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Abstract
Let H be a right quaternionic Hilbert space and let T be a bounded quaternionic 
normal operator on H . In this article, we show that T can be factorized in a strongly 
irreducible sense, that is, for any 𝛿 > 0 there exist a compact operator K with the 
norm ‖K‖ < 𝛿 , a partial isometry W and a strongly irreducible operator S on H such 
that 

We illustrate our result with an example. In addition, we discuss the quaternionic 
version of the Riesz decomposition theorem and obtain a consequence that if the 
S-spectrum of a bounded (need not be normal) quaternionic operator is disconnected 
by a pair of disjoint axially symmetric closed subsets, then the operator is strongly 
reducible.

Keywords Axially symmetric set · Quaternionic Hilbert space · S-specturm · 
Strongly irreducible operator · Riesz decomposition theorem

Mathematics Subject Classification 47A68 · 47A15 · 47B99

1 Introduction

According to the Frobenius theorem for real division algebras, the real algebra of 
Hamilton quaternions is the only finite-dimensional associative division algebra that 
contains ℝ and ℂ as proper real subalgebras [7]. The theory of matrices over the 
real algebra of quaternions has been well developed in the literature parallel to the 
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case of real and complex matrices (see [1, 8, 22, 23] and references therein). For 
example, some of the fundamental results such as Schur’s canonical form and Jor-
dan canonical form are extended to matrices with quaternion entries [23]. In par-
ticular, the Jordan canonical form infers that every square matrix over quaternions 
can be reduced under similarity to a direct sum of Jordan blocks. Equivalently, the 
Jordan canonical form determines its complete similarity invariants and establishes 
the structure of matrices over quaternions. Another significant aspect in this direc-
tion is the diagonalization, through which every matrix can be factorized in terms 
of its restriction to eigenspaces. As it is well known that every quaternionic normal 
matrix is diagonalizable, it is worth mentioning the result due to Weigmann [22] 
that a quaternion matrix is normal if and only if its adjoint is given by a polynomial 
of the given matrix with real coefficients. In this article, we concentrate on the class 
of normal operators on the right quaternionic Hilbert spaces and their factorization 
in a strongly irreducible sense. For this, we adopt the notion of strong irreducibility 
proposed by Gilfeather [10] and Jiang [14] to the class of quaternionic operators in 
order to replace the notion of Jordan block for infinite-dimensional right quaterni-
onic Hilbert spaces.

On the other hand, the study of quaternionic normal operators gained much atten-
tion in the form of spectral theory for quantum theories. Also various versions of 
quaternionic functional calculus has been developed (see [2–5, 9, 17, 18] for details). 
In fact, it is important to note that the spectral theorem for bounded and unbounded 
operators based on the notion called “S-spectrum” is proved by Alpay, Colombo and 
Kimsey in [3]. The multiplication form of the spectral theorem is the immediate 
consequence of the result proved in [3]. Here the notion of S-spectrum is one of the 
crucial objects in the theory of quaternionic operators. In the book, [4] by Colombo, 
Gantner and Kimsey, the discovery of S-spectrum is briefly explained and gave a 
systematic foundation of quaternionic spectral theory based on the S-spectrum, and 
present the theory of slice hyperholomorphic functions which will be used in the 
treatment of quaternionic operator theory.

As far as the factorization of quaternionic operators concern, the well known 
polar decomposition theorem shows that every bounded or densely defined closed 
quaternionic operator can be decomposed as a product of a partial isometry and a 
positive operator (see [9, 19]). In fact, the authors of [19] gave a necessary and suf-
ficient condition for any arbitrary factorization of densely defined closed quaternionic 
operator to be the polar decomposition. One of the crucial observations is the positive 
operator that appears in the polar decomposition is the modulus of the given qua-
ternionic operator which has several reducing subspaces as in the complex case [6]. 
In summary, the polar decomposition establishes the factorization of the quaterni-
onic operator as a product of a partial isometry and an operator having several reduc-
ing subspaces. At this point, a natural question that arises from previous observa-
tion is the following: “whether a given quaternionic operator be decomposed as a 
product of a partial isometry and an operator with no reducing subspace?” We 
answer this question for quaternionic normal operators by proving a factorization in 
a strongly irreducible sense, by means of decomposing the given operator as a prod-
uct of a sufficiently small compact perturbation of a partial isometry and a strongly 
irreducible quaternionic operator. Our result is the quaternionic version (for normal 
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operators) of the result proved recently in [21] by Tian, Cao, Ji and Li. In which, 
the authors employed the properties of Cowen–Douglas operators related to complex 
geometry on complex Hilbert spaces. Also, see [15] for similar factorization in the 
case of finite-dimensional Hilbert spaces.

We organize this article into four sections. In the second section, we give some 
basic definitions and results that are useful for proving our assertions. In the third 
section, we prove the factorization of quaternionic normal operators in a strongly 
irreducible sense. The final section is dedicated to the Riesz decomposition theorem 
for quternionic operators and provide a sufficient condition for strong irreducibility.

2  Preliminaries

An Irish mathematician Sir William Rowan Hamilton [7] described this system of 
numbers known as “quaternions” as an extension of complex numbers. A quaternion 
is of the form:

where q
�
∈ ℝ for � = 0, 1, 2, 3 and i,  j,  k are the fundamental quaternion units 

satisfying,

The collection of all quaternions denoted by ℍ is a non-commutative real division 
algebra equipped with the usual vector space operations addition and scalar multi-
plication defined as in the complex field ℂ , and with the ring multiplication given 
by Eq. (1). For every q ∈ ℍ , the real and the imaginary part of ‘q’ is defined as, 
re(q) = q0 and im(q) = q1i + q2j + q3k respectively. Then the conjugate and the 
modulus of q is given respectively by

The set of all imaginary unit quaternions in ℍ denoted by � and it is defined as

Note that � is a 2-dimensional sphere in ℝ4 . Let m ∈ � . A real subalgebra of ℍ gen-
erated by {1,m} is called a slice of ℍ and it is denoted by ℂm . Clearly, ℂm ∩ ℂn = ℝ 
for all m ≠ ±n ∈ � . For every non real q ∈ ℍ , there is a unique mq ∶=

im(q)

|im(q)|
∈ � 

such that q = re(q) + mq|im(q)| ∈ ℂmq
 . It follows that ℍ =

⋃

m∈𝕊

ℂm . There is an 

equivalence relation on ℍ given by

For every q ∈ ℍ , the equivalence class of q is expressed in terms of its real and 
imaginary parts as follows:

q = q0 + q1i + q2j + q3k

(1)i2 = j2 = k2 = −1 = i ⋅ j ⋅ k.

q = q0 − (q1i + q2j + q3k) and |q| =

√

q2
0
+ q2

1
+ q2

2
+ q2

3
.

𝕊 ∶=
{
q ∈ ℍ ∶ q = −q & |q| = 1

}
=
{
q ∈ ℍ ∶ q2 = −1

}
.

p ∼ q ⇔ p = s−1qs, for some s ∈ ℍ ⧵ {0}.
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Definition 1 [9] Let S be a non-empty subset of ℂ . 

1. If S is invariant under complex conjugation, then the circularization �S of S is 
defined by 

2. a subset K of ℍ is called circular or axially symmetric, if K = �S , for some S ⊆ ℂ 
which is invariant under complex conjugation.

