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Abstract
In this paper, three new algorithms are proposed for solving a pseudomonotone 
equilibrium problem with a Lipschitz-type condition in a 2-uniformly convex and 
uniformly smooth Banach space. The algorithms are constructed around the �-prox-
imal mapping associated with cost bifunction. The first algorithm is designed with 
the prior knowledge of the Lipschitz-type constant of bifunction. This means that 
the Lipschitz-type constant is an input parameter of the algorithm while the next 
two algorithms are modified such that they can work without any information of the 
Lipschitz-type constant, and then they can be implemented more easily. Some con-
vergence theorems are proved under mild conditions. Our results extend and enrich 
existing algorithms for solving equilibrium problem in Banach spaces. The numeri-
cal behavior of the new algorithms is also illustrated via several experiments.
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1  Introduction

The paper concerns with some new iterative methods for approximating a solution of 
an equilibrium problem in a Banach space E.

Recall that an equilibrium problem (EP) is stated as follows:

where C is a nonempty closed convex subset in E, f ∶ C × C → ℜ is a bifunction 
with f (x, x) = 0 for all x ∈ C . Let us denote by EP(f, C) the solution set of the prob-
lem (EP).

Mathematically, the problem (EP) has a simple and convenient structure. This prob-
lem is quite general, and it unifies several known models in applied sciences as optimi-
zation problems, variational inequalities, hemivariational inequalities, fixed point prob-
lems and others [3, 12, 15, 28, 35, 43, 44].

In recent years, this problem has received a lot of attention by many authors in both 
theory and algorithm. Some methods have been proposed for solving the problem (EP) 
such as the proximal point method [30, 34], the extragradient method [13, 38], the 
descent method [4–6, 29], the linesearch extragradient method [38], the projected sub-
gradient method [42] and others [7, 36, 48, 51].

The proximal-like method was early introduced in [13] and its convergence was also 
studied. Recently, this method has been extended and investigated further the conver-
gence by Quoc et al. in [38] under different assumptions. The method in [13, 38] is 
also called the extragradient method due to Korpelevich’s contributions for saddle point 
problems in [31]. Precisely, in Euclidean spaces, the extragradient method (EGM) gen-
erates two sequences 

{
xn
}
 and 

{
yn
}
 , from a starting point x0 ∈ C , defined by

where � is a suitable parameter and G(x, y) is a given Bregman distance function 
defined on C × C . Observe that, at each iteration, the method EGM needs to com-
pute two values of bifunction f at xn and yn . In recent years, the method EGM has 
been developed naturally in setting of Hilbert spaces. The convergence of this 
method was proved in [38] under the hypotheses of the pseudomonotonicity and the 
Lipschitz-type condition (MLC) introduced recently by Mastroeni in [32].

Recall that a bifunction f ∶ C × C → ℜ is called pseudomonotone on C, if

and we say that f satisfies a Lipschitz-type condition (MLC) [32] on C, if there exist 
two constants c1, c2 > 0 such that, for all x, y ∈ C,

In recent years, the method EGM has been intensively studied in both finite and infi-
nite dimensional Hilbert spaces under various different conditions (see, e.g., [2, 8, 
16, 17, 20–22, 45, 46]).

(EP)Find x∗ ∈ C such that f (x∗, y) ≥ 0 for all y ∈ C,

(EGM)
{

yn = argmin
{
�f (xn, y) + G(xn, y) ∶ y ∈ C

}
,

xn+1 = argmin
{
�f (yn, y) + G(xn, y) ∶ y ∈ C

}
, ∀n ≥ 0,

f (x, y) ≥ 0 ⟹ f (y, x) ≤ 0, ∀x, y ∈ C,

(MLC)f (x, y) + f (y, z) ≥ f (x, z) − c1||x − y||2 − c2||y − z||2.
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In setting of Banach spaces, the well-known method for solving the problem 
(EP) is the proximal point method (PPM). The description of this method is as 
follows: from a starting point x0 ∈ C , at the current step, given xn , find the next 
iterate xn+1 ∈ C such that

Here r is a positive parameter, J ∶ E → 2E
∗ is the normalized duality mapping on E 

and ⟨⋅, ⋅⟩ stands for the dual product in E.
The convergence of the method (PPM) was obtained under the monotonicity of 

the bifunction f and some other suitable conditions. This method was developed 
further in combining with other methods as the Halpern iteration, the viscosity 
method, hybrid (outer approximation) or shrinking projection method to obtain 
the convergence in norm which is useful in infinite dimensional Banach spaces 
(see, e.g., [25, 33, 39–41, 47, 50, 52]).

Some other methods with linesearch can be found, for example, in [23, 24]. 
The linesearch method in general requires many extra-computations. More pre-
cisely, at each iterative step, a linesearch algorithm often uses an inner loop run-
ning until some finite stopping criterion is satisfied. This can be expensive and 
time-consuming.

Remark that the method (PPM) is not easy to implement numerical computa-
tions in practise. This comes from the proceeding of a non-linear inequality in 
the method at each iteration, especially in huge-scale problems. In that case, the 
method (EGM) [13, 38] can be easily applied by using some tools of optimiza-
tion. However, as mentioned above, the method (EGM) requires to proceed many 
values of cost bifunction at each iteration. This can affect the effectiveness of the 
method, if the feasible set and the cost bifunction have complicated structures. 
In this paper, we propose some new extragradient-like algorithms for solving 
a pseudomonotone problem (EP) with a different Lipschitz-type condition in a 
Banach space. Unlike the method EGM in [13, 38], our algorithms only require to 
proceed one value of the bifunction f at the current approximation. The first algo-
rithm can work with the requirement that the Lipschitz-type constant needs to be 
known as an input parameter of the algorithm. The next two algorithms use new 
stepsize rules and they can be implemented more easily without the prior knowl-
edge of the Lipschitz-type constant. A reason is that the two latter algorithms use 
variable stepsizes which are either chosen previously or updated at each itera-
tion by a simple computation not depending on the Lipschitz-type constant. This 
makes the algorithms particularly interesting because the Lipschitz-type constant 
in general is unknown or difficult to estimate in huge-scale nonlinear problems. 
Some experiments are performed to illustrate the numerical behavior of the new 
algorithms.

