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Ljiljana Arambašić1 · Alexander Guterman2,3,4 · Bojan Kuzma5,6,3 ·
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Abstract
We study the relation of mutual strong Birkhoff–James orthogonality in two classical
C∗-algebras: theC∗-algebraB(H)of all bounded linear operators on a complexHilbert
space H and the commutative, possibly nonunital, C∗-algebra. With the help of the
induced graph it is shown that this relation alone can characterize right invertible
elements. Moreover, in the case of commutative unital C∗-algebras, it can detect
the existence of a point with a countable local basis in the corresponding compact
Hausdorff space.
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1 Introduction

An efficient way to study some binary relation on a certain set is by using the relation
graph. The graph generated by a mutual orthogonality relation for the elements of an
associative ring is introduced in [6] and studied in [13]. In this paper we investigate
the orthogonality graph on certainC∗-algebras defined by the mutual strong Birkhoff–
James orthogonality.

The concept of strong Birkhoff–James orthogonality first appeared in [2] in the
context of Hilbert C∗-modules which are a generalization of Hilbert spaces in a way
that instead of the usual inner product with values in a field F ∈ {R,C} we have
an inner product with values in a C∗-algebra (see e.g. [22]). Hilbert C∗-modules are
Banach spaces with the norm defined by the C∗-algebra norm: the norm of an element
of a module is the positive square root of the norm of its inner square. Besides Hilbert
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spaces, one of the most important examples of Hilbert C∗-modules are C∗-algebras.
If A is a C∗-algebra, then we can regard it as a Hilbert C∗-module over itself with
the algebra multiplication as a (right) module action and an inner product defined as
〈a, b〉 = a∗b.

Recall that in a normed linear space X we say that x ∈ X is Birkhoff–James
orthogonal to y ∈ X , and write x ⊥B J y, if

‖x + λy‖ ≥ ‖x‖ ∀λ ∈ F,

that is, if the distance from x to the one-dimensional subspace of X spanned by y is
equal to the normof x .This type of orthogonalitywas first introduced byBirkhoff in [9]
and then studied by James [15–17]. There are many papers about Birkhoff–James
orthogonality in general C∗-algebras and, in particular, in the C∗-algebra B(H) of
bounded linear operators on a Hilbert space H with respect to the operator norm.
Some basic results in the special case when one of the operators is the identity oper-
ator were obtained by Stampfli [25] in the study on derivations. Later Magajna [21]
in his study on the distance to finite-dimensional subspaces in operator algebras
observed that Stampfli’s results hold in general. Also, several other authors studied
the topic, including Bhatia and Šemrl [7]. Having characterizations of the Birkhoff–
James orthogonality in B(H) the natural further steps were to obtain characterizations
in general C∗-algebras and Hilbert C∗-modules [1], [8]. The study of Birkhoff–James
orthogonality is still very extensive and it goes in various directions, for example,
studying approximate Birkhoff–James orthogonality and orthogonality with respect
to some norm other than the operator norm (see e.g. [12,19,24,27]).

The strong Birkhoff–James orthogonality is introduced as a version of the standard
Birkhoff–James orthogonality which takes into account not only the linear but also
the modular structure of Hilbert C∗-modules. If X is a (right) Hilbert C∗-module over
a C∗-algebra A, then we say that x ∈ X is strongly Birkhoff–James orthogonal to
y ∈ X , and write x ⊥s

B J y, if

‖x + ya‖ ≥ ‖x‖ ∀a ∈ A, (1)

that is, if the distance from x to the right submodule of X generated by y equals
the norm of x . First characterizations and properties of the strong Birkhoff–James
orthogonality in Hilbert C∗-modules were obtained by proving the equivalence of
the strong Birkhoff–James orthogonality of x and y and the classical Birkhoff–James
orthogonality of certain elements defined by x and y [2]. Some further results on the
(strong) Birkhoff–James orthogonality in C∗-algebras and Hilbert C∗-modules were
discussed in [1,3,5,23] and many other papers.

In particular, in a C∗-algebraA, regarded as a right Hilbert C∗-module over itself,
a ∈ A is strongly Birkhoff–James orthogonal to b ∈ A if

‖a + bc‖ ≥ ‖a‖ ∀c ∈ A. (2)
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It is easy to check that for a, b in an arbitrary C∗-algebra A it holds

a∗b = 0 ⇒ a ⊥s
B J b ⇒ a ⊥B J b,

but the reverse implications do not hold unless A is isomorphic to C (see [2, p. 112]
and [3]). The strong Birkhoff–James orthogonality is not symmetric, that is, in general
a ⊥s

B J b does not imply b ⊥s
B J a (again, the only C∗-algebra in which ⊥s

B J is
symmetric is theC∗-algebra of complex numbers, see [5, Corollary 2.7]). For example,
ifA is the C∗-algebra of all bounded linear operators on some Hilbert space H of the
dimension at least 2, P ∈ B(H) any rank-one projection, then it is easy to see that
I ⊥s

B J P but P �⊥s
B J I .

However, aswe shall see in the sequel, it can happen that both a ⊥s
B J b and b ⊥s

B J a
hold for nonzero elements a, b ∈ A (not just in the obvious case when a∗b = 0), and
this is the relation we discuss in this paper.

Definition 1.1 We say that elements a, b ∈ A are mutually strongly Birkhoff–James
orthogonal, and we write a ⊥⊥ s

B J b, if a ⊥s
B J b and b ⊥s

B J a.

We shall study the graph, called orthograph, related to ⊥⊥ s
B J relation. Let Γ (A)

be the graph with the vertex set

V (Γ (A)) = {[a] = Ca : a ∈ A\{0}}

and with vertices [a], [b] ∈ V (Γ (A)) adjacent if a ⊥⊥ s
B J b. We identify vertices with

their representatives, that is, we write a instead of [a].
Let us recall some basic definitions from the graph theory that we shall use in this

paper. A graph is said to be connected if there exists a path from any vertex to any
other vertex of the graph. A connected component of a graph is a maximal (in the
sense of inclusion) connected subgraph. The distance between two distinct vertices is
the length of the shortest path between them. If there is no path between some vertices,
then their distance is ∞; the distance from a vertex to itself is understood to be 0. The
diameter diam(Γ ) of a graph Γ is the maximum of distances between vertices for all
pairs of vertices in the graph; in the same way we define the diameter of a connected
component of a graph. A vertex in a graph is isolated if there is no path between this
vertex and any other vertex in the graph.

We shall discuss two classes of C∗-algebras:
– the C∗-algebra B(H) of all bounded linear operators on a complex Hilbert space

(H , (·|·)) with the operator norm, and
– the commutativeC∗-algebras, that is, theC∗-algebraC(K ) of all continuous func-
tions on a compactHausdorff space K with themaximumnorm, and theC∗-algebra
C0(Ω) of all continuous functions on a locally compact Hausdorff space Ω van-
ishing at infinity.

Let us begin with a simple observation that applies to a general unital C∗-algebra.

Lemma 1.2 If b is a right invertible element in a unital C∗-algebra A, then a ⊥s
B J b

implies a = 0. In particular, right invertible elements of a unital C∗-algebra are
isolated vertices in Γ (A).
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Proof Let a ∈ A be such that a ⊥s
B J b. Then, putting c := −b−1

r a in (2), where b−1
r

is a right inverse of b, we get ‖a‖ ≤ ‖a − bb−1
r a‖ = 0, so a = 0. ��

The rest of the paper is organized as follows.
We consider first the case B(H) with dim H < ∞. By Lemma 1.2, invertible

operators are isolated vertices. We show that any two noninvertible operators on a
Hilbert space of dimension at least 4 can be connected by a path of length at most 3
(Theorem 2.9). Also, for a three-dimensional space H paths between noninvertible
operators always exist, but it can happen that we sometimes need a path of length 4,
while in the two-dimensional case there are no paths between some pairs of nonin-
vertible operators.