Note that by Definition 1 and Eq. (2), we can express �S as the union of the 
equivalence class of its elements,

It follows that the closure of �S is the circularization of the closure of S. That is,

The properties described above are useful for later sections. A more detailed discus-
sion about quaternions can be found in [1, 5, 9] and [23]. Now we turn our discus-
sion to  some basic definitions and  known results from the theory of quaternionic 
Hilbert spaces.

Definition 2 [9, Sect. 2.2] An inner product on a right ℍ-module H is a map

satisfy the following properties, 

1. Positivity: ⟨x, x⟩ ≥ 0 for all x ∈ H . In particular, 

2. Right linearity: ⟨x, yq + z⟩ = ⟨x, y⟩ q + ⟨x, z⟩ , for all x, y, z ∈ H , q ∈ ℍ.
3. Quaternionic hermiticity: ⟨x, y⟩ = ⟨y, x⟩ , for all x, y ∈ H.

The pair 
�
H, ⟨⋅, ⋅⟩

�
 is called quaternionic pre-Hilbert space. Moreover, H is said 

to be 

 (i) Quaternionic Hilbert space, if H is complete with respect to the norm induced 
from the inner product ⟨⋅, ⋅⟩ , which is defined by 

(2)[q] =
{
p ∈ ℍ ∶ re(p) = re(q) and |im(p)| = |im(q)|

}
.

�S =
{
� + m� ∶ �, � ∈ ℝ, � + i� ∈ S,m ∈ 𝕊

}
.

�S =
⋃

z∈S

[z].

(3)�S = �
S
.

⟨⋅, ⋅⟩ ∶ H ×H → ℍ

⟨x, x⟩ = 0 if and only if x = 0.
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 (ii) Separable, if H has a countable dense subset.

Furthermore, for any subset N  of H , the span of N  is defined as

The orthogonal complement of a subspace M of H is,

Note 1 The inner product ⟨⋅, ⋅⟩ defined on H satisfies the Cauchy–Schwarz 
inequality:

Definition 3 [9] Let 
�
H, ⟨⋅, ⋅⟩

�
 be a quaternionic Hilbert space. A subset N  of H 

with the property that

is said to be Hilbert basis if for every x, y ∈ H , the series 
∑

z∈N

⟨x, z⟩⟨z, y⟩ converges 

absolutely and it holds:

Equivalentely, Span N = H.

Remark 1 By [9, Proposition 2.6], every quaternionic Hilbert space H has a Hilbert 
basis N  . For every x ∈ H , it is uniquely decomposed as,

Example 1 [17] Let � be a Lebesgue measure on [0, 1] and the set of all ℍ-valued 
square integrable �-measurable functions on [0, 1] is defined as,

It is a right quaternionic Hilbert space with respect to the inner product given by

‖x‖ =
√
⟨x, x⟩, for all x ∈ H.

Span N ∶=
{ n∑

�=1

x
�
q
�
; x

�
∈ N, n ∈ ℕ

}

.

M
⊥ =

�
x ∈ H; ⟨x, y⟩ = 0, for every y ∈ M

�
.

�⟨x, y⟩�2 ≤ ⟨x, x⟩⟨y, y⟩, for all x, y ∈ H.

⟨z, z�⟩ =

�
1, if z = z�

0, if z ≠ z�

⟨x, y⟩ =
�

z∈N

⟨x, z⟩⟨z, y⟩.

x =
�

z∈N

z⟨z, x⟩.

L2
(
[0, 1];ℍ;𝜇

)
=
{

f ∶ [0, 1] → ℍ ;

1

∫
0

|f (x)|2 d𝜇(x) < ∞
}

.
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Let us fix m ∈ � . If we define e(m)
r

(x) = exp{2�mrx} , for all x ∈ [0, 1] and r ∈ ℤ . 
Then the set N = {e(m)

r
∶ r ∈ ℤ} is an orthornormal system in L2

(
[0, 1];ℍ;�

)
 . Fur-

ther, by the Stone-Weierstrass theorem N  is a Hilbert basis for L2
(
[0, 1];ℍ;�

)
 . Since 

N  is countable, we conclude that L2
(
[0, 1];ℍ;�

)
 is a separable quaternionic Hilbert 

space.

Definition 4 Let H be a quaternionic Hilbert space and T ∶ D(T) ⊆ H → H , where 
D(T) denote the domain of T, which is a right linear subspace of H . Then T is said to 
be right  ℍ - linear or quaternionic operator, if

The operator T is said to be densely defined, if D(T) = H . Moreover, it is said to be 
closed, if the graph G(T) ∶=

{
(x, Tx) ∶ x ∈ D(T)

}
 is a closed right linear subspace 

of H ×H . By the closed graph theorem, the operator T is bounded or continuous if 
and only if D(T) = H and T is closed.

We denote the class of all bounded operators on H by B(H) and it is a real Banach 
algebra with respect to the operator norm defined by

For every T ∈ B(H) , by the quaternionic version of the Riesz representation theo-
rem [9, Theorem 2.8], there exists a unique operator denoted by T∗ ∈ B(H) , called 
the adjoint of T satisfying,

If T ∈ B(H) , then the null space of T is defined by N(T) = {x ∈ H ∶ Tx = 0} and 
the range space of T is defined by R(T) = {Tx ∶ x ∈ H} . A closed subspace M of 
H is said to be invariant subspace of T, if

Furthermore, M is said to be reducing subspace of T if M is an invariant subspace 
of both T and T∗.

Definition 5 Let T ∈ B(H) . Then T is said to be 

1. Self-adjoint, if T∗ = T ,
2. Anti self-adjoint, if T∗ = −T ,
3. Normal if T∗T = TT∗,
4. Positive, if T∗ = T  and ⟨x, Tx⟩ ≥ 0 for all x ∈ H,
5. Orthogonal projection, if T∗ = T  and T2 = T ,
6. Partial isometry, if ‖Tx‖ = ‖x‖ , for all x ∈ N(T)⊥,

⟨f , g⟩ =

1

∫
0

f (x)g(x) d�(x), for all f , g ∈ L2
�
[0, 1];ℍ;�

�
.

T(x + yq) = T(x) + T(y) q, for all x ∈ D(T).

‖T‖ = sup
�
‖Tx‖ ∶ x ∈ H, ‖x‖ ≤ 1

�
.

⟨x, Ty⟩ = ⟨T∗x, y⟩, for all x, y ∈ H.

T(x) ∈ M, for every x ∈ M.
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7. Unitary, if T∗T = TT∗ = I.

Suppose that T ∈ B(H) is positive, then by [9, Theorem  2.18], there exists a 
unique positive operator S ∈ B(H) such that S2 = T  . Such an operator S is called the 
positive square root of T and it is dentoed by S ∶= T

1

2 . In fact, for every T ∈ B(H) , 
the modulus |T| is defined as the positive square root of T∗T  , that is, |T| ∶= (T∗T)

1

2.
We know from the well known Cartesian decomposition that every bounded nor-

mal operator on a complex Hilbert space can be decomposed uniquely as A + iB , 
where A,  B are bounded self-adjoint operators. There is a quaternionic analog of 
this result due to Teichmüller [20] in which the role of ‘i’ is replaced by an anti self-
adjoint unitary operator. Also see [9] for a detailed discussion.