The rest of this paper is organized as follows: Sect. 2 recalls some concepts and 
preliminary results used in the paper. Sect. 3 deals with proposing an extragradi-
ent-like algorithm with previously known constant, while Sect.  4 presents two 
different algorithms with new variable stepsize rules. In Sect. 5, some numerical 

(PPM)f (xn+1, y) +
1

r

⟨
y − xn+1, Jxn+1 − Jxn

⟩
≥ 0, ∀y ∈ C.
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experiments are provided. Finally, in Sect.  6, we present some conclusions and 
forthcoming works.

2 � Preliminaries

Let E be a Banach space with the dual E∗ . Throughout this paper, for the sake of 
simplicity, the norms of E and E∗ are denoted by the same symbol ||.||. The dual 
product of any pair (x, f ) ∈ E × E∗ is denoted by ⟨x, f ⟩.

Let us begin with several concepts and properties of a Banach space (see, e.g., [1, 
14] for more details).

Definition 2.1  A Banach space E is called: 

(a)	 strictly convex if the unit sphere S1(0) = {x ∈ E ∶ ||x|| ≤ 1} is strictly convex, 
i.e., the inequality ||x + y|| < 2 holds for all x, y ∈ S1(0), x ≠ y;

(b)	 uniformly convex if for any given 𝜖 > 0 there exists 𝛿 = 𝛿(𝜖) > 0 such that, for 
all x, y ∈ E with ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ = � , the inequality ‖x + y‖ ≤ 2(1 − �) 
holds;

(c)	 smooth if the limit 

 exists for all x, y ∈ S1(0);
(d)	 uniformly smooth if the limit (1) exists uniformly for all x, y ∈ S1(0).

The modulus of convexity of E is the function �E ∶ [0, 2] → [0, 1] defined by

Note that E is uniformly convex if and only if 𝛿E(𝜖) > 0 for all 0 < 𝜖 ≤ 2 and 
�E(0) = 0.

Let p > 1 . A uniformly convex Banach space E is said to be p-uniformly convex if 
there exists some constant c > 0 , such that

It is well known that the functional spaces Lp , lp and Wp
m are p-uniformly convex 

when p > 2 and 2-uniformly convex when 1 < p ≤ 2 . Furthermore, any Hilbert 
space H is uniformly smooth and 2-uniformly convex.

The normalized duality mapping J ∶ E → 2E
∗ is defined by

We have the following properties (see for instance [9]): 

(1)lim
t→0

‖x + ty‖ − ‖x‖
t

�E(�) = inf
�
1 −

‖x + y‖
2

∶ ‖x‖ = ‖y‖ = 1, ‖x − y‖ = �

�
, ∀� ∈ [0, 2].

�E(�) ≥ c�p.

J(x) =
�
f ∈ E∗ ∶ ⟨x, f ⟩ = ‖x‖2 = ‖f‖2�, ∀x ∈ E.
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(a)	   if E is a smooth, strictly convex, and reflexive Banach space, then the normal-
ized duality mapping J ∶ E → 2E

∗ is single-valued, one-to-one and onto;
(b)	   if E is a reflexive and strictly convex Banach space, then J−1 is norm to weak ∗ 

continuous;
(c)	   if E is a uniformly smooth Banach space, then J is uniformly continuous on 

each bounded subset of E;
(d)	   Aa Banach space E is uniformly smooth if and only if E∗ is uniformly convex.

Let E be a smooth, strictly convex, and reflexive Banach space. The Lyapunov func-
tional � ∶ E × E → [0,∞) is defined by

The followings are some characteristics of the Lyapunov functional � : 

(a)	   For all x, y, z ∈ E , 

(b)	   For all x, y, z ∈ E , 

Particularly, when x = y , we have

We need the following lemmas in our analysis:

Lemma 2.1  [10] Let E be a 2-uniformly convex and smooth Banach space. Then 
there exists a 𝜏 > 0 such that

Lemma 2.2  [49] Let E be a 2-uniformly convex and smooth Banach space. Then 
there exists some number 𝛼 > 0 , such that for all x, y ∈ E,

The normal cone NC of a set C at the point x ∈ C is defined by

Let g ∶ C → ℜ be a function. The subdifferential of g at x is defined by

Remark 2.1  It follows easily from the definitions of the subdifferential and �(x, y) 
that

�(x, y) = ‖x‖2 − 2⟨x, Jy⟩ + ‖y‖2, ∀x, y ∈ E.

(2)(‖x‖ − ‖y‖)2 ≤ �(x, y) ≤ (‖x‖ + ‖y‖)2.

(3)�(x, y) = �(x, z) + �(z, y) + 2⟨z − x, Jy − Jz⟩.

⟨y − z, Jy − Jz⟩ = 1

2
�(y, z) +

1

2
�(z, y).

⟨x − y, Jx − Jy⟩ ≥ ���x − y��2, ∀x, y ∈ E.

�||x − y||2 ≤ �(x, y).

NC(x) = {x∗ ∈ E∗ ∶ ⟨x − y, x∗⟩ ≥ 0, ∀y ∈ C}.

�g(x) = {w ∈ E∗ ∶ g(y) − g(x) ≥ ⟨y − x,w⟩, ∀y ∈ C}.
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Let g ∶ C → ℜ ∪ {+∞} be a convex, subdifferentiable and lower semi-continu-
ous function. The �-proximal mapping associated with g for a parameter 𝜆 > 0 is 
defined by

Remark 2.2  A characteristic of the �-proximal mapping is that, if x = prox
�

�g
(x) , 

then

Throughout this paper, we assume that E is a 2-uniformly convex and uniformly 
smooth Banach space and consider the following standard assumptions (see, [19]) 
imposed on the bifunction f ∶ C × C → ℜ:

Condition A. We need the following assumptions: 

	(A0)	 Either int(C) ≠ � or, for each x ∈ C , the function f(x, .) is continuous at a point 
in C;

	(A1)	   f is pseudomonotone on C, i.e., the following implication holds 

	(A2)	 f satisfies the Lipschitz-type condition (LC) on C, i.e., there exists a positive 
constant L, such that 

	(A3)	   lim supn→∞ f (xn, y) ≤ f (x, y) for each sequence xn ⇀ x ∈ C and y ∈ C;
	(A4)	 f (x, ⋅) is convex and subdifferentiable on C for every x ∈ C;
	(A5)	   The solution set EP(f, C) of the problem (EP) is nonempty.