In the third section we assume that H is infinite-dimensional. We show that the set
of all A ∈ B(H) which have no right inverse is a connected component of diameter 3
(Theorem 3.7).

The last two sections are devoted to commutative C∗-algebras. It is well known
that every unital commutative C∗-algebra is ∗-isomorphic to the C∗-algebra C(K ) of
all complex continuous functions on a compact Hausdorff space K , while a nonunital
commutative C∗-algebra is ∗-isomorphic to the C∗-algebra C0(Ω) of all complex
continuous functions on a locally compact Hausdorff space Ω vanishing at infinity.
We show that the mutual strong Birkhoff–James orthogonality relation on C(K ) alone
distinguishes among compacts which possess a point with a countable local basis and
those in which no point has a countable local basis—in the first case the set of all
noninvertible elements (that is, nonisolated vertices) is a connected component of
diameter 3, while in the latter case the diameter of this connected component is 2
(Theorem 4.5). Similar results are obtained in the nonunital case (Theorem 5.4).

2 C∗-algebra B(H)with a finite-dimensional Hilbert space H

We shall make use of the following characterization of the strong Birkhoff–James
orthogonality ([2, Proposition 2.8]).

Theorem 2.1 Let H be a complex Hilbert space and A, B ∈ B(H). The following
statements hold.

(1) A ⊥s
B J B if and only if there is a sequence of unit vectors (xn) in H such that

limn→∞ ‖Axn‖ = ‖A‖ and limn→∞ B∗ Axn = 0.
(2) If dim H < ∞, then A ⊥s

B J B if and only if there is a unit vector x ∈ H such
that ‖Ax‖ = ‖A‖ and B∗ Ax = 0.

In the sequel, the image and the kernel of A ∈ B(H) will be denoted by Im A and
Ker A, respectively. The closure of the linear span of a subset V of H will be denoted
by span V .

Since on finite-dimensional spaces an operator A ∈ B(H) is invertible if and only
if it is right invertible, by Lemma 1.2 it remains to consider existence and length of
paths between noninvertible elements in B(H). Observe that a noninvertible element
is never an isolated vertex: if A is noninvertible then there is a nonzero x ⊥ Im A, so
for the orthogonal projection P onto span {x} we have P∗ A = 0, giving P ⊥⊥ s

B J A.
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We begin with the case when H is two-dimensional. The following lemma is a
direct consequence of (2) of Theorem 2.1: if A is a rank-one operator and A ⊥s

B J B,
then A∗B = 0.

Lemma 2.2 Let H be a complex Hilbert space, dim H = 2. Let A, B ∈ B(H) be
nonzero noninvertible operators. Then:

A ⊥⊥ s
B J B ⇔ A∗ B = 0 ⇔ Im A ⊥ Im B.

Proposition 2.3 Let H be a complex Hilbert space, dim H = 2. Suppose that for
nonzero noninvertible A, B ∈ B(H) there exist n ∈ N and nonzero operators
C1, . . . , Cn in B(H) such that A ⊥⊥ s

B J C1 ⊥⊥ s
B J · · · ⊥⊥ s

B J Cn ⊥⊥ s
B J B. Then A∗B = 0

or Im A = Im B.

Proof By Lemma 1.2, if such a sequence exists, then all the operators Ci must be
noninvertible.

Suppose there is a nonzero C1 ∈ B(H) such that A ⊥⊥ s
B J C1 ⊥⊥ s

B J B. Then by
Lemma 2.2 we have Im A ⊥ ImC1 and ImC1 ⊥ Im B, so Im A = Im B. The same
conclusion holds for every path of even length.

Suppose nonzero C1, C2 ∈ B(H) are such that A ⊥⊥ s
B J C1 ⊥⊥ s

B J C2 ⊥⊥ s
B J B. As

above, Im A = ImC2 ⊥ Im B and therefore A∗ B = 0. We conclude the same for
other paths of odd length. ��
Proposition 2.4 Let H be a complex Hilbert space, dim H = 2. The connected com-
ponents of the orthograph Γ (B(H)) are either isolated vertices or the sets of the
form

Sx = {A ∈ B(H) : Im A = span {x} or Im A = span {x}⊥}

where x ∈ H is nonzero. The diameter of each Sx is 2.

Proof Let A, B ∈ Sx for some nonzero x ∈ H . Then either Im A ⊥ Im B or Im A =
Im B. In the first case we have A ⊥⊥ s

B J B. In the second case, let P be the rank-one
orthogonal projection onto (Im A)⊥. Then P ∈ Sx and A ⊥⊥ s

B J P ⊥⊥ s
B J B. Therefore,

Sx is connected and its diameter is 2.
Let us show that all connected components with more than one element are of

this form. Let S ′ be such a connected component and choose any nonzero A in it.
Since A is not isolated, A is noninvertible, so there is a nonzero x ∈ H such that
Im A = span {x}. Let us show that S ′ = Sx . If B ∈ S ′ then, by Proposition 2.3,
Im A = Im B or Im A ⊥ Im B, which implies that B ∈ Sx , so S ′ ⊆ Sx . For the other
inclusion, suppose B ∈ Sx . Then B is connected to A by the first part of the proof, so
B ∈ S ′. ��

The situation is different if dim H ≥ 3.

Proposition 2.5 Let H be a complex Hilbert space, 3 ≤ dim H < ∞. Let
A, B ∈ B(H) be nonzero noninvertible operators. Then there are nonzero opera-
tors C1, C2, C3 ∈ B(H) such that A ⊥⊥ s

B J C1 ⊥⊥ s
B J C2 ⊥⊥ s

B J C3 ⊥⊥ s
B J B.
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Proof Since A and B are noninvertible, there are nonzero vectors vA ∈ Ker A∗ and
vB ∈ Ker B∗. Take a nonzero vector v ∈ span {vA, vB}⊥. Let C1, C2, C3 ∈ B(H)

be orthogonal projections onto span {vA}, span {v}, and span {vB}, respectively. Then
A∗C1 = C∗

1C2 = C∗
2C3 = C∗

3 B = 0 and the statement follows. ��

The following example shows that, whenever dim H ≥ 3, there are noninvertible
A, B ∈ B(H) which cannot be connected by a path of length 2.

Example 2.6 Let H be a complex (finite or infinite-dimensional) Hilbert space,
dim H ≥ 3, and e1, e2 ∈ H mutually orthogonal unit vectors. Let A ∈ B(H) be
the orthogonal projection onto span {e1}. Let B ∈ B(H) be such that Be1 = Be2 =
1
2 (e1+e2), and Bx = 1

2 x for x ∈ span{e1, e2}⊥. Note that A and B are self-adjoint and
noninvertible, Ker A∗ = span {e1}⊥ and Ker B∗ = span {e1 − e2}. Since A∗B �= 0, it
follows from [4, Proposition 2.3] that A �⊥⊥ s

B J B.
Suppose C ∈ B(H) is such that A ⊥⊥ s

B J C ⊥⊥ s
B J B. Again by [4, Proposition 2.3],

A ⊥⊥ s
B J C implies C∗ A = 0, that is, ImC ⊥ span {e1}. By Theorem 2.1, since

C ⊥⊥ s
B J B, there is a sequence of unit vectors xn ∈ H such that limn→∞ ‖Cxn‖ = ‖C‖

and limn→∞ B∗Cxn = 0. SinceCxn ⊥ e1 for alln,wehaveCxn = λne2+yn for some
λn ∈ C and yn ∈ span{e1, e2}⊥. From limn→∞ B∗Cxn = limn→∞( 12λn(e1 + e2) +
1
2 yn) = 0 we get limn→∞ λn = 0 and limn→∞ yn = 0. Then we have limn→∞ Cxn =
0, so ‖C‖ = 0, that is, C = 0.