Theorem  1 [9, Theorem  5.9]  Let T ∈ B(H) be normal. Then there exists an anti 
self-adjoint unitary operator J ∈ B(H) such that TJ = JT  , T∗J = JT∗ and

 Here J is uniquely determined by T on N(T − T∗)⊥ .  Moreover, the operators 
(T + T∗), |T − T∗| and J  commute mutually.

The notion of the spectrum in the case of quaternionic operator theory has not 
been settled until the S-spectrum is introduced in 2006 [5]. Since then, research on 
quaternionic spectral theory has developed rapidly. Now we recall these definitions 
from the book [4].

Definition 6 [4, Definition 9.2, 9.2.4] Let T ∶ D(T) → H be densely defined and 
�q(T) ∶ D(T2) → H is given by

The S-resolvent set of T is defined as follows:

The S-spectrum of T is defined as

Note that the S-spectrum �S(T) is a nonempty compact subset of ℍ . Further, the 
S-spectrum is divided into three disjoint sets: 

 (i) The point  S-spectrum of T as, �pS (T) =
{
q ∈ ℍ ∶ N(�q(T)) ≠ {0}

}
.

 (ii) The residual  S-spectrum of T as, 

T =
1

2
(T + T∗) +

1

2
J|T − T∗|.

�q(T) ∶= T2 − 2 re(q)T + |q|2I.

�S(T) =
{
q ∈ ℍ ∶ N(�q(T)) = {0}, R(�q(T)) = H and �q(T)

−1 ∈ B(H)
}
.

�S(T) = ℍ ⧵ �S(T).

�rS (T) =
{
q ∈ ℍ ∶ N(�q(T)) = {0}, R(�q(T)) ≠ H

}
.
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 (iii) The continuous  S-spectrum of T as, 

Now we recall the notion of slice Hilbert space associated to the given quater-
nionic Hilbert space H , anti self-adjoint unitary operator J ∈ B(H) and m ∈ �.

Definition 7 [9, Definition 3.6] Let m ∈ � and J ∈ B(H) be an anti self-adjoint uni-
tary operator. These subsets HJm

±
 of H associated with J and m are defined by setting

Remark 2 For each x ∈ H and m ∈ � , define x± ∶=
1

2
(x ∓ Jx ⋅ m) , then

It implies that x± ∈ H
Jm
±

 . Since x ↦ ± x ⋅ m and x ↦ Jx are continuous, then 
H

Jm
±

 is a non-trivial closed subsets of H . In fact, we see that the inner product on 
H restricted to HJm

±
 is ℂm-valued as follows: let � + m� ∈ ℂm and u, v ∈ H

Jm
±

 for 
m ∈ � , then

Then by being a closed subspace of H , we conclude that HJm
±

 is a Hilbert space over 
the field ℂm . These Hilbert spaces HJm

±
 are known as slice Hilbert spaces. As a ℂm - 

Hilbert space H has the following decomposition [9, Lemma 3.10]

Furthermore, if N  is a Hilbert basis of HJm
+

 , then N ⋅ n = {z ⋅ n ∶ z ∈ N} , where 
n ∈ � such that mn = −nm , is a Hilbert basis of HJm

−
 . From Equation (5), it follows 

that N  is also Hilbert basis of H.

We denote the class of all bounded ℂm - linear operators on HJm
+

 by B(HJm
+
) . 

The following proposition develop a technique to extend ℂm - linear operator on 
H

Jm
+

 (for any m ∈ � ) to the quaternionic operator on H.

�cS (T) =
{
q ∈ ℍ ∶ N(�q(T)) = {0}, R(�q(T)) = H, �q(T)

−1 ∉ B(H)
}
.

H
Jm
±

∶= {x ∈ H ∶ J(x) = ± x ⋅ m}.

(4)J(x±) =
1

2

(
Jx ∓ J2x ⋅ m

)
=

1

2

(
Jx ± x ⋅ m

)
= ± x± ⋅ m.

⟨u, v⟩(� ± m�) = �⟨u, v⟩ ± �⟨u, v ⋅ m⟩

= �⟨u, v⟩ ± �⟨u, Jv⟩

= �⟨u, v⟩ ∓ �⟨Ju, v⟩ (since J∗ = −J)

= �⟨u, v⟩ ∓ �⟨u ⋅ m, v⟩

= (� ± m�)⟨u, v⟩ (since m = −m).

(5)H = H
Jm
+

⊕H
Jm
−
, for every m ∈ �.
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Proposition 1 [9] Let J ∈ B(H) be anti self-adjoint unitary and m ∈ �. If 
T ∈ B(HJm

+
), then there exist a unique quaternionic operator T̃ ∈ B(H)  such that 

T̃(x) = T(x), for all x ∈ H
Jm
+

. The following additional facts hold.

1. ‖T̃‖ = ‖T‖.
2. JT̃ = T̃J.
3. (T̃)∗ = T̃∗.
4. If S ∈ B(HJm

+
), then S̃T = S̃T̃

5. If T is invertible, then T̃  is invertible and the inverse is given by

On the other hand, let V ∈ B(H), then V = Ũ for some U ∈ B(HJm
+
) if and only if 

JV = VJ.
Precisely, the extension T̃  of the operator T is defined as,

for all x = x+ + x− ∈ H
Jm
+

⊕H
Jm
−

.

Note 2 In the case of normal operator T ∈ B(H) , there exists an anti self-adjoint 
unitary operator J ∈ B(H) commutes with T by Theorem  1. Then by Proposition 
1, there is a complex linear operator, we denote it by T+ ∈ B(HJi

+
) such that T = T̃+.

3  Factorization in a strongly irreducible sense

One of the fundamental results in the direction of factorizing quaternionic operators 
is the well known polar decomposition theorem [9, 19]. It states that if T is bounded 
or densely defined closed operator on a right quaternionic Hilbert space H , then 
there exists a unique partial isometry W0 ∈ B(H ) satisfying

Recently, the authors of [19] obtained a necessary and sufficient condition for any 
arbitrary decomposition to coincide with the polar decomposition given in Equation 
(6). We recall the result here.

Theorem  2 [19, Theorem  5.13]  Let T be a bounded or densely defined closed 
operator defined on a right quaternionic Hilbert space  H. If W ∈ B(H) is a par-
tial isometry satisfying T = W|T|, then W = W0 if and only if either N(T) = {0} or 
R(T)⊥ = {0}, where W0 is the partial isometry satisfying Equation (6).

(T̃)−1 = T̃−1.

T̃(x) = T̃(x+ + x−) = T̃(x+) + T̃(x−)

= T̃(x+) − T̃(x− ⋅ n) ⋅ n

= T(x+) − T(x− ⋅ n) ⋅ n,

(6)T = W0|T| and N(T) = N(W0).
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In this section, first, we adopt the notion of strong irreducibility [10, 13] to the 
class of bounded quaternionic operators, and prove a relation between strong irre-
ducibility and the point S-spectrum. Later, we prove a factorization of quaternionic 
normal operators in a strongly irreducible sense, by means of replacing the partial 
isometry W by a desirably small compact perturbation of W and |T| is replaced by 
the strongly irreducible operator. It is a quaternionic extension (for normal opera-
tors) of the result proved in [21].

Definition 8 Let T ∈ B(H) . Then T is said to be 

1. Irreducible, if there does not exist a nontrivial orthogonal projection P ∈ B(H) 
(i.e., P ≠ 0 and P ≠ I ) such that PT = TP . Otherwise, T is called reducible.