Remark 2.3  It follows from hypotheses (A1)–(A2) that f (x, x) = 0 for all x ∈ C . 
Indeed, by (A2), we obtain that f (x, x) ≥ 0 for all x ∈ C . Thus, by (A1), we have 
f (x, x) ≤ 0 for all x ∈ C . Consequently, f (x, x) = 0 for all x ∈ C.

3 � Modified extragradient‑like algorithm with prior constant

In this section, we introduce a new algorithm for finding a solution of problem (EP) 
in a Banach space. The algorithm is constructed around the �-proximal mapping 
associated with cost bifunction f when the Lipschitz-type constant (or an estimate) 
of f is explicitly known. The algorithm is of the following form.

�1�(x, y) ∶= ��(., y)(x) = {2(Jx − Jy)}.

prox
�

�g
(x) = argmin

{
�g(y) +

1

2
�(y, x) ∶ y ∈ C

}
.

x ∈ Argmin {g(y) ∶ y ∈ C} ∶=

{
x ∈ C ∶ g(x) = min

y∈C
g(y)

}
.

f (x, y) ≥ 0 ⟹ f (y, x) ≤ 0, ∀x, y ∈ C;

f (x, y) + f (y, z) ≥ f (x, z) − L||x − y||||y − z||, ∀x, y ∈ C;
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Algorithm 3.1  [Modified extragradient-like algorithm with prior constant]
Initialization: Choose x0, y0 ∈ C and a sequence 

{
𝜆n
}
⊂ (0,+∞) , such that

where � is defined in Lemma 2.2.
Iterative Steps:

Step 1.	� Compute 

Step 2.	� Compute 

Stopping criterion: If xn+1 = yn = xn , then stop and xn is a solution of problem 
(EP).

Remark 3.4  The sequence 
{
�n
}
 of stepsizes in Algorithm  3.1 is taken previously 

which is bounded and separated from zero. This sequence depends on the Lipschitz-
type constant L of bifunction f. This means that the information of L needs to be 
known and it is an input parameter of Algorithm 3.1.

Remark 3.5  From the definition of the �-proximal mapping, the two approximations 
xn+1 and yn+1 in Algorithm 3.1 can be rewritten under the form of optimization pro-
grams as

Moreover, since �(x, y) = ��x��2 − 2⟨x, Jy⟩ + ��y��2 and the fact

we can write

Observe that at each iteration in Algorithm 3.1, it requires to proceed only one value 
of bifunction f at the approximation yn . This is different from the extragradient 

0 < 𝜆∗ ≤ 𝜆n ≤ 𝜆∗ <
(
√
2 − 1)𝛼

L
,

xn+1 = prox
�

�nf (yn,.)
(xn).

yn+1 = prox
�

�n+1f (yn,.)
(xn+1).

⎧⎪⎨⎪⎩

xn+1 = argmin
�
�nf (yn, y) +

1

2
�(y, xn) ∶ y ∈ C

�
,

yn+1 = argmin
�
�n+1f (yn, y) +

1

2
�(y, xn+1) ∶ y ∈ C

�
.

argmin {g(y) + a ∶ y ∈ C} = argmin {g(y) ∶ y ∈ C},

⎧⎪⎨⎪⎩

xn+1 = argmin
�
�nf (yn, y) +

1

2
��y��2 − ⟨y, Jxn⟩ ∶ y ∈ C

�
,

yn+1 = argmin
�
�n+1f (yn, y) +

1

2
��y��2 − �

y, Jxn+1
�
∶ y ∈ C

�
.
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method (EGM) in [13, 19, 38], where at each iteration,, the two values of f need to 
be computed.

Remark 3.6  In the case when E = H is a Hilbert space, then J = I and 
�(x, y) = ||x − y||2 . Thus Algorithm 3.1 reduces to the result in [18, Corollary 3.5]. 
In addition, if f (x, y) = ⟨Ax, y − x⟩ , where A ∶ C → H is an operator, our Algo-
rithm 3.1 becomes Popov’s extragradient method in [37] for saddle point problems 
as well as variational inequality problems.

Remark 3.7  It follows immediately from Remark  2.2 that, if xn+1 = yn = xn , then 
xn is a solution of the problem (EP). Another stopping criterion can be used as: if 
yn+1 = yn = xn+1 , then stop and yn is a solution of the problem (EP).

Lemma 3.1  The following estimates hold: for each n ≥ 0 and y ∈ C , 

(a)	   �n(f (yn, y) − f (yn, xn+1)) ≥
⟨
xn+1 − y, Jxn+1 − Jxn

⟩
.

(b)	   �n(f (yn−1, y) − f (yn−1, yn)) ≥ ⟨yn − y, Jyn − Jxn⟩.

Proof  (a) By the definitions of xn+1 and the �-proximal mapping, the iterate xn+1 can 
be rewritten as

Thus, from the first-order necessary condition (see, Lemma 2.8 in [19]), we have

which, by Remark 2.1, implies that

Hence, there exists wn ∈ �2f (yn, xn+1) such that

It follows from the definition of NC(xn+1) that

or, equivalently

By wn ∈ �2f (yn, xn+1) , we obtain

xn+1 = argmin
{
�nf (yn, y) +

1

2
�(y, xn) ∶ y ∈ C

}
.

0 ∈ �n�2f (yn, xn+1) +
1

2
�1�(xn+1, xn) + NC(xn+1),

0 ∈ �n�2f (yn, xn+1) + Jxn+1 − Jxn + NC(xn+1).

−�nwn + Jxn − Jxn+1 ∈ NC(xn+1).