If dim H ≥ 4 then the path from Proposition 2.5 can be shortened.

Proposition 2.7 Let H be a complex Hilbert space, 4 ≤ dim H < ∞. Let A, B ∈
B(H) be nonzero noninvertible operators. Then there are nonzero operators C1, C2 ∈
B(H) such that A ⊥⊥ s

B J C1 ⊥⊥ s
B J C2 ⊥⊥ s

B J B.

Proof Let x, y ∈ H be unit vectors such that ‖Ax‖ = ‖A‖ and ‖By‖ = ‖B‖. Since
A and B are noninvertible, there are unit vectors vA ∈ Ker A∗ and vB ∈ Ker B∗. If
their inner product satisfies (vA|vB) = 0, we define v := vA and w := vB .

If (vA|vB) �= 0, we take a unit vector v ∈ span {Ax, vB}⊥, and then a unit vector
w ∈ span {By, vA, v}⊥. Define C1, C2 ∈ B(H) as

C1vA = vA, C1v = v, C1|span {vA,v}⊥ = 0,

C2vB = vB, C2w = w, C2|span {vB ,w}⊥ = 0.

Note that ‖C1vA‖ = ‖C1v‖ = ‖C1‖ and ‖C2w‖ = ‖C2vB‖ = ‖C2‖. Since Ax ⊥
ImC1, we have C∗

1 Ax = 0. It also holds A∗C1vA = 0. Therefore, by Theorem 2.1,
A ⊥⊥ s

B J C1. Note that w ⊥ ImC1 implies C∗
1C2w = C∗

1w = 0, while v ⊥ ImC2
implies C∗

2C1v = C∗
2v = 0. This proves that C1 ⊥⊥ s

B J C2. Since By ⊥ ImC2, we
have C∗

2 By = 0. It also holds B∗C2vB = B∗vB = 0, and therefore C2 ⊥⊥ s
B J B. ��

It remains to find operators at a distance four when dim H = 3.
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Example 2.8 Let H be a complex Hilbert space, dim H = 3. Let {e1, e2, e3} be an
orthonormal basis of H , and A, B ∈ B(H) defined as

Ae1 = Ae2 = 1

2
(e1 + e2), Ae3 = 1

2
e3,

Be1 = 1

2
e1, Be2 = Be3 = 1

2
(e2 + e3).

We shall show that:

(i) A �⊥⊥ s
B J B;

(ii) if A ⊥⊥ s
B J C ⊥⊥ s

B J B then C = 0;
(iii) if A ⊥⊥ s

B J C1 ⊥⊥ s
B J C2 ⊥⊥ s

B J B, then C1 = 0 or C2 = 0.

It can be easily checked that A∗ = A, B∗ = B, ‖A‖ = ‖B‖ = 1, and Ker A∗ =
span {e1 − e2}, Ker B∗ = span {e2 − e3}. Note that A(e1 + e2) = e1 + e2 and
B(e2 + e3) = e2 + e3. An easy computation shows that ‖Ax‖ = ‖A‖‖x‖ if and only
if x ∈ span {e1 + e2}, while ‖By‖ = ‖B‖‖y‖ if and only if y ∈ span {e2 + e3}.

First, suppose A ⊥⊥ s
B J B. Then there is a unit vector x ∈ H such that ‖Ax‖ = ‖A‖

and B∗ Ax = 0. Then x ∈ span {e1 + e2}, and therefore x = Ax ∈ Ker B∗ =
span {e2 − e3}, a contradiction. Hence A �⊥⊥ s

B J B.
Suppose now there is a nonzero C ∈ B(H) such that A ⊥⊥ s

B J C ⊥⊥ s
B J B. Since

C ⊥s
B J A, there is a unit vector u ∈ H such that A∗Cu = 0 and ‖Cu‖ = ‖C‖. Thus,

Cu ∈ Ker A∗, so Cu = λ(e1−e2) for some λ ∈ C\{0}, and therefore e1−e2 ∈ ImC .
Since B ⊥s

B J C and ‖By‖ = ‖B‖‖y‖ if and only if y ∈ span {e2 + e3}, we have
C∗ B(e2 + e3) = 0, i.e., C∗(e2 + e3) = 0. Thus, e2 + e3 ∈ KerC∗ which implies that
(e2 + e3|e1 − e2) = 0, since e1 − e2 ∈ ImC . This is impossible, so (ii) holds.

Finally, suppose there are nonzero C1, C2 ∈ B(H) such that

A ⊥⊥ s
B J C1 ⊥⊥ s

B J C2 ⊥⊥ s
B J B.

Since A ⊥s
B J C1 and ‖Ax‖ = ‖A‖‖x‖ if and only if x ∈ span {e1 + e2}, we

get C∗
1 A(e1 + e2) = 0 which implies C∗

1 (e1 + e2) = 0, i.e., e1 + e2 ∈ KerC∗
1 .

Since C1 ⊥s
B J A, there is a unit vector u1 ∈ H such that ‖C1u1‖ = ‖C1‖ and

A∗C1u1 = 0. Thus, C1u1 ∈ Ker A∗, so C1u1 = λ(e1 − e2) for some λ ∈ C\{0},
and therefore e1 − e2 ∈ ImC1. Since C1 ⊥⊥ s

B J A, there are unit vectors u2, u3 ∈ H
such that ‖C1u2‖ = ‖C1‖, ‖C2u3‖ = ‖C2‖, C∗

2C1u2 = 0 and C∗
1C2u3 = 0, so

C1u2 ∈ KerC∗
2 and C2u3 ∈ KerC∗

1 . Since B ⊥s
B J C2 and ‖By‖ = ‖B‖‖y‖ if and

only if y ∈ span {e2+e3}, we haveC∗
2 B(e2+e3) = 0 which impliesC∗

2 (e2+e3) = 0,
i.e., e2 + e3 ∈ KerC∗

2 . Since C2 ⊥s
B J B, there is a unit vector u4 ∈ H such that

‖C2u4‖ = ‖C2‖ and B∗C2u4 = 0. Thus, C2u4 ∈ Ker B∗, so C2u4 = μ(e2 − e3) for
some μ ∈ C\{0}, and therefore e2 − e3 ∈ ImC2. We have obtained that

e1 + e2, C2u3 ∈ KerC∗
1 , e1 − e2, C1u2 ∈ ImC1,

e2 + e3, C1u2 ∈ KerC∗
2 , e2 − e3, C2u3 ∈ ImC2.

Suppose that dimKerC∗
1 = 1. Then C2u3 = ν(e1 + e2) for some ν ∈ C\{0}.

However, this cannot be true, since e2+e3 ∈ KerC∗
2 , and therefore (C2u3|e2+e3) = 0.
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We conclude that dimKerC∗
1 ≥ 2. Since C1 �= 0 and dim H = 3, it follows that

dimKerC∗
1 = 2 and dim ImC1 = 1. Then C1u2 = κ(e1 − e2) for some κ ∈ C\{0}.

However, this contradicts the fact that (C1u2|e2 − e3) = 0, since e2 − e3 ∈ ImC2 and
C1u2 ∈ KerC∗

2 . This proves our statement.

Let us summarize the obtained results.

Theorem 2.9 Let S be the set of all nonzero noninvertible operators acting on a finite-
dimensional complex Hilbert space H.

(1) A ∈ B(H) is an isolated vertex of the orthograph Γ (B(H)) if and only if A is
invertible.