2. Strongly irreducible, if there does not exist a nontrivial idempotent E ∈ B(H) (i.e., 
E ≠ 0 and E ≠ I ) such that TE = ET  . Otherwise, T is called strongly reducible.

It is clear from Definition 8 that every strongly irreducible operator is irreducible. 
Similar to the classical setup, the class of strongly irreducible quaternionic operators 
is closed under similarity invariance. To describe strong irreducibility or irreduc-
ibility of quaternionic normal operators, we show that it is enough to deal with the 
corresponding complex linear operator defined on slice Hilbert space.

Lemma 1 Let J ∈ B(H) be anti self-adjoint unitary operator and S ∈ B(HJi
+
), then

1. S̃ is irreducible if and only if S is irreducible.
2. S̃ is strongly irreducible if and only if S is strongly irreducible.

Proof Proof of (1) :  Suppose that S̃ is irreducible, then we show that S is irreduc-
ible. If there is an orthogonal projection 0 ≠ P ∈ B(HJi

+
) such that SP = PS , then by 

Proposition 1, we see that

Further,

This shows that 0 ≠ P̃ ∈ B(H) is an othogonal projection which commutes with S̃ . 
Since S̃ is irreducible, we conclude that P̃ = I , the identity operator on H . Thus P is 
an identity operator on HJi

+
 and hence S is irreducible. Now we prove contrapositive 

statement. Suppose that {0} ≠ M ⫋ H is a reducing subspace for S̃ . Define

For x ∈ M
Ji
+
 , we have

(P̃)∗ = P̃∗ = P̃ and (P̃)2 = P̃2 = P̃.

S̃P̃ = S̃P = P̃S = P̃S̃.

M
Ji
+
∶= {x ∈ M ∶ Jx = x ⋅ i} = M ∩H

Ji
+
.
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and

This implies that MJi
+
 is a reducing subspace of S. It is enough to show that MJi

+
 is a 

non-trivial proper subspace of HJi
+
.

Claim: {0} ≠ M
Ji
+
⫋ H

Ji
+
.

First, we assume that MJi
+
= {0} . In this case, MJi

−
= {0} since x ∈ M

Ji
−
 if and 

only if x ⋅ j ∈ M
Ji
+
 , where i ⋅ j = −j ⋅ i . Therefore, M = MJi

+
⊕MJi

−
= {0} . This is a 

contradiction to the fact that M is a non trivial subspace of H . Hence MJi
+
≠ {0}.

Next, suppose that MJi
+
= H

Ji
+
 . Let y ∈ H with y = y+ + y− , where y± ∈ H

Ji
±
 . We 

know that y− ⋅ j ∈ H
Ji
+
= M

Ji
+
 and so y− ∈ M . Therefore, y ∈ M . This is contradic-

tion to the fact that M is a proper subspace of H . Hence MJi
+
⫋ H

Ji
+
 and therefore S̃ 

is irreducible if and only if S is irreducible.
Proof of (2)  :   Suppose that S̃ is strongly irreducible. If there is an idem-

potent 0 ≠ E ∈ B(HJi
+
) such that SE = ES , then by Proposition 1 we have that 

0 ≠ Ẽ ∈ B(H) with Ẽ2 = Ẽ and

Since S̃ is strongly irreducible, we conclude that Ẽ = I , the identity operator on H . 
This implies that E is the identity operator on HJi

+
 and hence S is strongly irreducible.

Conversely, assume that S is strongly irreducible. If there is an idempotent say 
0 ≠ F ≠ I in B(H) such that S̃F = FS̃ . Since R(F) is a closed subspace of H , we 
have HJi

+
= R(F)Ji

+
⊕ (R(F)Ji

−
)⊥ , where

Furthermore, if x ∈ R(F)Ji
+
 , then

and

This shows that S is reducible. It is a contradiction to the fact that S is irreducible. 
Hence S̃ is strongly irreducible.   ◻

Now we prove the relation between point S-spectrum and strong irreduicibility. It 
is a quaternionic analogue of the well known result proved in [10] by F. Gilfeather.

Theorem 3  Let T ∈ B(H) be normal. If the point S- spectrum of T is empty set (i.e., 
�pS (T) = �), then T is strongly irreducible.

JS(x) = JS̃(x) = S̃J(x) = S̃(x ⋅ i) = S̃(x) ⋅ i = S(x) ⋅ i

JS∗(x) = JS̃∗(x) = S̃∗J(x) = S̃∗(x ⋅ i) = S̃∗(x) ⋅ i = S∗(x) ⋅ i.

S̃Ẽ = S̃E = ẼS = ẼS̃.

R(F)Ji
+
= {x ∈ R(F) ∶ J(x) = x ⋅ i} = R(F) ∩H

Ji
+
.

JS(x) = JS̃(x) = S̃J(x) = S̃(x ⋅ i) = S̃(x) ⋅ i = S(x) ⋅ i.

JS∗(x) = JS̃∗(x) = S̃∗J(x) = S̃∗(x ⋅ i) = S̃∗(x) ⋅ i = S∗(x) ⋅ i.



9 Page 12 of 26 S. K. Pamula 

Proof Since T is normal, then by Note 2 there is an anti self-adjoint unitary oper-
ator J ∈ B(H) commuting with T such that T = T̃+ , where T+ ∈ B(HJi

+
) is normal 

operator. Now we show that the point spectrum �p(T+) of T+ is empty. Suppose that 
� ∈ �p(T+) , then

This implies that �
�
(T)x = 0.

Equivalently, x ∈ N(�
�
(T)) ≠ {0} . This shows that

If follows that �(T+) = � (since �pS (T) = � ). Since T+ is a bounded complex nor-
mal operator with empty point spectrum, then by [10, Theorem 2] the operator T+ is 
strongly irreducible. Finally, by Lemma 1 we conclude that T is strongly irreducible.  
 ◻

Now we prove our main result in this section, which shows that every quaterni-
onic normal operator can be factorized in a strongly irreducible sense.

Theorem 4  Let T ∈ B(H) be normal and 𝛿 > 0. Then there exist a partial isometry 
W, a compact operator K  with  ‖K‖ < 𝛿 and a strongly irreducible operator S  in  
B(H) such that

Proof Since T is normal, by Theorem 1 and Note 2, there exists an anti self-adjoint 
unitary operator J ∈ B(H) commuting with T such that T = T̃+ , where T+ ∈ B(HJi

+
) 

is a normal operator. It is clear from [21, Theorem 1.1] that for a given 𝛿 > 0 , there 
exists a partial isometry W+ , a compact operator K+ with ‖K+‖ < 𝛿 and a strongly 
irreducible operator S+ in B(HJi

+
) such that

If we define W ∶= W̃+ , one can see that W is a partial isometry as follows: for every 
x ∈ N(W)⊥ , there exists x± ∈ N(W)⊥ ∩H

Ji
±
 such that x = x+ + x− and

Now we show that the operator defined by K ∶= K̃+ is a quaternionic compact oper-
ator on H . Since K+ is a compact operator on HJi

+
 , there is a sequence of finite rank 

operators {Fn ∶ n ∈ ℕ} ⊂ B(HJi
+
) converging to K+ (uniformly) with respect to the 

topology induced from the operator norm. Then by (1) of Proposition 1 we see that

T+(x) = x ⋅ �, for some x ∈ H
Ji
+
⧵ {0}.

� ∈ �p(T+) ⇔ [�] ∈ �pS (T).

