0

�
i
�
Ω

�Ik,j,i
dℙ

�
1

ℙ(Ik,j,i) �Ik,j,i

g
(
1

L�
)�

�1∕(
1

L�
)�

≤

∞�
j=0

�
i
�
Ω

�Ik,j,i
[M(g

(
1

L�
)�
)]
1∕(

1

L�
)�
dℙ

≤

������

∞�
j=0

�
i

�Ik,j,i

������p(⋅)∕�
‖[M(g

(
1

L�
)�
)]
1∕(

1

L�
)�‖(p(⋅)∕�)�

≤

������

∞�
j=0

�
i

�Ik,j,i

������p(⋅)∕�
‖g‖(p(⋅)∕�)� ≤

������

∞�
j=0

�
i

�Ik,j,i

������p(⋅)∕�
,

Hs
p(⋅),q

= H
sat,1,E

p(⋅),q
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Remark 5.7 Let (Fn)n≥0 be regular. According to Corollary 3.8, Hs
p(⋅),q

= HM
p(⋅),q

 . We 
also can prove (s, 1, p(⋅),E)-atomic decomposition for HM

p(⋅),q
 when p(⋅) ∈ P(Ω) satis-

fying condition (5) and p+ < 1.
We refer the reader to [10, Theorem 4.10] for the fact that H1(ℝ

n) does not have 
such atomic decomposition when E = L1 in classical harmonic analysis.

5.2  BMOE(˛(⋅)) spaces with variable exponent

We first present the definition of BMOE(�(⋅)).

Definition 5.8 Let �(⋅) + 1 ∈ P(Ω) and E be a Banach function space with associate 
space E′ . Define BMOE(�(⋅)) as the space of functions f ∈ E for which

is finite.

Lemma 5.9 Let p(⋅) ∈ P(Ω) satisfy (5), 0 < p+ < 1 and 0 < q ≤ 1 . Let E be a rear-
rangement invariant space with Fatou norm such that 1 ≤ pE ≤ qE < ∞ . If {Fn}n≥0 
is regular, then

with equivalent norms.

Proof Let � ∈ BMOE(�(⋅)) . It follows from Lemma 5.1 that

Then 𝜑 ∈ BMO1(𝛼(⋅)) ⊂ L1 . Define the functional as

Similar to the proof of Theorem 4.4, one can easily apply Corollary 3.8 and 4.3 to 
get

On the other hand, since L∞ is dense in HM
p(⋅),q

 , l� can be uniquely extended to a con-
tinuous functional on HM

p(⋅),q
.

Conversely, let l ∈ (HM
p(⋅),q

)∗ . Since L2 ⊂ HM
p(⋅),q

 , there exists � ∈ L2 such that

‖f‖BMOE(�(⋅))
= sup

n≥0

sup
I∈A(Fn)

���I
��−11

�(⋅)+1

���I
��E�‖(f − fn)�I‖E

(HM
p(⋅),q

)∗ = BMOE(�(⋅)), �(⋅) =
1

p(⋅)
− 1

‖�‖BMO1(�(⋅))
≤ ‖�‖BMOE(�(⋅))

.

l�(f ) = �(f�), ∀f ∈ L∞.

�l𝜑(f )� ≲ ‖𝜑‖BMO1(𝛼(⋅))
‖f‖HM

p(⋅),q
.

l(f ) = �(f�), f ∈ L2.
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We still need to show � ∈ BMOE(�(⋅)) . It follows from Theorem  4.4 that 
‖�‖BMO2(�(⋅))

≤ ‖l‖ . Hence, to show � ∈ BMOE(�(⋅)) , it suffices to prove 
‖𝜑‖BMOE(𝛼(⋅))

≲ ‖𝜑‖BMO2(𝛼(⋅))
.

By duality, for each n and I ∈ A(F) , there exists h ∈ E� with ‖h‖E′ ≤ 1 such that

Define

where c0 is the constant in the Doob maximal inequality given in Lemma  5.3. 
According to (12), it is obvious that 1 < pE� ≤ qE� ≤ ∞ . Then, by Lemma 5.3, we 
have

So a is an (s, 3, p(⋅),E�)-atom. Thus, by Theorems 5.6 and Corollary 3.8,

with

Since (Fn)n≥0 is regular, we have

where the second “ ≤ ” is due to (HM
p(⋅),q

)∗ = (Hs
p(⋅),q

)∗ = BMO2(�(⋅)) (by Corol-
lary 3.8). Consequently, we obtain

which completes the proof.   ◻

‖(� − �n)�I‖E ≤ 2�
�I

(� − �n)hdℙ�.

a =
‖�I‖E� (h − hn)�I

2c0‖�I‖p(⋅) , �(⋅) =
1

p(⋅)
− 1,

‖M(a)‖E� ≤ c0‖a‖E� ≤
‖�I‖E�

‖�I‖p(⋅) .