(2) If dim H = 2, then S is not connected. The connected components of the ortho-
graph Γ (B(H)) are either isolated vertices or the sets of the form

Sx = {A ∈ B(H) : Im A = span {x} or Im A = span {x}⊥}

where x ∈ H is nonzero. The diameter of each Sx is 2.
(3) If dim H = 3, then S is a connected component whose diameter is 4.
(4) If dim H ≥ 4, then S is a connected component whose diameter is 3.

3 C∗-algebra B(H)with an infinite-dimensional Hilbert space H

In this sectionwe consider the orthograph ofB(H) for an infinite-dimensional complex
Hilbert space H . Observe first that Example 2.6 provides existence of noninvertible
operators in B(H)whose distance is at least 3 for both finite-dimensional and infinite-
dimensional space H .

Recall that a sequence (xn) of unit vectors in H converges weakly to x ∈ H if
limn→∞(xn|y) = (x |y) for every y ∈ H . We write xn

w→ x .
We start with several technical lemmas.

Lemma 3.1 Let H be an infinite-dimensional complex Hilbert space, and suppose
A ∈ B(H) does not attain its norm. If (xn) is a sequence of unit vectors in H such
that limn→∞ ‖Axn‖ = ‖A‖, then there exists a subsequence (xnk )k of (xn) such that

Axnk

w→ 0.

Proof First note that

lim
n→∞ ‖Axn‖ = ‖A‖ ⇔ lim

n→∞(A∗ A − ‖A‖2 I )xn = 0. (3)

Since (xn) is a bounded sequence, there are x ∈ H and a subsequence (xnk )k of (xn)

such that xnk

w→ x . Then we get

(A∗ A − ‖A‖2 I )xnk

w→ (A∗ A − ‖A‖2 I )x,

so (3) implies that (A∗ A−‖A‖2 I )x = 0, that is, ‖Ax‖ = ‖A‖‖x‖. By our assumption,
it follows that x = 0. Thus, xnk

w→ 0, and therefore Axnk

w→ 0. ��
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Lemma 3.2 Let H be an infinite-dimensional complex Hilbert space, and A ∈ B(H).
Suppose that A is not right invertible and Ker A∗ = {0}. Then there exists a sequence
of unit vectors (yn) in H such that yn

w→ 0 and limn→∞ A∗yn = 0.

Proof Assume that there exists c > 0 such that ‖A∗x‖ ≥ c‖x‖ for all x ∈ H . Then
Im A∗ is closed in H and A∗ : H → Im A∗ is a topological isomorphism. Hence A∗
is left invertible, so A is right invertible, a contradiction. Thus there exists a sequence
of unit vectors (xn) in H such that limn→∞ A∗xn = 0.

Since (xn) is a bounded sequence, there are x ∈ H and a subsequence (xnk )k of

(xn) such that xnk

w→ x . Then A∗xnk

w→ A∗x , so A∗x = 0. Since Ker A∗ = {0}, we
have x = 0, so xnk

w→ 0. Then (yk) = (xnk ) is a required sequence. ��
The following lemma states that every sequence of unit vectors weakly converg-

ing to zero contains a subsequence which is close to an orthonormal sequence (see
[14, p. 300]).

Lemma 3.3 Let H be an infinite-dimensional complex Hilbert space. Let (xn) be a
sequence of unit vectors in H such that xn

w→ 0. Then there exist a subsequence
(xnk )k of (xn) and an orthonormal sequence (ek) in H such that e1 = xn1 = x1 and
limk→∞ ‖xnk − ek‖ = 0.

Lemma 3.4 Let (en) and ( fn) be two orthonormal sequences in H. Then there exist
subsequences (ekl )l of (ek) and ( fk j ) j of ( fk) such that

ek1 = e1, fk1 = f1 and lim
l→∞ PV f (ekl ) = 0,

where PV f is the orthogonal projection onto V f = span { fk j : j ∈ N}.
Proof Note that we can always achieve ek1 = e1 and fk1 = f1 by adding e1 and f1
to the beginning of the subsequences obtained, since limn→∞(en| f1) = 0. Hence it is
sufficient to find (ekl )l and ( fk j ) j such that liml→∞ PV f (ekl ) = 0.

For each n ∈ N we now construct two sequences (e(n)
k )k and ( f (n)

k )k , the subspace
Vn ⊆ H and an ∈ R which satisfy the following properties:

(a) Vn = span { f (n)
k : k ∈ N};

(b) (e(1)
k )k is a subsequence of (ek)k , and ( f (1)

k )k = ( fk)k ;

(c) (e(n+1)
k )k is a subsequence of (e(n)

k )k , and ( f (n+1)
k )k is a subsequence of ( f (n)

k )k ,
so Vn+1 ⊆ Vn ;

(d) limk→∞ ‖PVn (e
(n)
k )‖ < an + 1(√

2
)n−1 ;

(e) limn→∞ an = 0.

We define (e(n)
k ), ( f (n)

k ), Vn and an with the properties (a)-(d) recursively as follows.

If n = 1 we put ( f (1)
k )k = ( fk)k , V1 = span { f (1)

k } and a1 = limk→∞‖PV1(ek)‖
(here lim denotes the limit inferior) and then choose (e(1)

k )k to be a subsequence of

(ek)k such that limk→∞ ‖PV1(e
(1)
k )‖ < a1 + 1.
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Suppose an , Vn , (e
(n)
k )k and ( f (n)

k )k with the properties (a)–(d) are constructed for

some n ∈ N. Consider two subsequences of ( f (n)
k )k , namely, (g(1)

k )k = ( f (n)
2k−1)k and

(g(2)
k )k = ( f (n)

2k )k . For j = 1, 2 let V ( j)
g = span {g( j)

k } and

b( j) = lim
k→∞

‖P
V ( j)

g
(e(n)

k )‖.

Let m ∈ {1, 2} be such that b(m) = min{b(1), b(2)}. We set ( f (n+1)
k )k = (g(m)

k )k ,

an+1 = b(m), Vn+1 = V (m)
g and (e(n+1)

k )k a subsequence of (e(n)
k )k such that

limk→∞ ‖PVn+1(e
(n+1)
k )‖ < an+1 + 1(√

2
)n , so (a)–(d) are satisfied.

Also, observe that V (1)
g ⊥ V (2)

g and Vn = V (1)
g ⊕ V (2)

g , so it follows from (d) that

(b(1))2 + (b(2))2 <

(
an + 1(√

2
)n−1

)2

. By the choice of an+1 we get from here that

an+1 < an√
2

+ 1(√
2
)n . Since this holds for each n ∈ N, we inductively get

0 ≤ an+1 <
a1(√
2
)n + n(√

2
)n ∀n ∈ N,

so limn→∞ an = 0 which proves (e).
Consider (ekl )l = (e(l)

l )l , ( fk j ) j = ( f ( j)
j ) j , and V f = span { fk j : j ∈ N}. We need

to show that

lim
l→∞ PV f (ekl ) = 0.

Let ε > 0. We can find N ∈ N such that aN+1 + 1(√
2
)N < ε

2 . For such N we define

subspaces

V≤N = span { f (n)
n : n ≤ N } and V>N = span { f (n)

n : n > N }.

Then V≤N ⊥ V>N , V f = V≤N ⊕ V>N and V>N ⊆ VN+1.

Since (ekl )l
w→ 0 and V≤N is finite-dimensional, there exists M1 ∈ N such that

‖PV≤N (ekl )‖ <
ε

2
∀l > M1. (4)

Moreover, (ekl )l≥N+1 is a subsequence of (e(N+1)
k )k , so by (d) there exists M2 ∈ N

such that

‖PVN+1(ekl )‖ < aN+1 + 1(√
2
)N

<
ε

2
∀l > M2. (5)
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Then for all l > max{M1, M2} it follows from (4) and (5) that

‖PV f (ekl )‖ = ‖PV≤N (ekl ) + PV>N (ekl )‖
≤ ‖PV≤N (ekl )‖ + ‖PV>N (ekl )‖
≤ ‖PV≤N (ekl )‖ + ‖PVN+1(ekl )‖
<

ε

2
+ ε

2
= ε.