⟨
xn+1 − y,−�nwn + Jxn − Jxn+1

⟩
≥ 0, ∀y ∈ C,

�n
⟨
y − xn+1,wn

⟩
≥
⟨
xn+1 − y, Jxn+1 − Jxn

⟩
, ∀y ∈ C.

f (yn, y) − f (yn, xn+1) ≥
⟨
y − xn+1,wn

⟩
, ∀y ∈ C.
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Combining the last two inequalities, we come to the following one

(b) By arguing similarly as the conclusion (a), from the definition of yn , we also 
obtain the desired conclusion. Lemma 3.1 is proved. 	�  ◻

The following theorem ensures the convergence of Algorithm 3.1:

Theorem 3.1  Under Condition A, the sequences 
{
xn
}
 and 

{
yn
}
 generated by Algo-

rithm 3.1 converge weakly to a solution of the problem (EP).

Proof  From Lemma 3.1 (b) with y = xn+1 ∈ C , we derive

Combining relation (4) and Lemma 3.1(a), we obtain

Since f satisfies the Lipschit-type condition, there exists L > 0 such that

which, together with the relation (5), implies that

Using the relation (3), it follows that, for all x∗ ∈ EP(f ,C),

Substituting y = x∗ into relation (7), and afterward combining the obtained inequal-
ity with relation (8), we obtain

Applying the two inequalities 2ab ≤
1√
2
a2 +

√
2b2 and (a + b)2 ≤ (2 +

√
2)a2 +

√
2b2 ,  

we obtain

�n
(
f (yn, y) − f (yn, xn+1)

)
≥
⟨
xn+1 − y, Jxn+1 − Jxn

⟩
, ∀y ∈ C.

(4)�n(f (yn−1, xn+1) − f (yn−1, yn)) ≥
⟨
yn − xn+1, Jyn − Jxn

⟩
.

(5)
2�nf (yn, y) + 2�n(f (yn−1, xn+1) − f (yn−1, yn) − f (yn, xn+1))

≥ 2
⟨
yn − xn+1, Jyn − Jxn

⟩
+ 2

⟨
xn+1 − y, Jxn+1 − Jxn

⟩
.

(6)f (yn−1, xn+1) − f (yn−1, yn) − f (yn, xn+1) ≤ L||yn − yn−1||||xn+1 − yn||,

(7)
2�nf (yn, y) + 2�nL||yn − yn−1||||xn+1 − yn||

≥ 2
⟨
yn − xn+1, Jyn − Jxn

⟩
+ 2

⟨
xn+1 − y, Jxn+1 − Jxn

⟩
, ∀y ∈ C.

(8)

2
⟨
yn − xn+1, Jyn − Jxn

⟩
+ 2

⟨
xn+1 − x∗, Jxn+1 − Jxn

⟩

= �(xn+1, yn) + �(yn, xn) − �(xn+1, xn)

+ �(x∗, xn+1) + �(xn+1, xn) − �(x∗, xn)

= �(x∗, xn+1) − �(x∗, xn) + �(xn+1, yn) + �(yn, xn).

(9)
�(x∗, xn+1) ≤�(x

∗, xn) − �(xn+1, yn) − �(yn, xn) + 2�nf (yn, x
∗)

+ 2�nL||yn − yn−1||||xn+1 − yn||.
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This together with Lemma 2.2 implies that

From the relations (9) and (10), we get

Adding both sides of the inequality (11) to the term �n+1L
�

�(xn+1, yn) , we come to the 
following estimate:

Since f is pseudomonotone and the fact f (x∗, yn) ≥ 0 , we obtain that f (yn, x∗) ≤ 0 . 
Thus the relation (12) can be shortly rewritten as

where

2��yn − yn−1����xn+1 − yn��
≤

1√
2
��yn − yn−1��2 +

√
2��xn+1 − yn��2

≤
1√
2
(��yn − xn�� + ��xn − yn−1��)2 +

√
2��xn+1 − yn��2

≤
1√
2

�
(2 +

√
2)��yn − xn��2 +

√
2��xn − yn−1��2

�
+
√
2��xn+1 − yn��2

= (1 +
√
2)��yn − xn��2 + ��xn − yn−1��2 +

√
2��xn+1 − yn��2.

(10)

2��yn − yn−1����xn+1 − yn�� ≤ 1 +
√
2

�
�(yn, xn) +

1

�
�(xn, yn−1) +

√
2

�
�(xn+1, yn).

(11)

�(x∗, xn+1) ≤�(x
∗, xn) −

�
1 −

√
2�nL

�

�
�(xn+1, yn) −

�
1 −

(1 +
√
2)�nL

�

�
�(yn, xn)

+
�nL

�
�(xn, yn−1) + 2�nf (yn, x

∗).

(12)

�(x∗, xn+1) +
�n+1L

�
�(xn+1, yn)

≤ �(x∗, xn) +
�nL

�
�(xn, yn−1) + 2�nf (yn, x

∗)

−
�
1 −

√
2�nL

�
−

�n+1L

�

�
�(xn+1, yn) −

�
1 −

(1 +
√
2)�nL

�

�
�(yn, xn).

(13)an+1 ≤ an − bn,

an = �(x∗, xn) +
�nL

�
�(xn, yn−1),

bn =
�
1 −

√
2�nL

�
−

�n+1L

�

�
�(xn+1, yn) +

�
1 −

(1 +
√
2)�nL

�

�
�(yn, xn).
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Since 0 < 𝜆∗ ≤ 𝜆n ≤ 𝜆∗ <
(
√
2−1)𝛼

L
 , we obtain

Thus, bn ≥ 0 for each n ≥ 1 . The relation (13) ensures that the limit of 
{
an
}
 exists 

and limn→∞ bn = 0 . This together with the relations (14), (15) and the definition of 
bn implies that

Since the limit of 
{
an
}
 exists, the sequence 

{
�(x∗, xn)

}
 is bounded. Thus, from the 

relation (2), we also get that the sequence 
{
xn
}
 is bounded. Moreover, from the rela-

tion (16) and Lemma 2.2, one derives that

Thus, since ||xn+1 − xn||2 ≤ 2||xn+1 − yn||2 + 2||yn − xn||2 , we come to the follow-
ing limit:

Since J is uniformly continuous on each bounded set, it follows from the relations 
(17) and (18) that

Now, assume that x̄ is a weak cluster point of 
{
xn
}
 , i.e., there exists a subsequence {

xm
}
 of 

{
xn
}
 converging weakly to x̄ ∈ C . Since ||xn − yn|| → 0 , we also have that 

ym ⇀ x̄ as m → ∞ . It follows from the relation (7) that

Passing to the limit in (20) as n = m → ∞ and using (A3), the relations (17), (19), 
we obtain

(14)1 −

√
2𝜆nL

𝛼
−

𝜆n+1L

𝛼
≥ 1 −

(1 +
√
2)𝜆∗L

𝛼
> 0.