(h − hn)�I =
2c0‖�I‖p(⋅)
‖�I‖E�

a ∈ HM
p(⋅),q

‖(h − hn)�I‖HM
p(⋅),q

≤
2c0‖�I‖p(⋅)
‖�I‖E�

.

‖�I‖E�‖(� − �n)�I‖E
‖�I‖ 1

�(⋅)+1

≤
2‖�I‖E� � ∫I(� − �n)hdℙ�

‖�I‖ 1

�(⋅)+1

=
2‖�I‖E� � ∫I �(h − hn)dℙ�

‖�I‖ 1

�(⋅)+1

≤

2‖�I‖E�‖�‖BMO2(�(⋅))
‖(h − hn)�I‖HM

p(⋅),q

‖�I‖ 1

�(⋅)+1

≤ 2c0‖�‖BMO2(�(⋅))
,

‖f‖BMOE(𝛼(⋅))
≲ ‖f‖BMO2(𝛼(⋅))

,
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As a consequence of the above result, we have the following John–Nirenberg 
inequality.

Theorem  5.10 Let �(⋅) + 1 ∈ P(Ω) satisfy (5) and 0 < 𝛼− ≤ 𝛼+ < ∞ . Let E be 
a rearrangement invariant Banach function space with Fatou norm such that 
1 ≤ pE ≤ qE < ∞ . If (Fn)n≥0 is regular, then

with equivalent norms.

5.3  BMOE,q(˛(⋅)) spaces with variable exponent

Definition 5.11 Let E be a rearrangement invariant Banach function space, and let 
0 < q ≤ ∞ and �(⋅) + 1 ∈ P(Ω) . The generalized martingale space BMOE,q(�(⋅)) is 
defined by

where

and the supremum is taken over all sequence of atoms {Ik,j,i}k∈ℤ,j∈ℕ,i such that that 
Ik,j,i are disjoint if k is fixed, Ik,j,i belong to Fj and

BMOr,∞(�(⋅)) can be similarly defined.

Similarly to Proposition 4.6, we can show the following result.

Proposition 5.12 Let E be a rearrangement invariant Banach function space, 
0 < q ≤ ∞ , �(⋅) ≥ 0 and �(⋅) + 1 ∈ P(Ω) . Then

If in addition 0 < q ≤ 1 , then BMOE(�(⋅)) ∼ BMOE,q(�(⋅)).

We establish the following lemma.

BMOE(�(⋅)) = BMO1(�(⋅))

BMOE,q(𝛼(⋅)) =
�
f ∈ E ∶ ‖f‖BMOE,q(𝛼)

< ∞

�
,

‖f‖BMOE,q(�(⋅))
= sup

∑
k∈ℤ

∑
j∈ℕ

∑
i 2

k‖�Ik,j,i
‖E�‖(f − fj)�Ik,j,i

‖E
�∑

k∈ℤ 2kq‖∑j∈ℕ

∑
i �Ik,j,i

‖q
1

�(⋅)+1

�1∕q

⎧⎪⎨⎪⎩
2k
������
�
j∈ℕ

�
i

�Ik,j,i

������ 1

�(⋅)+1

⎫⎪⎬⎪⎭k

∈ 𝓁q.

‖f‖BMOE(�(⋅))
≤ ‖f‖BMOE,q(�(⋅))

.
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Lemma 5.13 Let p(⋅) ∈ P(Ω) satisfy (5), 0 < p+ < 1 and 1 < q < ∞ . Let E be a 
rearrangement Banach function space with Fatou norm such that 1 ≤ pE ≤ qE < ∞ . 
If {Fn}n≥0 is regular, then

with equivalent norms.

Proof It follows from Lemma  5.1 that ‖g‖BMO1,q(�(⋅))
≤ ‖g‖BMOE,q(�(⋅))

 for every 
g ∈ BMOE,q(�(⋅)). Let � ∈ BMOE,q(�(⋅)) . Then 𝜑 ∈ BMO1,q(𝛼(⋅)) ⊂ L1 We define 
the functional as

It follows from the inclusion L∞ ⊂ HM
p(⋅),q

 and Corollary 3.8 that

with �k,j,i = 3 ⋅ 2k‖�Il,j,i
‖p(⋅) and ak,j,i ’s are (s, 3, p(⋅),∞)-atoms associated with 

(Ik,j,i)k,i ⊂ A(Fj) . By the Definition 3.1(3), �(ak,j,i�) = �(ak,j,i(� − �j)) always holds 
for every k, j, i, where �j = �j(�) . Thus, we find that

It follows from the definition of ‖ ⋅ ‖BMO1,q(�(⋅))
 and Corollary 3.8 that

Since L∞ is dense in HM
p(⋅),q

 (see [15, Remark  3.12]), the functional lg can be uniquely 
extended to a continuous functional on HM

p(⋅),q
.