��
Finally, we are in a position to prove that right noninvertible elements are not

isolated vertices. However, the following proposition says even more.

Proposition 3.5 Let H be an infinite-dimensional complex Hilbert space and A ∈
B(H) not right invertible. Then there exists an orthonormal sequence ( f j ) which
satisfies the following property: if ( f jm )m is an arbitrary subsequence of ( f j ) such
that f j1 = f1 then for the orthogonal projection P onto span { f jm : m ∈ N} we have
A ⊥⊥ s

B J P.

Proof Assumewithout loss of generality that ‖A‖ = 1. Consider two cases, depending
on whether or not A attains its norm.

(1) Suppose there is a unit vector xA ∈ H such that ‖AxA‖ = ‖A‖. Then let (ek) be
an arbitrary orthonormal system such that e1 = AxA.

(2) Otherwise, it follows from Lemma 3.1 that there exists a sequence of unit vectors
(xn) in H such that limn→∞ ‖Axn‖ = ‖A‖ and Axn

w→ 0. We may assume that
‖Axn‖ �= 0 for all n ∈ N. Then, by Lemma 3.3, there exist a subsequence (xnk )k

and an orthonormal sequence (ek) such that limk→∞
(

Axnk‖Axnk ‖ − ek

)
= 0. We now

consider the sequence (x̃k) = (xnk )k , so limk→∞ ‖Ax̃k‖ = ‖A‖ and

lim
k→∞(Ax̃k − ek) = lim

k→∞

(
Ax̃k

‖Ax̃k‖ − ek

)
= 0.

As for Ker A∗, there are also two cases possible.

(a) If Ker A∗ �= {0} then there exists yA ∈ H such that ‖yA‖ = 1 and A∗yA = 0.
Clearly, if xA exists then AxA ⊥ yA. Let ( fk) be an arbitrary orthonormal system
such that f1 = yA and, in the case when xA exists, we require that AxA ⊥ fk for
all k ∈ N.

(b) Otherwise, Lemma 3.2 implies that there exists a sequence of unit vectors (yn) in
H such that limn→∞ A∗yn = 0 and yn

w→ 0. Then, by Lemma 3.3, there exist a
subsequence (ynk )k and an orthonormal sequence ( fk) such that limk→∞(ynk −
fk) = 0. Hence limk→∞ A∗ fk = 0 and fk

w→ 0. Note that if xA exists then we
can choose ( fk) to be orthogonal to AxA (we can set y0 = AxA, use Lemma 3.3
for (yn)n∈N0 , and then remove f0 = AxA).
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Now we have constructed two orthonormal sequences (en) and ( fn) in H and we
are ready to apply Lemma 3.4. So, there exist two subsequences (ekl )l and ( fk j ) j of
(en) and ( fn), respectively, such that

ek1 = e1, fk1 = f1, lim
l→∞ PV f (ekl ) = 0, (6)

where V f = span { fk j : j ∈ N} and PV f is the orthogonal projection onto V f . We
now show that ( fk j ) j is the desired sequence. Note that it is sufficient to prove that
A ⊥⊥ s

B J PV f , since we can pass to any subsequence of ( fk j ) j which contains its first
element without losing conditions from (6). We denote P = PV f .

Let us show that A ⊥s
B J P .

(1) If A attains its norm at xA then AxA ⊥ V f , so P∗ AxA = P AxA = 0.
(2) Otherwise, liml→∞ P∗ Ax̃kl = liml→∞ P Ax̃kl = liml→∞ Pekl = 0.

Further, we show that P ⊥s
B J A.

(a) If Ker A∗ �= {0}, then yA ∈ V f , so ‖PyA‖ = ‖P‖ and A∗ PyA = A∗yA = 0.
(b) Otherwise, P fk j = fk j for all j ∈ N, so lim j→∞ ‖P fk j ‖ = ‖P‖ and

lim
j→∞ A∗ P fk j = lim

j→∞ A∗ fk j = 0.

Hence we have A ⊥⊥ s
B J P . ��

Remark 3.6 If Ker A∗ �= {0} then f1 ∈ Ker A∗ and the condition f j1 = f1 is essential
for ( f jm )m to satisfy A ⊥⊥ s

B J P . Otherwise, it can easily be omitted which is clear
from the proof.

We are finally ready for the main theorem of this section.

Theorem 3.7 Let H be an infinite-dimensional complex Hilbert space and

S = {T ∈ B(H) : T is not right invertible, T �= 0}.

The following statements hold.

(1) An operator A ∈ B(H) is an isolated vertex of the orthograph Γ (B(H)) if and
only if A is right invertible.

(2) The set S is a connected component of the orthograph Γ (B(H)) whose diameter
is 3.

Proof (1) This follows from Lemma 1.2 and Proposition 3.5.
(2) Assume A, B ∈ S. We shall prove that there are nonzero operators CA, CB ∈
B(H) such that A ⊥⊥ s

B J CA ⊥⊥ s
B J CB ⊥⊥ s

B J B.
Let ( f A

j ) and ( f B
j ) be the sequences from Proposition 3.5 for A and B, respec-

tively, VA = span { f A
j : j ∈ N} and VB = span { f B

j : j ∈ N}. By Lemma 3.4,

we may replace ( f A
j ) and ( f B

j ) with their subsequences such that first elements
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are preserved and lim j→∞ PVA ( f B
j ) = 0. Then we may use Lemma 3.4 again

and obtain lim j→∞ PVB ( f A
j ) = 0. Note that for the subsequences the condition

lim j→∞ PVA ( f B
j ) = 0 also holds.

We now take CA = PVA and CB = PVB . By Proposition 3.5, we have
A ⊥⊥ s

B J CA and B ⊥⊥ s
B J CB . Moreover, f A

j = CA f A
j , so ‖CA f A

j ‖ = ‖CA‖ and

lim j→∞ PVB ( f A
j ) = 0 imply CA ⊥s

B J CB . In the same manner, f B
j = CB f B

j ,

so ‖CB f B
j ‖ = ‖CB‖ and lim j→∞ PVA ( f B

j ) = 0 imply CB ⊥s
B J CA. Hence

CA ⊥⊥ s
B J CB .

This, together with Example 2.6, completes the proof. ��

4 Commutative unital C∗-algebras

Let K be a compact Hausdorff space and C(K ) the C∗-algebra of all continuous
complex valued functions on K with the norm ‖ f ‖ = max{| f (t)| : t ∈ K }. Then
C(K ) is a unital commutative C∗-algebra and every unital commutative C∗-algebra
is isomorphic to a C∗-algebra of this type for some compact Hausdorff space ([10,
II.2.2.4 and II.1.1.3.(2)]).

The following result is Corollary 2.1 from [18].

Theorem 4.1 Let K be a compact Hausdorff space, f , g ∈ C(K ) and

E f = {t ∈ K : | f (t)| = ‖ f ‖}.

Then f ⊥B J g if and only if the set { f (t)g(t) : t ∈ E f } is not contained in an open
half plane (in C) with boundary that contains the origin.

Using this result we easily get a characterization of the strong Birkhoff–James
orthogonality in C(K ).

Proposition 4.2 Let K be a compact Hausdorff space, f , g ∈ C(K ), f �= 0. Then
f ⊥s

B J g if and only if there is t0 ∈ K such that | f (t0)| = ‖ f ‖ and g(t0) = 0.