T = (W + K)S.

(7)T+ = (W+ + K+)S+.

‖Wx‖2 = ‖W+(x+) −W+(x− ⋅ j)j‖2

= ‖W+(x+)‖
2 + ‖W+(x− ⋅ j)‖2

= ‖x+‖
2 + ‖x−‖

2

= ‖x‖2.
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This implies that the sequence {�Fn ∶ n ∈ ℕ} ⊂ B(H) of finite rank quaternionic 
operators converges to K uniformly. Thus the operator K is compact and its norm is 
given by

Moreover, by Lemma 1, the quaternionic operator defined by S ∶= S̃+ ∈ B(H) is 
strongly irreducible. Now we apply quaternionic extension to bounded complex lin-
ear operator T+ and use its factorization given in Eq. (7), we conclude that

Hence the result.   ◻

We illustrate our result with the following example.

Example 2 Let T ∶ L2
(
[0, 1];ℍ;�

)
→ L2

(
[0, 1];ℍ;�

)
 be defined by

for all g ∈ L2
(
[0, 1];ℍ;�

)
 . Then the adjoint of T is given by

for all g ∈ L2
(
[0, 1];ℍ;�

)
 . Clearly, T is normal. Suppose that � =

1

2
 . Now 

we factorize T in a strongly irreducible sense. Define the integral operator 
K ∶ L2

(
[0, 1];ℍ;�

)
→ L2

(
[0, 1];ℍ;�

)
 by

It is well known that K is a compact operator. Using Caucy-Schwarz inequality, the 
norm of K is computed as,

‖F̃n − K‖ = ‖F̃n − K̃+‖ = ‖Fn − K+‖ ⟶ 0, as n → ∞.

‖K‖ = ‖K+‖ < 𝛿.

T = T̃+ = (W̃+ + K̃+)S̃+ = (W + K)S.

(Tg)(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

xg(x) +
1

2

1∫
0

xy2g(y) dy, if 0 ≤ x ≤ 1

3
;

1

2

1∫
0

xy2g(y) dy, if
1

3
≤ x ≤ 1,

(T∗g)(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

xg(x) +
1

2

1∫
0

x2yg(y) dy, if 0 ≤ x ≤ 1

3
;

1

2

1∫
0

x2yg(y) dy, if
1

3
≤ x ≤ 1,

(Kg)(x) =
1

2

1

∫
0

xy g(y)dy, for all g ∈ L2
(
[0, 1];ℍ;�

)
.
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This shows that ‖K‖ ≤ 1

3
<

1

2
 . We recall that the class of all bounded ℍ

-valued measurabale functions on [0,  1] is denoted by L∞
(
[0, 1];ℍ;�

)
 . 

For every f ∈ L∞
(
[0, 1];ℍ;�

)
 , the multiplication operator 

Mf ∶ L2
(
[0, 1];ℍ;�

)
→ L2

(
[0, 1];ℍ;�

)
 defined by

is a bounded quaternionic operator with the norm ‖Mf‖ = ‖f‖∞ . The adjoint of Mf  
is given by M∗

f
= M

f
 , where f (x) = f (x) for all x ∈ [0, 1] . Let �(x) = x , for all 

x ∈ [0, 1] and the characteristic function

Then by the direct verification, we get that

Note that Mχ
[0,

1
3
]
 is a partial isometry, and since M

�
 is normal with �pS (M�

) = � , then 

M
�
 is strongly irreducible by Theorem 3. Therefore, the factorization of T given in 

Eq. (8) is a strongly irreducible factorization.

Now we construct an example of a non-normal operator by a slight modification 
of the linear operator defined in Example   2 and compute its strongly irreducible 
factorization.

Example 3 Let us define T ∶ L2
(
[0, 1];ℍ;�

)
→ L2

(
[0, 1];ℍ;�

)
 by

‖Kg‖2 =
�

1

�
0

�(Kg)(x)�2 dx
� 1

2 ≤ �
1

�
0

1

�
0

�xy�2 �g(y)�2dydx
� 1

2

≤ �
1

�
0

�g(y)�2 dy
� 1

2
�

1

�
0

1

�
0

�xy�2dydx
� 1

2

= ‖g‖2

�
1

�
0

1

�
0

x2y2dydx
� 1

2

=
1

3
‖g‖2.

Mf (g)(x) = f (x)g(x), for all g ∈ L2
(
[0, 1];ℍ;�

)

χ
[0,

1

3
] =

{
1, if x ∈ [0,

1

3
];

0, otherwise .

(8)T =
(

Mχ
[0,

1
3
]
+ K

)

M
�
.
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for all g ∈ L2
(
[0, 1];ℍ;�

)
 and suppose that � =

1

2
 . First, we show that T is a bounded 

quaternionic non-normal operator. Let g, h ∈ L2
(
[0, 1];ℍ;�

)
 . Then

By Fubini’s theorem, the above integral can be written as,

Thus the adjoint of T is given by

T(g)(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

xg(x) +
j

2

x∫
0

yg(y)dy, if 0 ≤ x ≤ 1

3
;

j

2

x∫
0

yg(y)dy, if
1

3
< x ≤ 1,

⟨
h, Tg

⟩

=

1

∫
0

h(x) (Tg)(x) dx

=

1

3

∫
0

h(x)
[

xg(x) +
j

2

x

∫
0

yg(y) dy
]

dx +

1

∫
1

3

h(x)
[ j

2

x

∫
0

yg(y) dy
]

dx

=

1

3

∫
0

h(x)xg(x) dx +

1

3

∫
0

x

∫
0

h(x)
[ j

2
yg(y)

]

dydx +

1

∫
1

3

x

∫
0

h(x)
[ j

2
yg(y)

]

dydx.

⟨
h, Tg

⟩

=

1

3

∫
0

h(y) yg(y) dy +

1

3

∫
0

1

3

∫
y

h(x)
[ j

2
yg(y)

]

dxdy

+

1

∫
1

3

y

∫
y−

1

3

h(x)
[ j

2
yg(y)

]

dxdy

=

1

3

∫
0

yh(y) g(y) dy +

1

3

∫
0

[−j

2
y

1

3

∫
y

h(x) dx
]

g(y) dy

+

1

∫
1

3

[−j

2
y

y

∫
y−

1

3

h(x) dx
]

g(y) dy.
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It follows that TT∗ ≠ T∗T  . Now we show that T can be factorized in a strongly irre-
ducible sense. First, we define K ∶ L2

(
[0, 1];ℍ;�

)
→ L2

(
[0, 1];ℍ;�

)
 by

Our aim  is to show that K is a compact operator with ‖K‖ <
1

2
 . Let {gn}n∈ℕ be a 

sequence in L2
(
[0, 1];ℍ;�

)
 with ‖gn‖ ≤ 1 , for all n ∈ ℕ . Then

for all x ∈ [0, 1] and n ∈ ℕ . Further, by Hölder’s inequality, we get

It follows from Eqs. (9), (10) that the sequence {Kgn}n∈ℕ is uniformly bounded and 
equicontinuous. By Arzela-Ascoli’s theorem, there is a subsequence {gnk} of {gn}n∈ℕ 
such that {Kgnk} converges uniformly. Thus K is a compact operator.