(15)1 −
(1 +

√
2)𝜆nL

𝛼
≥ 1 −

(1 +
√
2)𝜆∗L

𝛼
> 0.

(16)lim
n→∞

�(xn+1, yn) = lim
n→∞

�(yn, xn) = 0.

(17)lim
n→∞

||xn+1 − yn||2 = lim
n→∞

||yn − xn||2 = 0.

(18)lim
n→∞

||xn+1 − xn||2 = 0.

(19)lim
n→∞

||Jxn+1 − Jxn||2 = lim
n→∞

||Jyn − Jxn||2 = 0.

(20)

f (yn, y) ≥ − L||yn − yn−1||||xn+1 − yn|| + 1

�n

⟨
yn − xn+1, Jyn − Jxn

⟩

+
1

�n

⟨
xn+1 − y, Jxn+1 − Jxn

⟩

≥ − L||yn − yn−1||||xn+1 − yn|| − 1

�n
||Jyn − Jxn||||yn − xn+1||

−
1

�n
||Jxn+1 − Jxn||||xn+1 − y||, ∀y ∈ C.
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or x̄ is a solution of the problem (EP).
In order to finish the proof, now, we prove the whole sequence 

{
xn
}
 converges 

weakly to x̄ . Indeed, assume that x̂ is another weak cluster point of 
{
xn
}
 , i.e., there 

exists a subsequence 
{
xk
}
 of 

{
xn
}
 converging weakly to x̂ such that x̄ ≠ �x . As men-

tioned above, it follows that x̂ also belongs to the solution set EP(f, C). From the 
definition of the Lyapunov functional �(⋅, ⋅) , we have

Since the limit of 
{
an
}
 exists and the relation (16), also it follows from the definition 

of an that the limit of �(xn, x∗) exists for each x∗ ∈ EP(f ,C) . Thus, from the relation 
(21), we find that the limit of 

{⟨
xn, Jx̄ − J�x

⟩}
 exists and set

Passing to the limit in (22) as n = m → ∞ and afterward as n = k → ∞ , we obtain

Thus we have

which, together with Lemma 2.1, implies that x̄ = �x . This completes the proof. 	�  ◻

Remark 3.8  We have used hypothesis (A3), the sequentially weakly upper semi-
continuity of bifunction f respect to the first argument, to prove the convergence of 
Algorithm 3.1. We can replace this hypothesis by a weaker one which was presented 
in [26, condition (2.1)] (also, see [26, Remark 2.1]).

4 � Modified extragradient‑like algorithms without prior constant

In this section, we introduce some new stepsize rules and propose two extragra-
dient-like algorithms of explicit form for solving the problem (EP). The algo-
rithms are explicit in the sense that the prior knowledge of the Lipschitz-type 
constant of the bifunction is not necessary, i.e., the Lipschitz-type constant is not 
an input parameter of the algorithms. Our algorithms thus can be more easily 
implemented.

The first algorithm in this section is of the following form:

Algorithm 4.1  [Modified extragradient-like algorithm with diminishing stepsizes]
Initialization: Choose x0, y0 ∈ C and a sequence 

{
𝜆n
}
⊂ (0,+∞) such that

f (x̄, y) ≥ lim sup
m→∞

f (ym, y) ≥ 0, ∀y ∈ C,

(21)2
⟨
xn, Jx̄ − J�x

⟩
= 𝜙(xn,�x) − 𝜙(xn, x̄) + ||x̄||2 − ||�x||2.

(22)lim
n→∞

⟨
xn, Jx̄ − J�x

⟩
= K.

⟨
x̄, Jx̄ − J�x

⟩
= lim

m→∞

⟨
xm, Jx̄ − J�x

⟩
= K = lim

k→∞

⟨
xk, Jx̄ − J�x

⟩
=
⟨
�x, Jx̄ − J�x

⟩
.

⟨
x̄ −�x, Jx̄ − J�x

⟩
= 0,
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Iterative Steps:

Step 1.	� Compute 

Step 2.	� Compute 

Stopping criterion: If xn+1 = yn = xn , then stop and xn is a solution of problem 
(EP).

A sequence 
{
�n
}
 satisfies the conditions (H1)-(H2) as �n = 1∕np with 

p ∈ (0, 1] . In order to get the convergence of Algorithm 4.1, we assume that the 
bifunction f satisfies the following condition:

Condition B. Conditions (A0), (A2), (A4) in Condition A hold, and 

	(A6)	   f(., y) is hemi-continuous for each y ∈ C;
	(A7)	   f is strongly pseudomonotone (SP), i.e., the following implication holds: 

where � is some positive constant.
Under conditions (A4), (A6) and (A7), the problem (EP) has a unique solution. 

Let us denote this unique solution by x†.
We have the following result:

Theorem 4.1  Under Condition B, the sequences 
{
xn
}
 and 

{
yn
}
 generated by Algo-

rithm 4.1 converge strongly to the unique solution x† of the problem (EP).

Proof  Applying the strong pseudomonotonicity of f on the relation (11) with x∗ = x† 
and repeating the proof of the relations (12) and (13), we obtain

or

where

(H1) lim
n→∞

�n = 0, (H2)

∞∑
n=1

�n = +∞.

xn+1 = prox
�

�nf (yn,.)
(xn).

yn+1 = prox
�

�n+1f (yn,.)
(xn+1).