Proof By [2, Theorem 2.5], we know that f ⊥s
B J g if and only if f ⊥B J gg f . (Here

we regard the C∗-algebra C(K ) as a Hilbert C∗-module over itself with the inner
product of a and b defined as a∗b.) By Theorem 4.1, f ⊥B J gg f if and only if the
set

{ f (t)(gg f )(t) : t ∈ E f } = {| f (t)|2|g(t)|2 : t ∈ E f } = {‖ f ‖2|g(t)|2 : t ∈ E f }

is not contained in an open half plane in C with boundary that contains the origin.
Obviously, this happens if and only if there is t0 ∈ E f such that g(t0) = 0. ��

If |K | ≥ 3 then the diameter of Γ (C(K )) can be equal to either two or three. To
distinguish these cases, we will need the following technical result.

Lemma 4.3 Let K be a compact Hausdorff space and t0 ∈ K . Then there is f ∈ C(K )

whose only zero is t0 if and only if t0 has a countable local basis in K .
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Proof Suppose t0 ∈ K has a countable local basis (Un)n in K . Then the sets K\Un, n ∈
N, are closed and do not intersect the closed set A = {t0}. By Urysohn’s lemma we
construct a sequence of continuous functions fn : K → [0, 1] which vanish at t0 and
equal 1 on K\Un ([20, Theorem 4.2]). Define f := ∑∞

n=1
1
2n fn . By Weierstraß M-

test, the sum converges uniformly, so f is continuous and f (t0) = 0. If t �= t0, then
by the Hausdorff property t does not belong to some neighborhood of t0, and since
(Un)n is a local basis, there exists n such that t /∈ Un . Then t ∈ K\Un , so f (t) > 0.
Therefore, the weighted sum f is a continuous function on K with only one zero.

Conversely, suppose there is a function f ∈ C(K ) with a unique zero t0 ∈ K .
Without loss of generality we may assume that f ≥ 0, that is, f : K → [0,∞). For
each n ∈ N we denote Un = f −1

([
0, 1

n

))
. Then Un are open sets in K containing

t0. Let U be an arbitrary open neighborhood of t0. Then K\U is compact, as a closed
subset of a compact set, so f attains its minimum α on K\U . Since f (t) > 0 for
t ∈ K\U , we have α > 0. Let m ∈ N be such that 1

m < α. If t ∈ Um then
f (t) < 1

m < α, so t /∈ K\U , that is, t ∈ U . Therefore, Um ⊆ U . This shows that
(Un)n is a countable local basis of t0. ��

The next lemma provides a lower bound for the diameter of Γ (C(K )) in the case
when some point in K has a countable local basis.

Lemma 4.4 Let K be a compact Hausdorff space, |K | ≥ 3. Suppose there is a point in
K with a countable local basis. Then there are nonzero functions f , g ∈ C(K ), both
having at least one zero, such that f �⊥⊥ s

B J g and the only h ∈ C(K ) which satisfies
f ⊥⊥ s

B J h ⊥⊥ s
B J g is h = 0.

Proof Suppose t1 ∈ K has a countable local basis. By Lemma 4.3 there is f ∈ C(K )

such that t1 is its only zero. Replacing f with f f wemay assume that f is nonnegative.
Let f attain its norm in t ′′.

We additionally may assume that there is t ′ ∈ K , t ′ �= t1, such that f (t ′) < ‖ f ‖.
Namely, if f (t) = ‖ f ‖ for all t ∈ K\{t1}, then take t ′ ∈ K\{t1, t ′′}, construct a
continuous function α : K → [0, 1] such that α(t1) = α(t ′) = 0 and α(t ′′) = 1 and
replace f with f + α. So, we now have that 0 < f (t ′) < ‖ f ‖, t1 is the only zero of
f , and f attains its norm in t ′′.
Further, we may assume that f (t ′) > 1

2‖ f ‖: if not, then construct a continuous
function β : K → [0, 1] such that β(t1) = 0 and β(t ′) = β(t ′′) = 1 and replace f
with f + ‖ f ‖β.

Let us define g as

g(t) = f (t ′) − f (t).

Then g ∈ C(K ) is nonzero, g(t ′) = 0, and t1 is the unique point at which g attains
its norm (since ‖g‖ = f (t ′)). Observe that f �⊥s

B J g, because g(t) = 0 if and only if
f (t) = f (t ′) and then | f (t)| = | f (t ′)| �= ‖ f ‖. Therefore f �⊥⊥ s

B J g.
Suppose h ∈ C(K ) is such that f ⊥⊥ s

B J h ⊥⊥ s
B J g. From h ⊥s

B J f it follows that
|h(t1)| = ‖h‖, since t1 is the only zero for f . On the other hand, g ⊥s

B J h implies
h(t1) = 0, since t1 is the only point in K at which g attains its norm. Therefore, h = 0.

��
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We now prove the main theorem of this section.

Theorem 4.5 Suppose K is a compact Hausdorff space with |K | ≥ 3. Let

SK = { f ∈ C(K ) : f (t) = 0 for some t ∈ K }\{0}.

The following statements hold.

(1) Isolated points in Γ (C(K )) are exactly invertible elements of C(K ), that is,
nonzero elements of C(K )\SK .

(2) The set SK is a connected component of the orthograph Γ (C(K )). Its diameter
is 3 if at least one point of K has a countable local basis, otherwise its diameter
is 2.

Remark 4.6 An example of a compact Hausdorff space where no point has a countable
local basis is I I , the set of all functions from I = [0, 1] into itself, equipped with a
product topology (which on each factor I coincides with a standard topology on I ).

Proof (1) Suppose f ∈ SK and let t1, t2 ∈ K be such that f (t1) = 0 and | f (t2)| =
‖ f ‖. Then there exists h ∈ C(K ) such that |h(t1)| = ‖h‖ �= 0 and h(t2) = 0 and, by
Proposition 4.2, it holds f ⊥⊥ s

B J h, so f is not isolated in Γ (C(K )).
For the converse we apply Lemma 1.2.
(2) Let us first show that the diameter of Γ (SK ) is at least two. Take a nonnegative

nonzero function f ∈ SK such that for some t1, t ′, t ′′ ∈ K it holds

f (t1) = 0, f (t ′′) = ‖ f ‖, 0 < f (t ′) < ‖ f ‖

(such a function can be constructed in a similar way as in the proof of the previous
lemma). Then f 2 and f do not belong to the same vertex of the orthograph and, by
Proposition 4.2, f �⊥⊥ s

B J f 2.
To prove the upper bounds, take any two functions f , g ∈ SK such that f �⊥⊥ s

B J g.
Suppose |K | ≥ 4 and let t1, s1, t2, s2 ∈ K be such that

f (t1) = 0, g(s1) = 0, | f (t2)| = ‖ f ‖, |g(s2)| = ‖g‖. (7)

If t1, t2, s1, s2 are four different points, then we take h ∈ C(K ) such that

|h(t1)| = |h(s1)| = ‖h‖, h(t2) = h(s2) = 0 (8)

and hence f ⊥⊥ s
B J h ⊥⊥ s

B J g. Suppose that some points among t1, t2, s1, s2 are the
same. Of course, t1 �= t2 and s1 �= s2.

(a) If t1 = s1 or t2 = s2 then t2 �= s1 and s2 �= t1, so h as in (8) is still a well-defined
nonzero function such that f ⊥⊥ s

B J h ⊥⊥ s
B J g.

(b) If t1 = s2 and t2 = s1, then f ⊥⊥ s
B J g which contradicts our assumption.

(c) It remains to consider the case t1 = s2 and t2 �= s1 (the case t1 �= s2 and t2 = s1
is analogous). Observe that then t1, t2, s1 are three different points. We split into two
subcases.
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First, suppose that f has two distinct zeros: t1 and t ′1. Observe that t ′1 �= t2. We can
also assume t ′1 �= s1, otherwise we can repeat arguments from (a) with t ′1 replaced by
t1. Hence, t ′1, t1, t2, s1 are four different points. Let h ∈ C(K ) be a nonzero function
such that

h(t1) = h(t2) = 0, h(t ′1) = h(s1) = ‖h‖.