Now we compute the norm of K. First, by applying the Fubini’s theorem, we get 
the adjoint of K as,

So the operator K∗K is given by,

is a positive quaternionic compact operator. We know from [17, Corollary 2.13] that 
L2
(
[0, 1];ℂ;�

)
 is an associated slice Hilbert space and let (K∗K)+ be the bounded 

complex linear operator on L2([0, 1];ℂ;�) such that (̃K∗K)+ = K∗K . Then by norm 
of the Volterra integral operator computed as in Solution 188 of [11] and in the view 
of Proposition 1, we conclude that

(T∗h)(y) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

yg(y) −
j

2
y

1

3∫
y

h(x) dx, if 0 ≤ y ≤ 1

3
;

−
j

2
y

y∫
y−

1

3

h(x) dx, if
1

3
≤ y ≤ 1.

(Kg)(x) =
j

2

x

∫
0

g(t) dt, for all g ∈ L2
(
[0, 1];ℍ;�

)
.

(9)|(Kgn)(x)| =
|
|
|

j

2

x

�
0

gn(t) dt
|
|
|
≤ 1

2

x

�
0

|gn(x)| dt ≤ 1

2
,

(10)

�
�Kg(x) − Kg(y)�� = �

j

2
�
�
�
�

x

�
0

g(t) dt −

y

�
0

g(t) dt
�
�
�
≤ 1

2

x

�
y

�
�g(t)

�
� dt ≤ 1

2
‖g‖2

√
�x − y�.

(K∗g)(x) =
−j

2

1

∫
x

g(t) dt, for all g ∈ L2
(
[0, 1];ℍ;�

)
.

(K∗Kg)(x) =
−j

2

1

∫
x

( j

2

t

∫
0

g(s) ds
)

dt =
1

4

1

∫
x

t

∫
0

g(s) dsdt
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Let us take W ∶= M
�
[0,

1
3
]
 and S = M

�
 , where �(x) = x , for all x ∈ [0, 1] . Clearly, W is 

a partial isometry and since S is normal with �pS (S) = � , it follows that S is strongly 
irreducible from Theorem 3. Finally, we have that

Now we pose the following question.

Question 1 Let T ∶ D(T) ⊆ H → H be densely defined closed right ℍ - linear opera-
tor (need not be normal), where D(T) is the domain of T. Then, can T be factorized 
in a strongly irreducible sense?

We expect that, using the notion of quaternionic Cowen–Douglas operators related 
to the geometry of quaternionic Hilbert spaces developed in [12] and further suitable 
arguments, one might achieve the affirmative answer to the Question 1.

4  Riesz decomposition

In this section, we discuss Riesz decomposition theorem for bounded quaternionic 
operators on the right quaternionic Hilbert spaces and obtain a sufficient condition 
for strong irreducibility. We recall some definitions and known results form [2, 4, 5, 
9] that are useful to establish our result.

Let U be an open subset of ℍ . If U is a domain in ℍ such that U ∩ℝ ≠ � and U ∩ ℂm 
is domain in ℂm , for all m ∈ � then U is called slice domain or s-domain. A real differ-
entiable function f ∶ U → ℍ is said to be left s-regular ( right s-regular), if for every 
m ∈ � , the function f satisfy 
1

2

[
�

�x
f (x + my) + m

�

�y
f (x + my)

]

= 0  
(

1

2
[
�

�x
f (x + my) +

�

�y
f (x + my) m] = 0

)

 . We 
denote the class of left and right s-regular functions on U by RL(U) and RR(U) , respec-
tively. One can verify that RL(U) is a right ℍ-module and RR(U) is a left ℍ-module.

As in the case of complex holomorphic functions, there is a Cauchy integral for-
mula for s-regular functions (see [5, Theorem 4.5.3] for details).

4.1  The quaternionic functional calculus

Let H be a right quaternionic Hilbert space and let N  be a Hilbert basis of H . It is 
immediate to see that the class of all bounded right ℍ - linear operators denoted by 
B(H) is a two sided quaternionic Banach module with respect to the module actions 
given by

‖K‖ = ‖K∗K‖
1

2 = ‖(K∗K)+‖
1

2 =
�
1

𝜋2

� 1

2

=
1

𝜋
<

1

2
.

T = (W + K)S.

(q ⋅ T)(x) ∶=
�

z∈N

z ⋅ q ⟨z,Tx⟩ and (T ⋅ q)(x) ∶=
�

z∈N

T(z) ⋅ q ⟨z, x⟩,
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for all T ∈ B(H), q ∈ ℍ, x ∈ H . In particular, for an identity operator I ∈ B(H) , we 
have

Next, we recall the notion of the S-resolvent operator and the S- resolvent equation 
which plays a vital role in establishing quaternionic functional calculus.

Definition 9 [5, Definition 4.8.3] Let T ∈ B(H) and s ∈ ρS(T) . Then the left S-resol-
vent operator is defined by

and the right S-resolvent operator by

for ‖T‖ < �s�.

See [2, 5] for detailed discussion on S-resolvent operators.

Note 3 Let A be a bounded linear operator on some complex Hilbert space K and 
� ∈ ρ(A) , the resolvent set of A. Then (�I − A) is invertible and its inverse is given 
by the following power series,

Moreover, if �,� ∈ �(A) , then we have the following relation known as resolvent 
equation:

One of the crucial observation in estabilshing the quaternionic functional calcu-
lus is the quaternionic analogue of Eq. (11). It is called the S-resolvent equation. We 
recall the result here.

Theorem 5 [2, Theorem 3.8] Let T ∈ B(H) and let s, p ∈ ρS(T). Then the S- resol-
vent equation is given by

(q ⋅ I)(x) =
�

z∈N

z ⋅ q ⟨z, x⟩ = (I ⋅ q)(x), for all x ∈ H, q ∈ ℍ.

S−1
L
(s,T) ∶= −�s(T)

−1(T − sI) =

∞∑

n=0

Tns−1−n,

S−1
R
(s,T) ∶= −(T − sI)�s(T)

−1 =

∞∑

n=0

s−1−n Tn,

(𝜆I − A)−1 =

∞�

n=0

1

𝜆n+1
An, for ‖A‖ < 𝜆.

(11)(�I − A)−1 − (�I − A)−1 = (� − �)(�I − A)−1(�I − A)−1.

S−1
R
(s,T)S−1

L
(p,T)

=
[(
S−1
R
(s,T) − S−1

L
(p,T)

)
p − s

(
S−1
R
(s,T) − S−1

L
(p,T)

)]

(p2 − 2re(s)p + |s|2)−1.
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 Equivalently,

Definition 10 Let T ∈ B(H) , W ⊆ ℍ be open and U ⊆ ℍ be a domain in ℍ . Then 

1. U is said to be a T-admissible open set, if U is axially symmetric s-domain that 
contains the S-spectrum �S(T) such that the boundary �(U ∩ ℂm) is the union of 
a finite number of continuously differentiable Jordan curves, for every m ∈ �.

2. A function f ∈ R
L(W) is said to be locally left regular function on �S(T) , if there 

is T-admissible domain U in ℍ such that U ⊆ W .
3. A function f ∈ R

R(W) is said to be locally right regular function on �S(T) , if 
there is T-admissible domain U in ℍ such that U ⊆ W .

The class of all locally left and locally right regular functions on �S(T) are denoted 
by RL

�S(T)
 and RR

�S(T)
 respectively.

Using quaternionic versions of Cauchy Integral formula and Hahn Banach 
theorem [5, Theorem  4.1.10], the definition of quaternionic functional calculus is 
obtained as below.