(SP) f (x, y) ≥ 0 ⟹ f (y, x) ≤ −�||x − y||2, ∀x, y ∈ C,

ãn+1 ≤ ãn − b̃n − 2��n||yn − x†||2

(23)b̃n + 2��n||yn − x†||2 ≤ ãn − ãn+1,
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Let � ∈ (0, 1) be a fixed number. Since �n → 0 , there exists n0 ≥ 1 such that

Thus b̃n ≥ 0 for all n ≥ n0 . Letting N ≥ n0 , applying the inequality (23) for each 
n = n0,⋯ ,N and summing up these obtained inequalities, we obtain

This is true for all N ≥ n0 . Thus we have

which implies that limn→∞ b̃n = 0 and

Combining the relation (27) and the fact 
∑∞

n=n0
�n = +∞ , we derive

Since limn→∞ b̃n = 0 , it follows from the relations (24), (25) and the definition of b̃ 
that

Thus, from Lemma 2.2, we get

From the relations (28) and (30), we derive

ãn =�(x
†, xn) +

�nL

�
�(xn, yn−1),

b̃n =
�
1 −

√
2�nL

�
−

�n+1L

�

�
�(xn+1, yn) +

�
1 −

(1 +
√
2)�nL

�

�
�(yn, xn).

(24)1 −

√
2𝜆nL

𝛼
−

𝜆n+1L

𝛼
≥ 𝜖 > 0,

(25)1 −
(1 +

√
2)𝜆nL

𝛼
≥ 𝜖 > 0.

N∑
n=n0

�bn + 2𝛾

N∑
n=n0

𝜆n||yn − x†||2 ≤ �an0 − �aN+1 ≤ �an0 < +∞.

(26)
∞∑

n=n0

�bn + 2𝛾

∞∑
n=n0

𝜆n||yn − x†||2 < +∞,

(27)
∞∑

n=n0

𝜆n||yn − x†||2 < +∞.

(28)lim inf
n→∞

||yn − x†||2 = 0.

(29)lim
n→∞

�(xn+1, yn) = lim
n→∞

�(yn, xn) = 0.

(30)lim
n→∞

||xn+1 − yn|| = lim
n→∞

||yn − xn|| = 0.
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Thus there exists a subsequence 
{
xnk

}
 of 

{
xn
}
 such that limk→∞ ||xnk − x†||2 = 0 , i.e., 

xnk → x† as k → ∞ . Since J is uniformly continuous on each bounded set, we obtain

Moreover, by the definition, we see that the sequence 
{
ãn
}
n≥n0

 is bounded from 
below by zero. It follows from the relation (23) that the sequence 

{
ãn
}
n≥n0

 is non-
increasing. Hence the limit of 

{
ãn
}
n≥n0

 exists. Thus, by the relation (29) and the defi-
nition of ãn , we observe that the limit of 

{
�(x†, xn)

}
 exists. This together with (32) 

implies

Thus, from Lemma 2.2, we can conclude that xn → x† and thus yn → x† . This com-
pletes the proof. 	�  ◻

Next, we introduce the second algorithm in this section with a different stepsize 
rule. Unlike Algorithm  4.1, the next algorithm uses variable stepsizes which are 
updated at each iteration. The stepsizes are found by some cheap computations and 
without any linesearch procedure. The algorithm also does not require to previously 
know the Lipschitz-type constant. The convergence of the algorithm is obtained 
under the standard assumptions as in Theorem 3.1.

For the sake of simplicity, we use a notation [t]+ and adopt a convention 0
0
 as 

follows:

The following is the algorithm in details:

Algorithm 4.2  [Modified extragradient-like algorithm with new stepsize rule]
Initialization: Choose x0, y−1, y0 ∈ C and two numbers 𝜆0 > 0 , 

� ∈ (0, (
√
2 − 1)�).

Iterative Steps:

Step 1.	� Compute 

(31)lim inf
n→∞

||xn − x†||2 = 0.

(32)

lim
k→∞

�(x†, xnk ) = lim
k→∞

(||x†||2 − 2
⟨
x†, Jxnk

⟩
+ ||xnk ||2

)

= lim
k→∞

(||x†||2 − 2
⟨
x†, Jx†

⟩
+ ||x†||2)

=�(x†, x†) = 0.

lim
n→∞

�(x†, xn) = 0.

[t]+ = max{0, t},
0

0
= +∞.

xn+1 = prox
�

�nf (yn,.)
(xn).
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Step 2.	� Compute 

   where

Stopping criterion: If xn+1 = yn = xn , then stop and xn is a solution of problem 
(EP).

Remark 4.9  In fact, with the aforementioned convention, in the case when

then �n+1 ∶= �n . From the definition of �n in Algorithm 4.2, it is easy to see that {
�n
}
 is non-increasing. Moreover, since f satisfies the Lipschitz-type condition, 

there exists some L > 0 such that

Thus, from the definition, we obtain immediately that 
{
�n
}
 is bounded from below 

by min
{
�0,

�

L

}
 . Thus there exists 𝜆 > 0 such that

Remark 4.10  Unlike Algorithm 3.1, the sequence 
{
�n
}
 in Algorithm 4.2 is sequen-

tially computed at each iteration, from a starting number 𝜆0 > 0 , by using simple 
formula (33). This sequence, as Remark 4.9, is also separated from zero. This is dif-
ferent to the stepsize rule in Algorithm 4.1 where �n → 0 as n → ∞ (see, condition 
(H1)).

Theorem 4.2  Under Condition A, the sequences 
{
xn
}
 and 

{
yn
}
 generated by Algo-

rithm 4.2 converge weakly to a solution of the problem (EP).