Then f ⊥⊥ s
B J h ⊥⊥ s

B J g.
Suppose, still under case (c), that t1 is the only zero of f . Construct nonzero

functions h1, h2 ∈ C(K ) such that

h1(t1) = ‖h1‖, h1(t2) = h1(s1) = 0,

h2(t1) = 0, h2(t2) = h2(s1) = ‖h2‖.

Then f ⊥⊥ s
B J h1 ⊥⊥ s

B J h2 ⊥⊥ s
B J g.

By Lemma 4.3, if no point of K has a countable local basis, then each noninvertible
function on K has at least two zeros, so for all f , g ∈ SK there is a nonzero h ∈ SK

such that f ⊥⊥ s
B J h ⊥⊥ s

B J g. Therefore, in this case the diameter is 2. Further, if some
point of K has a countable local basis, then there is a noninvertible function with only
one zero. From the above proof and Lemma 4.4 we conclude that in this case the
diameter of Γ (SK ) is 3.

Let us now verify the case |K | = 3 (that is, C3 with the maximum norm). As
above, find t1, s1, t2, s2 ∈ K with the properties as in (7). Since |K | = 3, some
points among t1, t2, s1, s2 are the same and the discussion is as before. Of course, an
ordered triple in C

3 with only one zero coordinate exists. Therefore, the diameter in
this case is 3. ��

Remark 4.7 If |K | = 2 then C(K ) coincides with C
2 with the maximum norm. If

SK is defined as in Theorem 4.5 then SK = {λ(0, 1), μ(1, 0) : λ,μ ∈ C\{0}} and,
obviously, (0, 1)⊥⊥ s

B J (1, 0).

5 Commutative nonunital C∗-algebras

Let us now consider the case of a nonunital commutative C∗-algebra. For each such
a C∗-algebra A there is a noncompact locally compact Hausdorff space Ω such that
A is isomorphic to C0(Ω), the C∗-algebra of all continuous complex functions on Ω

vanishing at infinity. Let K = Ω ∪ {s0} be the one-point compactification of Ω. Then
we can identify C0(Ω) with the C∗-subalgebra { f ∈ C(K ) : f (s0) = 0} of C(K ).

We first need to extend Proposition 4.2.

Proposition 5.1 Let K = Ω ∪{s0} be the one-point compactification of a noncompact
locally compact Hausdorff space Ω , f , g ∈ C0(Ω), f �= 0. Then f ⊥s

B J g if and
only if there is t0 ∈ Ω such that | f (t0)| = ‖ f ‖ and g(t0) = 0.
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Proof Let f , g ∈ C0(Ω) be such that f ⊥s
B J g in C0(Ω). This means that

‖ f + gh‖ ≥ ‖ f ‖ ∀h ∈ C0(Ω). (9)

On the other hand, if we regard the same f and g as elements of C(K ), then
f ⊥s

B J g in C(K ) means that

‖ f + gh‖ ≥ ‖ f ‖ ∀h ∈ C(K ). (10)

Although (10) seems stronger than (9), they are actually equivalent. Namely, by [2,
Theorem 2.5], for two elements a and b in any C∗-algebraA it holds that a ⊥s

B J b (in
A) if and only a ⊥B J bb∗a, that is ‖a +λbb∗a‖ ≥ ‖a‖ for all λ ∈ C. Therefore, since
the norm on C(K ) extends the norm on C0(Ω), both (9) and (10) are equivalent to
f ⊥B J gg f , which does not depend on the ambient C∗-algebra (it is only important
that f and g are in C0(Ω) ⊆ C(K )).

So, if f , g ∈ C0(Ω) are nonzero functions such that f ⊥s
B J g (in C0(Ω) and then

also in C(K )), then by Proposition 4.2 there is t0 ∈ K such that | f (t0)| = ‖ f ‖ and
g(t0) = 0. Since f �= 0, it has to be t0 �= s0, so t0 ∈ Ω. The converse is obvious. ��

The following lemma is based on Lemma 4.3.

Lemma 5.2 Let K = Ω ∪ {s0} be the one-point compactification of a noncompact
locally compact Hausdorff space Ω . Then there is f ∈ C0(Ω) which, besides s0, has
exactly one zero t0 ∈ Ω if and only if s0 and t0 both have countable local bases in K .

Proof Suppose s0, t0 ∈ K have countable local bases in K . By Lemma 4.3, there are
f0, g0 ∈ C(K ) such that s0 is the only zero for f0, and t0 is the only zero for g0. Then
f = f0g0 belongs to C0(Ω) and its only zeros are s0 and t0.
Suppose now that there is a function f ∈ C0(Ω) with only two zeros, s0 and

t0. Without loss of generality we may assume that f : K → [0,∞). By Urysohn’s
lemma we construct a continuous function g : K → [0, 1] such that g(s0) = 0 and
g(t0) = 1. Then s0 ∈ K is the only zero of h = f + g ∈ C(K ), so by Lemma 4.3 we
conclude that s0 has a countable local basis in K . Similarly, we can conclude that t0
has a countable local basis in K . ��

Similar to the unital case (see Lemma 4.4), functions in C0(Ω) with only one zero
in Ω will produce pairs of functions for which paths of length less than three are not
possible.

Lemma 5.3 Let K = Ω ∪ {s0} be the one-point compactification of a noncompact
locally compact Hausdorff space Ω . Suppose there is t1 ∈ Ω such that s0 and t1
have countable local bases in K . Then there are nonzero functions f , g ∈ C0(Ω),
both having zeros in Ω , such that f �⊥⊥ s

B J g and the only h ∈ C0(Ω) which satisfies
f ⊥⊥ s

B J h ⊥⊥ s
B J g is h = 0.

Proof By Lemma 5.2 there is f ∈ C0(Ω) such that t1 and s0 are the only zeros of
f . Replacing f with f f we may assume that f is nonnegative. As in the proof of
Lemma 4.4 we may assume that there is t ′ �= s0, t1 such that f (t ′) �= ‖ f ‖.
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Let g1 ∈ C(K ) be a nonnegative function such that t1 is the unique point at which
g1 attains its maximum. (Such g1 exists: since t1 has a countable local basis, there
is α ∈ C(K ) such that t1 is its only zero. Then we can take g1(t) = ‖α‖ − |α(t)|.)
We may also assume that g1(t ′) = g1(s0). Namely, if g1(t ′) �= g1(s0), for example,
g1(t ′) > g1(s0), construct a continuous function β : K → [0, 1] such that β(s0) =
β(t1) = 1 and β(t ′) = 0 and replace g1 with g1 + (g1(t ′) − g1(s0))β.

We shall modify g1 to the function g in C0(Ω) which also attains its maximum
only at t1, which has a zero in Ω and such that g �⊥⊥ s

B J f .
The set

K1 = {t ∈ K : f (t) = ‖ f ‖} ∪ {t1}

is closed and t ′, s0 /∈ K1. Let γ : K → [0, 1] be a continuous function such that
γ (s0) = γ (t ′) = 0 and γ (t) = 1 for t ∈ K1. Define

g(t) = g1(t) − g1(s0) + (2‖g1‖ + g1(s0))γ (t).

Then we have the following.

(1) It holds g(s0) = g(t ′) = 0, so g ∈ C0(Ω) and it has a zero in Ω.

(2) If f attains its norm at t, then t ∈ K1\{t1} and therefore g(t) = g1(t)+2‖g1‖ �= 0.
This proves that f �⊥⊥ s

B J g.