Definition 11 [5Definition 4.10.4](quaternionic functional calculus) Let T ∈ B(H) 
and U ⊂ ℍ be a T-admissible domain. Then

and

where dsm = −ds ⋅ m . Note that the integrals that appear in Eqs. (12), (13) are inde-
pendent of the choice of imaginary unit m ∈ � and T-admissible domain U.

4.2  Riesz decomposition theorem

Before proving our result, let us discuss the adjoint of the operator f(T) defined as in 
Definition 11.

Remark 3 Let T ∈ B(H) and W be an axially symmetric open set in ℍ . For every 
f ∶ W → ℍ , we define f̂ ∶ W → ℍ by

S−1
R
(s,T)S−1

L
(p,T)

= (s2 − 2re(p)s + |p|2)−1
[(
S−1
R
(s,T) − S−1

L
(p,T)

)
p

− s
(
S−1
R
(s,T) − S−1

L
(p,T)

)]

.

(12)f (T) =
1

2� ∫
�(U∩ℂm)

S−1
L
(s,T)dsm f (s), for all f ∈ R

L
�S(T)

(13)f (T) =
1

2� ∫
�(U∩ℂm)

f (s)dsm S−1
R
(s,T), for all f ∈ R

R
�S(T)

,
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Let f ∈ R
L(W) . Then for every m ∈ � and x, y ∈ ℝ , we see that

This show that f̂ ∈ R
L(W) . Further, if we assume that f is locally left regular func-

tion that is, f ∈ R
L
�S(T)

 then by Definition 10, there is a T-admissible domain U such 
that U ⊆ W . Since �S(T) = �S(T

∗) and by the above arguments, we conclude that 
f̂ ∈ R

L
𝜎S(T)

 . Now we compute the adjoint of f(T), whenever f ∈ R
L
�S(T)

 , as follows:

If we put s = t , then ds = dt and dsm = −dt m . Since the integration over the domain 
�(U ∩ ℂm) which is symmetric about the real line, we see that dtm = dtm . Thus above 
integral can be modified as,

f̂ (q) = f (q), for all q ∈ W.

𝜕

𝜕x
f̂ (x + my)+m

𝜕

𝜕y
f̂ (x + my)

=
𝜕

𝜕x
f (x − my) + m

𝜕

𝜕y
f (x − my)

=
𝜕

𝜕x
f (x − my) − m

𝜕

𝜕y
f (x − my)

=
𝜕

𝜕x
f (x + my) + m

𝜕

𝜕y
f (x + my)

= 0.

⟨
x, f (T)y

⟩
=

1

2� ∫
�(U∩ℂm)

⟨

x, S−1
L
(s,T)y

⟩

dsm f (s)

=
1

2� ∫
�(U∩ℂm)

⟨

S−1
L
(s,T)∗x, y

⟩

dsm f (s)

=
1

2� ∫
�(U∩ℂm)

⟨

S−1
R
(s, T∗)x, y

⟩

dsm f (s).

⟨
x, f (T)y

⟩
=

1

2𝜋 ∫
𝜕(U∩ℂm)

⟨

S−1
R
(t, T∗)x, y

⟩

dtmf (t)

=
1

2𝜋 ∫
𝜕(U∩ℂm)

f (t) dtm

⟨

y, S−1
R
(t, T∗)x

⟩

=
1

2𝜋

⟨

y, ∫
𝜕(U∩ℂm)

f̂ (t) dtm S−1
R
(t, T∗)x

⟩

=
⟨
f̂ (T∗)x, y

⟩
,
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for all x, y ∈ ℍ . Therefore, f (T)∗ = f̂ (T∗) for all f ∈ R
L
�S(T)

 . Similarly, the result 
holds true for RR

�S(T)
 . For further details about algebraic properties of quaternionic 

functional calculus, we refer the reader to [5, Proposition 4.11.1].

In the following lemma, we show that for any compact set in ℍ , there is an axially 
symmetric s-domain such that its intersection with ℂm is a Cauchy domain in ℂm , for 
every m ∈ �.

Lemma 2 Let K be an axially symmetric compact subset of ℍ and W be an axially 
symmetric s- domain containing K. Then there is an axially symmetric s- domain U  
with the boundary  �(U ∩ ℂm) is the union of a finite number of continuously differ-
entiable Jordan curves (for every m ∈ �) such that K ⊂ U and U ⊂ W.

Proof This result follows in a standard way of the classical proof given in [16]. For 
every m ∈ � , we define Km ∶= K ∩ ℂm and Wm ∶= W ∩ ℂm . Since Km is a compact 
subset of the open set Wm , by [16, Lemma 2.3], there exists a Cauchy domain Um 
such that Km ⊂ Um and Um ⊂ W for every m ∈ � . Let us take U = �Um

 . Then U 
is an axially symmetric s-domain containing K and the boundary �(U ∩ ℂm) is the 
union of finite number of continuously differentiable Jordan curves. The closure of 
U follows from Eq. (3) as,

Hence the result.   ◻

Corollary 1 Let T ∈ B(H) and let W ⊆ ℍ be an axially symmetric s-domain contin-
ing the S-spectrum �S(T) . Then there is a T-admissible domain U such that U ⊆ W.

Proof Since �S(T) is an axially symmetric compact subset of ℍ , the result follows 
from Lemma 2.   ◻

Theorem 6  Let T ∈ B(H) and let �S(T) = � ∪ �, where � and � are disjoint non-
empty axially symmetric closed subsets of �S(T). Then there exist a pair  {M

�
,M

�
} 

of non-trivial invariant subspaces of T such that

Proof Let m ∈ � . It is clear from the hypothesis that � ∩ ℂm and � ∩ ℂm are disjoint 
non-empty compact subsets of the Hausdorff space ℂm . Then there is a pair of dis-
joint open sets, say O(m)

�
 and O(m)

�
 of ℂm such that 𝜎 ∩ ℂm ⊂ O

(m)
𝜎

 and 𝜏 ∩ ℂm ⊂ O
(m)
𝜏

 . 
By axially symmetric property of � and � , we can write

Note that �
�∩ℂm

 and �
�∩ℂm

 are nonempty disjoint s-domains in ℍ . By Lemma 2, 
there exist a pair of axially symmetric s-domains, denote them by U

�
 and U

�
 , 

U = 𝛺Um
= 𝛺

Um
⊂ 𝛺Wm

= W.

� = �S(T|M
�
) and � = �S(T|M

�
).

𝜎 = 𝛺
𝜎∩ℂm

⊂ 𝛺
O

(m)
𝜎

and 𝜏 = 𝛺
𝜏∩ℂm

⊆ 𝛺
O

(m)
𝜏

.
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containing compact sets � and � respectively. Also, the boundaries �(U
�
∩ ℂm) and 

�(U
�
∩ ℂm) are the union of finite number of continuously differentiable Jordan 

curves satisfying,

Now we define quaternionic operators corresponding to � and � as follows:

and

where dsm = −ds ⋅ m . Note that P
�
= χ

�
(T) and P

�
= χ

�
(T) , where χ

�
 and χ

�
 are 

characteristic functions on sets � and � respectively. The fact that P
�
 and P

�
 are 

orthogonal projections is proved in [2] and these are called Riesz projectors. If we 
take M

�
= R(P

�
) and M

�
= R(P

�
) , then it follows that H = M

𝜎
⊕M

𝜏
 . From the 

computations as shown in [2] and [5], one obtains that P
�
 and P

�
 commutes with T 

and hence M
�
 and M

�
 are invariant subspaces of T.