Proof  We use some estimates in the proof of Theorem 3.1. From the definition of 
�n+1 , in the case when f (yn−1, xn+1) − f (yn−1, yn) − f (yn, xn+1) > 0 , we have

It is emphasized here that the relation (35) also remains valuable when

Thus, by replacing the inequality (6) by the inequality (35) and repeating the proof 
of the relation (12), we obtain

yn+1 = prox
�

�n+1f (yn,.)
(xn+1),

(33)�n+1 = min

{
�n,

�||yn − yn−1||||yn − xn+1||[
f (yn−1, xn+1) − f (yn−1, yn) − f (yn, xn+1)

]
+

}
.

f (yn−1, xn+1) − f (yn−1, yn) − f (yn, xn+1) ≤ 0,

f (yn−1, xn+1) − f (yn−1, yn) − f (yn, xn+1) ≤ L||yn − yn−1||||yn − xn+1||.

(34)lim
n→∞

𝜆n = 𝜆 > 0.

(35)f (yn−1, xn+1) − f (yn−1, yn) − f (yn, xn+1) ≤
�

�n+1
||yn − yn−1||||xn+1 − yn||.

f (yn−1, xn+1) − f (yn−1, yn) − f (yn, xn+1) ≤ 0.
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Since f is pseudomonotone and f (x∗, yn) ≥ 0 , we have f (yn, x∗) ≤ 0 . This together 
with the relation (36) implies that

where

From the relation (34) that 𝜆n → 𝜆 > 0 , we observe

Thus, for a fixed number � ∈
�
0, 1 −

(1+
√
2)�

�

�
 , there exists a number n̄0 ≥ 1 such 

that, for all n ≥ n̄0,

This implies that b̄n ≥ 0 for all n ≥ n̄0 . Using the relations (37), (38) and arguing 
similarly to the proof of Theorem 3.1, we also obtain the desired conclusion. This 
completes the proof. 	�  ◻

Remark 4.11  We consider the case where f is strongly pseudomonotone. Using the 
relation (36) and taking into account the fact f (yn, x†) ≤ −�||yn − x†||2 , we derive

(36)

�(x∗, xn+1) +
�n+1�

�n+2�
�(xn+1, yn)

≤ �(x∗, xn) +
�n�

�n+1�
�(xn, yn−1) + 2�nf (yn, x

∗)

−
�
1 −

√
2�n�

�n+1�
−

�n+1�

�n+2�

�
�(xn+1, yn) −

�
1 −

(1 +
√
2)�n�

�n+1�

�
�(yn, xn).

(37)ān+1 ≤ ān − b̄n,

ān =𝜙(x
∗, xn) +

𝜆n𝜇

𝜆n+1𝛼
𝜙(xn, yn−1),

b̄n =
�
1 −

√
2𝜆n𝜇

𝜆n+1𝛼
−

𝜆n+1𝜇

𝜆n+2𝛼

�
𝜙(xn+1, yn) +

�
1 −

(1 +
√
2)𝜆n𝜇

𝜆n+1𝛼

�
𝜙(yn, xn).

lim
n→∞

�
1 −

√
2𝜆n𝜇

𝜆n+1𝛼
−

𝜆n+1𝜇

𝜆n+2𝛼

�
= lim

n→∞

�
1 −

(1 +
√
2)𝜆n𝜇

𝜆n+1𝛼

�
= 1 −

(1 +
√
2)𝜇

𝛼
> 0.

(38)1 −

√
2𝜆n𝜇

𝜆n+1𝛼
−

𝜆n+1𝜇

𝜆n+2𝛼
> 𝜖 > 0, 1 −

(1 +
√
2)𝜆n𝜇

𝜆n+1𝛼
> 𝜖 > 0.

�(x†, xn+1) +
�n+1�

�n+2�
�(xn+1, yn)

≤ �(x†, xn) +
�n�

�n+1�
�(xn, yn−1) − 2�n���yn − x†��2

−
�
1 −

√
2�n�

�n+1�
−

�n+1�

�n+2�

�
�(xn+1, yn) −

�
1 −

(1 +
√
2)�n�

�n+1�

�
�(yn, xn)
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for all n ≥ n̄0 or

for all n ≥ n̄0 . This implies that the limit of 
{
ān
}
 exists and

Thus we have

which, together with the definition of b̄n , the relation (38) and the fact 𝜆n → 𝜆 > 0 , 
implies that

The relation (39) and Lemma 2.2 ensure that ||yn − xn||2 → 0 . Thus the sequence {
xn
}
 converges strongly to the unique solution x† of the problem (EP). This conclu-

sion is also true for Algorithm 3.1. The proof here is simpler than the one of Theo-
rem 4.1 thanks to the relation (34), which is different from (H1) in Algorithm 4.1. 
Moreover, in this case, hypothesis (A3) is not necessary.

Remark 4.12  The sequences 
{
xn
}
 and 

{
yn
}
 generated by Algorithm  3.1 or Algo-

rithm 4.2 converge weakly to some solution of the problem (EP). As in [26, Theo-
rem 3.3] (also, see [27, Theorem 5.2]), if we assume additionally that the bifunction 
f satisfies one of the following conditions: 

(a)	 f(x, .) is strongly convex for each x ∈ C,
(b)	 f(., y) is strongly concave for each y ∈ C,

then 
{
xn
}
 and 

{
yn
}
 generated by Algorithm  3.1 (or Algorithm  4.2) converges 

strongly to the unique element of EP(f, C). We will prove this conclusion for Algo-
rithm 3.1 (without the condition (A3)), and with Algorithm 4.2, it is done similarly. 
Indeed, note that in each case (a) or (b), the solution of problem (EP) is unique and 
denoded by x† . Recall relation (20) that

Firstly, we prove the conclusion in the case (a). Take wn = tyn + (1 − t)x† 
for some t ∈ (0, 1) and all n ≥ 0 . Since f (yn, .) is strongly convex, we get 
f (yn,wn) ≤ tf (yn, yn) + (1 − t)f (yn, x

†) − t(1 − t)||yn − x†||2 . Thus, from the facts 
f (yn, yn) = 0 and f (yn, x†) ≤ 0 , we obtain

ān+1 ≤ ān − b̄n − 2𝜆n𝛾||yn − x†||2

∞∑
n=n0

(
b̄n + 2𝜆n𝛾||yn − x†||2) < +∞.

lim
n→∞

b̄n = lim
n→∞

𝜆n𝛾||yn − x†||2 = 0,

(39)lim
n→∞

||yn − x†||2 = lim
n→∞

�(xn+1, yn) = lim
n→∞

�(yn, xn) = 0.