Conversely, suppose that l ∈ (HM
p(⋅),q

)∗ . Since L2 ⊂ HM
p(⋅),q

 , there exists 𝜑 ∈ L2 ⊂ L1 
such that

(HM
p(⋅),q

)∗ = BMOE,q(�(⋅)), �(⋅) =
1

p(⋅)
− 1,

l�(f ) = �(f�), ∀f ∈ L∞.

f =
∑
k∈ℤ

∞∑
j=0

∑
i

�k,j,ia
k,j,i ∀f ∈ L∞

�l𝜑(f )� ≤
�
k∈ℤ

∞�
j=0

�
i

𝜇k,j,i

�����Ω

ak,j,i(𝜑 − 𝜑j)dℙ
����

≤

�
k∈ℤ

∞�
j=0

�
i

𝜇k,j,i‖ak,j,i‖∞‖(𝜑 − 𝜑j)𝜒Ik,j,i
‖1

≲
�
k∈ℤ

∞�
j=0

�
i

2k‖(𝜑 − 𝜑j)𝜒Ik,j,i
‖1.

�l𝜑(f )� ≲
⎛⎜⎜⎝
�
k∈ℤ

2kq
������
�
j∈ℕ

�
i

𝜒Ik,j,i

������

q

p(⋅)

⎞⎟⎟⎠

1∕q

‖𝜑‖BMO1,q(𝛼(⋅))

≲ ‖f‖HM
p(⋅),q

‖𝜑‖BMOE,q(𝛼(⋅))
.

l(f ) = �(f�), f ∈ L2.
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We still need to show � ∈ BMOE,q(�(⋅)) . According to Theorem  4.7, 
‖𝜑‖BMO2,q(𝛼(⋅))

≲ ‖l‖ . Hence, it is sufficient to show ‖𝜑‖BMOE,q(𝛼(⋅))
≲ ‖𝜑‖BMO2,q(𝛼(⋅))

.
Let {Ik,j,i}k∈ℤ,j∈ℕ,i be an arbitrary atom sequence such that that Ik,j,i are disjoint if k 

is fixed, Ik,j,i belong to Fj if k, j are fixed, and

We shall estimate the following term

By duality, for every k, j, i, we can find hk,j,i ∈ E� such that

Similar to the proof of Theorem 5.10, define

where c0 is the constant in the Doob maximal inequality in Lemma 5.3. Then each 
ak,j,i is an (s, 3, p(⋅),E)-atom. By Corollary 3.8, we find that

and

Thus, combining the above argument and Theorem 4.7, we have

⎧
⎪⎨⎪⎩
2k
������
�
j∈ℕ

�
i

�Ik,j,i

������p(⋅)

⎫
⎪⎬⎪⎭k

∈ 𝓁q.

A ∶=
�
k∈ℤ

�
j∈ℕ

�
i

2k‖�Ik,j,i
‖E�‖(g − gj)�Ik,j,i

‖E.

‖(g − gj)�Ik,j,i
‖E ≤ 2

�
(g − gj)�Ik,j,i

hk,j,idℙ

= 2
�

(hk,j,i − 𝔼j(h
k,j,i))�Ik,j,i

gdℙ

ak,j,i =
‖�Ik,j,i

‖E� (hk,j,i − �j(h
k,j,i))�Ik,j,i

2c0‖�Ik,j,i
‖p(⋅) , �(⋅) =

1

p(⋅)
− 1,

f =
�
k∈ℤ

�
j∈ℕ

�
i

2k‖�Ik,j,i
‖p(⋅)ak,j,i ∈ HM

p(⋅),q

‖f‖HM
p(⋅),q

≲
⎛⎜⎜⎝
�
k∈ℤ

2kq
������
�
j∈ℕ

�
i

𝜒Ik,j,i

������

q

p(⋅)

⎞⎟⎟⎠

1

q

.

A ∶=
�
k∈ℤ

�
j∈ℕ

�
i

2k‖𝜒Ik,j,i
‖E�‖(g − gj)𝜒Ik,j,i

‖E

≤ 2
�
k∈ℤ

�
j∈ℕ

�
i

2k‖𝜒Ik,j,i
‖E�

�
(hk,j,i − 𝔼j(h

k,j,i))𝜒Ik,j,i
gdℙ

≲ ‖g‖BMO2,q(𝛼(⋅))
‖f‖HM

p(⋅),q
,
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which implies that

The proof is complete.   ◻

Similar to Lemma 5.13, one also can prove that

Then the following John-Nirenberg theorem is an immediate consequence of the 
combination of Lemma 5.13.

Theorem 5.14 Let �(⋅) + 1 ∈ P(Ω) satisfy (5), 1 < q ≤ ∞ and 0 < 𝛼− ≤ 𝛼+ < ∞ . Let 
E be a rearrangement invariant space with Fatou norm such that 1 ≤ pE ≤ qE < ∞ . 
If {Fn}n≥0 is regular, then

with equivalent norms.
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