Finally, we show that � = �S(T|M
�
) and � = �S(T|M

�
) . Suppose that q ∉ � , then 

[q] ∉ � since � is axially symmetric. With out loss of generality, we assume that 
there is an axially symmetric s-domain U

�
 containing � such that �(U

�
∩ ℂm) is 

the union of a finite number of continuously differentiable Jordan curves for every 
m ∈ � . Let us fix m ∈ � . Define the operator

where dtm = −dt ⋅ m . We claim that M
�
 is invariant subspace of Q(q)

�
 . For any 

p ∈ ℂm , if we define a map �p(t) =
(
t2 − 2re(q)t + |q|2

)−1
S−1
L
(p, t) , for all t ∈ U

�
 . It 

is clear that

and S−1
L
(p, t) is a left s-regular function in variable t. Thus �p ∈ RL(U

�
) by [5, Propo-

sition 4.11.5]. So, by the quaternionic functional calculus, we deduce that

This implies the following:

U
𝜎
⊆ 𝛺

O
(m)
𝜎

and U
𝜏
⊆ 𝛺

O
(m)
𝜏

.

(14)P
�
=

1

2� ∫
�(U

�
∩ℂm)

dsm S−1
R
(s,T)

(15)P
�
=

1

2� ∫
�(U

�
∩ℂm)

dsm S−1
R
(s,T),

Q
(q)
�

∶=
1

2� ∫
�(U

�
∩ℂm)

S−1
L
(t, T) dtm

(
t2 − 2re(q)t + |q|2

)−1
,

(
t2 − 2re(q)t + |q|2

)−1
∈ ℂm, whenever t ∈ ℂm

(16)

�p(T) = Q
(q)
�
S−1
L
(p,T)

=
1

2� ∫
�(U

�
∩ℂm)

S−1
L
(t, T) dtm

(
t2 − 2re(q)t + |q|2

)−1
S−1
L
(p, t).
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Similarly, P
�
Q

(q)
�

= Q
(q)
�

 . Equivalently, Q(q)
�
|M

�
∈ B(M

�
) . Next, we show that 

�q(T)|M
�
 is invertible. For this, let us define a map �q by

Then one can verify that �q is locally s-regular function on �S(T) . Moreover, by fol-
lowing similar arguments, we express that

where dpm = −dp ⋅ m.
Also we know that �q(p)S

−1
L
(t, p) is left s-regular function in the variable p, for 

every t. By [5, Proposition 4.11.5], it follows that

From Eqs. (17), (18) we compute �q(T)|M
�
Q

(q)
�  as follows:

Q
(q)
�
P
�

=
1

2� ∫
�(U�

�
∩ℂm)

Q
(q)
�
S−1
L
(p,T)dpm

=
1

4�2 ∫
�(U�

�
∩ℂm)

∫
�(U

�
∩ℂm)

S−1
L
(t, T) dtm

(
t2 − 2re(q)t + |q|2

)−1
S−1
L
(p, t)dpm,

by Equation (16)

=
1

2� ∫
�(U

�
∩ℂm)

S−1
L
(t, T) dtm

(
t2 − 2re(q)t + |q|2

)−1
(

1

2� ∫
�(U�

�
∩ℂm)

S−1
L
(p, t)dpm

)

by Fubini’s theorem

=
1

2� ∫
�(U

�
∩ℂm)

S−1
L
(t, T) dtm

(
t2 − 2re(q)t + |q|2

)−1
,

since
1

2� ∫
�(U�

�
∩ℂm)

S−1
L
(p, t) dpm = 1

= Q
(q)
�
.

�q(t) = t2 − 2re(q)t + |q|2, for every t.

(17)

�q(T)|M
�
P
�
= �q(T)|M

�
P
�

=
1

2� ∫
�(U�

�
∩ℂm)

S−1
L
(p,T) dpm(p

2 − 2re(q)p + |q|2),

(18)�q(T)|M
�
S−1
L
(t, T) =

1

2� ∫
�(U�

�
∩ℂm)

S−1
L
(p,T) dpm �q(p)S

−1
L
(t, p).



9 Page 24 of 26 S. K. Pamula 

Since �q(p)
(
p2 − 2re(q)p + |q|2

)−1
= 1 , it will imply that �q(T)|M

�
Q

(q)
�

= P
�
 . Simi-

larly, one can show that Q(q)
�
�q(T)|M

�
= P

�
 . In other words, for every x ∈ M

�
 , we 

see that

Thus �q(T|M
�
) is invertible and hence q ∈ �S(T|M

�
) . It follows that

By the similar arguments, we achieve that

Now we prove reverse inclusions. Suppose that q ∉ �S(T|M
�
) ∪ �S(T|M

�
) . Then both 

operators �q(T|M
�
) and �q(T|M

�
) are invertible. Hence �q(T) ∈ B(H) is invertible 

since H = M
𝜎
⊕M

𝜏
 . Equivalently, q ∉ �S(T) . This shows that

Therefore, by Eqs. (19), (20) and using the fact that � and � are disjoint, we conclude 
that

Hence the result.   ◻

Corollary 2 Let T ∈ B(H) . If the S-spectrum �S(T) is disconnected by a pair of dis-
joint nonempty axially symmetric closed subsets, then T is strongly reducible.

Proof From the hypothesis, assume that there is a pair {�, �} of disjoint nonempty 
axially symmetric closed subsets of �S(T) satisfying,

�q(T)|M
�
Q

(q)
�

=
1

2� ∫
�(U

�
∩ℂm)

�q(T)|M
�
S−1
L
(t, T) dtm

(
t2 − 2re(q)t + |q|2

)−1

=
1

4�2 ∫
�(U

�
∩ℂm)

∫
�(U�

�
∩ℂm)

S−1
L
(p,T) dpm �q(p)S

−1
L
(t, p) dtm

(
t2 − 2re(q)t) + |q|2

)−1

=
1

2� ∫
�(U�

�
∩ℂm)

S−1
L
(p,T) dpm �q(p)

1

2� ∫
�(U

�∩ℂm
)

S−1
L
(t, p) dtm

(
t2 − 2re(q)t) + |q|2

)−1

=
1

2� ∫
�(U�

�
∩ℂm)

S−1
L
(p,T) dpm �q(p)

(
p2 − 2re(q)p) + |q|2

)−1
.

�q(T|M
�
)Q(q)

�
x = Q

(q)
�
�p(T|M

�
)x = x, for all x ∈ M

�
.

(19)𝜎S(T|M
𝜎
) ⊆ 𝜎.

(20)𝜎S(T|M
𝜏
) ⊆ 𝜏.

𝜎S(T) ⊆ 𝜎S(T|M
𝜎
) ∪ 𝜎S(T|M

𝜏
) ⊆ 𝜎 ∪ 𝜏 = 𝜎S(T).

�S(T|M
�
) = � and �S(T|M

�
) = �.

�S(T) = � ∪ �.
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Then by Theorem 6, there exist a pair of nontrivial mutually orthogonal invariant 
subspaces M

�
 and M

�
 of T such that

Equivalently, T commutes with the corresponding projections P
�
 and P

�
 as shown in 

step III of Theorem 6. This implies that T is strongly reducible.   ◻
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