(40)
f (yn, y) ≥ − L||yn − yn−1||||xn+1 − yn|| − 1

�n
||Jyn − Jxn||||yn − xn+1||

−
1

�n
||Jxn+1 − Jxn||||xn+1 − y||, ∀y ∈ C.
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Substituting y = wn into the relation (40), and combining the obtained inequality 
with the relation (41), we come to the following one

Passing to the limit in (42) as n → ∞ and using relations (17), (19), we 
obtain limn→∞ ||yn − x†||2 = 0 . Thus limn→∞ ||xn − x†||2 = 0 because 
limn→∞ ||yn − xn||2 = 0 . In order to get the conclusion in case (b), we also take 
wn = tyn + (1 − t)x† . Since f (., x†) is strongly concave,

Thus, f (yn, x†) ≤ −(1 − t)||yn − x†||2 , which together with relation (40) for y = x† , 
implies that

As case (a), from relation (43), we also obtain the desired conclusion. Remark that 
hypothesis (A3) is also not necessary here.

5 � Numerical illustrations

Consider the space E = ℜm with the norm ��x�� =
�∑m

i=1
x2
i
 which is generated by the 

inner product ⟨x, y⟩ = ∑m

i=1
xiyi . The bifunction f is of the form:

where q ∈ E = ℜm and P, Q are two matrices of order m such that Q is symmetric 
and positive semidefinite, Q − P is negative semidefinite, h(x) =

∑m

j=1
hj(xj) with

where āj, b̄j, c̄j, �aj,
�bj, �cj are real numbers such that āj > 0, �aj > 0 for all 

j = 1,⋯ ,m.

(41)f (yn,wn) ≤ −t(1 − t)||yn − x†||2.

(42)

||yn − x†||2 ≤ L

t(1 − t)
||yn − yn−1||||xn+1 − yn|| + 1

t(1 − t)�n
||Jyn − Jxn||||yn − xn+1||

1

t(1 − t)�n
||Jxn+1 − Jxn||||xn+1 − wn||.

tf (yn, x
†) + (1 − t)f (x†, x†) + t(1 − t)||yn − x†||2 ≤ f (wn, x

†) ≤ 0.

(43)

||yn − x†||2 ≤ L

1 − t
||yn − yn−1||||xn+1 − yn|| + 1

(1 − t)�n
||Jyn − Jxn||||yn − xn+1||

1

(1 − t)�n
||Jxn+1 − Jxn||||xn+1 − x†||.

f (x, y) = ⟨Px + Qy + q, y − x⟩ + h(y) − h(x),

hj(xj) =max
{
h̄j(xj),�hj(xj)

}
,

h̄j(xj) =ājx
2
j
+ b̄jxj + c̄j,

�hj(xj) =�ajx
2
j
+ �bjxj +�cj,
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The feasible set C is a box defined by C =
{
x ∈ ℜm ∶ xmin ≤ x ≤ xmax

}
 , where

The bifunction f is generalized from the Nash-Cournot market equilibrium model in 
[11, 12, 38] with the nonsmooth price function. The bifunction f satisfies Condition 
A with the Lipschitz-type constant L = ||Q − P|| . In this case, the normalized dual-
ity mapping J = I , the Lyapunov functional �(x, y) = ||x − y||2 and the number � in 
Lemma 2.2 is 1.

All the optimization problems are effectively solved by the Optimization Tool-
box in Matlab 7.0 and all the programs are performed on a PC Desktop Intel(R) 
Core(TM) i5-3210M CPU @ 2.50GHz RAM 2.00 GB.

We illustrate the numerical behavior of the new algorithms involving Algo-
rithm 3.1 (MEGM1), Algorithm 4.1 (MEGM2) and Algorithm 4.2 (MEGM3). For 
experiment, the data are randomly generated. The parameters are �n = 0.4∕L for 
MEGM1, �n = 1∕(n + 1) for MEGM2, and �0 = 1 , � = 0.4 for MEGM3. The last 
two algorithms do not use the information of the Lipschitz-type constant L.

Observe a characteristic of a solution of the problem (EP) is that x ∈ EP(f ,C) if 
and only if x = prox

�

�f (x,⋅)
(x) for some 𝜆 > 0 . Then, in order to show the computa-

tional performance of the algorithms, we use the function

The numerical results are shown in Figures 1, 2, 3, 4. In each figure, the x-axis rep-
resents for the number of iterations while the y-axis is for the value of D(xn) gener-
ated by each algorithm. In view of these figures, we see that Algorithm 4.1 is the 
worst, especially when the dimensional number of our problem increases.

xmin = (−2,−2,⋯ ,−2)T , xmax = (5, 5,… , 5)T .

D(x) = ||x − prox
�

�f (x,⋅)
(x)||2.
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6 � Conclusions and forthcoming works

In this paper, we have presented three extragradient-like algorithms for solving an 
equilibrium problem involving a pseudomonotone bifunction with a Lipschitz-type 
condition in a 2 - uniformly convex and uniformly smooth Banach space. Some 
new stepsize rules have been introduced which allow the algorithms work with or 

0 5 10 15 20 25
10−8

10−6

10−4

10−2

100

102

Number of iterations (n)

D
(x

n)

MEGM1
MEGM2
MEGM3

Fig. 2   Experiment in ℜ100
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without the prior knowledge of Lipschitz-type constant of bifunction. The paper can 
help us in the design and analysis of practical algorithms and enrich methods for 
solving equilibrium problems in Banach spaces. The numerical behavior of the new 
algorithms have been also demonstrated by some experiments on a test problem.

An open question arising in infinite dimensional spaces is how to obtain the 
strong convergence of Algorithm 3.1 (also, Algorithm 4.2) without the additional 
assumptions as in Remarks  4.11 and  4.12. Besides, how to develop our algo-
rithms for finding a solution of an equilibrium problem which is also a solution 
of a fixed point problem. This problem is useful for some problems where their 
constraint are expressed as solution sets of fixed point problems. These are surely 
our future goals.
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