(3) Obviously, g(t1) = 3‖g1‖. Further, it is easy to check that

−‖g1‖ < −g1(s0) ≤ g(t) ≤ g1(t) + 2‖g1‖γ (t) ≤ 3‖g1‖ ∀t ∈ K ,

so ‖g‖ = 3‖g1‖. Now we know that g attains its maximum at t1, but let us show
that t1 is the unique point with that property. Suppose |g(t)| = 3‖g1‖ for some
t ∈ K . Since g(t) ≥ −g1(s0), it is impossible that g(t) = −3‖g1‖. Since g is a
real valued function, it remains to consider the case when g(t) = 3‖g1‖. A simple
computation shows that then

(‖g1‖ − g1(t)) + (2‖g1‖ + g1(s0))(1 − γ (t)) = 0.

Since both summands on the left hand side of this equality are nonnegative, they
sum up to 0 if and only if both of them are equal to zero, that is g1(t) = ‖g1‖ and
γ (t) = 1. The only t which satisfies these conditions is t1. Therefore, t1 is the
only point at which g attains its maximum.

Finally, suppose h ∈ C0(Ω) is such that f ⊥⊥ s
B J h ⊥⊥ s

B J g. By Proposition 5.1,
from h ⊥s

B J f it follows that |h(t1)| = ‖h‖, since t1 is the only zero of f in Ω. On
the other hand, g ⊥s

B J h implies h(t1) = 0, since t1 is the only point in Ω at which g
attains its norm. Therefore, h = 0. ��

We are now ready to describe the diameter of components in the orthograph
Γ (C0(Ω)).
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Theorem 5.4 Let Ω be a noncompact locally compact Hausdorff space, K = Ω∪{s0}
the one-point compactification of Ω . Let

SΩ = { f ∈ C0(Ω) : f (t) = 0 for some t ∈ Ω}\{0}.

The following statements hold.

(1) Isolated vertices in Γ (C0(Ω)) exist if and only if s0 has a countable local basis
in K ; in this case the set of all isolated vertices equals the set of nonzero elements
of C0(Ω)\SΩ.

(2) The set SΩ is a connected component of the orthograph Γ (C0(Ω)). Its diameter is
3 if there is t1 ∈ Ω such that s0 and t1 have countable local bases in K , otherwise
its diameter is 2.

Proof (1) Suppose s0 ∈ K has a countable local basis in K . By Lemma 4.3, there is
a function f ∈ C(K ) such that s0 is its only zero, that is, f ∈ C0(Ω) and f does not
have zeros in Ω. Then, by Proposition 5.1, there is no nonzero g ∈ C0(Ω) such that
g ⊥s

B J f . Therefore, all such f are isolated vertices in Γ (C0(Ω)).

Suppose s0 ∈ K does not have a countable local basis in K . Then each f ∈ C0(Ω)

has another zero, say t1 ∈ Ω . Let t2 ∈ K be such that | f (t2)| = ‖ f ‖. Construct
nonzero g ∈ C(K ) such that g(s0) = g(t2) = 0 and |g(t1)| = ‖g‖. Then g ∈ C0(Ω)

and f ⊥⊥ s
B J g, so f is not an isolated vertex in Γ (C0(Ω)).

(2) The proof is analogous to the proof of Theorem 4.5. The only difference is
that the functions constructed there have to be in C0(Ω), that is, we additionally
require that s0 is their zero. Since all the points t1, t2, s1, s2, t ′, t ′′, that appear in the
construction of these functions, differ from s0, this additional condition does not collide
with other required conditions. Also, we use Lemmas 5.2 and 5.3 to get the diameter of
Γ (SΩ). ��

6 Concluding remarks

We conclude the paper with some final thoughts.
(1) As we have mentioned in the introductory section, the notion of the strong

Birkhoff–James orthogonalitywasfirst introduced in the setting ofHilbertC∗-modules
as a modular version of the classical Birkhoff–James orthogonality. We assumed that
Hilbert C∗-modules were right modules, but the same can be done for left Hilbert
C∗-modules. It is well known that every right Hilbert C∗-module is also a left Hilbert
C∗-module (in general, over some other C∗-algebra, see [10, II.7.6.5]).

When regarding aC∗-algebraA as a left HilbertC∗-module over itself, then a (left)
module action is an algebra multiplication from the left, and the inner product of a
and b is defined as ab∗. Then, instead of (2) we have the following relation:

‖a + cb‖ ≥ ‖a‖ ∀c ∈ A. (11)

Of course, in the case of commutative C∗-algebras this is the same as (2). In general,
since the involution is an antilinear isometric antiautomorphism ofA, this is equivalent
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to

‖a∗ + b∗c‖ ≥ ‖a∗‖ ∀c ∈ A,

that is, (11) is equivalent to a∗ ⊥s
B J b∗. Therefore, description of the orthograph with

respect to the “left” mutual strong Birkhoff–James orthogonality follows from the
results obtained for the (right) mutual strong Birkhoff–James orthogonality.

(2) By Lemma 1.2 from the introduction, each right-invertible element in a unital
C∗-algebra is an isolated vertex in the discussed orthograph. In the cases of B(H) and
C(K ) the converses also hold: right invertible elements are the only isolated vertices. It
is an open questionwhether the converse of Lemma 1.2 holds: ifA is an arbitrary unital
C∗-algebra and a ∈ A an isolated vertex in Γ (A), is a necessarily right-invertible?

(3) In the previous section we consider a nonunital commutative C∗-algebra, so
all its elements are right-noninvertible when regarded as elements of the unitization
C(K ) of the C∗-algebra C0(Ω) (and therefore nonisolated in Γ (C(K ))). However,
some elements of C0(Ω) may still be isolated vertices in Γ (C0(Ω)). Also, it would
be interesting to consider the case K(H) of all compact operators on an infinite-
dimensional Hilbert space.

(4) Linear preserver problems concern the characterization of linear maps of an
algebraA into itself which preserve certain properties of some elements ofA or rela-
tions between them. For example, automorphisms and antiautomorphisms of algebras
preserve many relations and properties, so in various preserver problems they appear
not just as examples, but the only examples of such mappings. Describing orthogo-
nality preservers is an interesting topic studied by many authors; for the preservers of
the (strong) Birkhoff–James orthogonality see e.g. [4,11,26]. Knowing orthographs
one can describe (linear) mappings which preserve the relation defining the ortho-
graph. In our subsequent paper we shall discuss maps that preserve the mutual strong
Birkhoff–James orthogonality in certain C∗-algebras.
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5. Arambašić, Lj., Rajić, R.: On symmetry of the (strong) Birkhoff–James orthogonality in Hilbert
C∗-modules. Ann. Funct. Anal. 7(1), 17–23 (2016)



Orthograph related to mutual strong Birkhoff–James... 1771

6. Bakhadly, B.R., Guterman, A.E., Markova, O.V.: Graphs defined by orthogonality. J. Math. Sci. 207,
698–717 (2015)

7. Bhatia, R., Šemrl, P.: Orthogonality of matrices and some distance problems. Linear Algebra Appl.
287(1–3), 77–85 (1999)

8. Bhattacharyya, T., Grover, P.: Characterization of Birkhoff–James orthogonality. J. Math. Anal. Appl.
407(2), 350–358 (2013)

9. Birkhoff, G.: Orthogonality in linear metric spaces. Duke Math. J. 1, 169–172 (1935)
10. Blackadar, B.: Operator Algebras. Theory of C∗-algebras and von Neumann Algebras. Encyclopaedia

of Mathematical Sciences, vol. 122. Springer, Berlin (2006)
11. Blanco, A., Turnšek, A.: On maps that preserve orthogonality in normed spaces. Proc. R. Soc. Edinb.

Sect. A 136, 709–716 (2006)
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arambas@math.hr

Alexander Guterman
guterman@list.ru

Bojan Kuzma
bojan.kuzma@upr.si

Rajna Rajić
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